Hewlett Packard
Enterprise

[he Computer Language Benchmarks Game




What is the Computer Language Benchmarks Game (CLBG)?

. . . Th omputer Language
e A website comparing a few dozen languages using 10 benchmarks

« Benchmarks exercise useful things like:
—floating point performance

Measure “Which programming language
is fastest?”

IO "My question is if anyone here has any experience
- vecTorizaTion with simplistic benchmarking and could tell me which
things to test for in order to get a simple idea of
- blglnTS each language's general performance?”

There's more than one “right” answer.

. ) For the “fastest” contributed programs -
o Supports comparisons in terms of:

The box plot charts show a visual summary of the data:

_ wa"clock fime medians, dispersion, skew.

—memory usage How many times slower? (Percentiles)
300

—code compactness 100

~CPU time 50 .

- CPU load

=
o

— browsing the source code (encouraged, but obvs. requires effort)

w un

ST

benchmarks game 06 Jun 2024 ub4q

[

program elapsed seconds / fastest

« Accepts new code submissions of the same algorithm

https://benchmarksgame-team.pages.debian.net/benchmarksgame/

— | 2



https://benchmarksgame-team.pages.debian.net/benchmarksgame/

Chapel’s approach to the CLBG

e Our Goal: Submit versions that are fast but clear The conputer Language

24.06 Benchmarks Game

« Strive for versions that would be great to learn from
all Chapel programs & measurements

File system caches and swap are cleared before
measurements are made for each program — so each

L Use I‘eSU ITS TO u nderSTa nd Where Cha pel fa”S ShorT program has a similiar initial context. That makes the first
. measurements (the smallest N workload) different from later
e in ferms of performance measurements.
« in terms of expressiveness / capabilities siplvecion 20l

Copyright 2020-2024
Hewlett Packard Enterprise Development LP
Copyright 2004-2019 Cray Inc.

source secs N mem gz cpu secs cpu load
binary-trees #3 0.34 7 19,568 494 0.02 0% 0% 5% 2%
binary-trees #3 0.06 14 19,568 494 0.15 100% 85% 66% 57%
binary-trees #3 8.71 21 367,232 494 26.20 99% 74% 56% 71%
source secs N mem gz cpu secs cpu load
fannkuch-redux #2 0.32 10 19,596 737 0.23 15% 21% 18% 24%
fannkuch-redux #2 0.64 11 19,596 737 2.53 100% 98% 98% 100%
fannkuch-redux #2 8.40 12 19,596 737 33.50 100% 100% 99% 99%
saurce secs N mem az cnu secs cnu load

https://benchmarksgame-team.pages.debian.net/benchmarksgame/measurements/chapel.html



https://benchmarksgame-team.pages.debian.net/benchmarksgame/measurements/chapel.html

Reading a Benchmark’s Results

e Each benchmark has its own results page:
« Here, we're looking at spectral-norm
o Click on “description” to learn about it

o Starts with a few simple/clear versions:
« (good ones to learn the algorithm from)

e Then, the pack of main contenders:

x
1.0
1.0
1.0
1.0
1.0
1.7
1.9
2.0
2.0
2.0
2.0
2.0

spectral-norm

description

First a few simple programs.

The Computer Language
24.06 Benchmarks Game

Then optimisations, multicore parallelism, [pdf] vector

parallelism.

Last hand-written vector instructions and "unsafe" programs.

source
Julia #2
Go #4

Chapel

source
Rust #5
Rust #7

Classic Fortran #3

Rust #4
Chapel #2
Julia #4
Julia #2
Swift #3

Go #4

C gcc #3
Lisp SBCL #8

Free Pascal #2

secs
1.36
1.43
1.46

secs
0.72
0.72
0.72
0.72
0.73
1.19

1.36
1.43
1.43
1.43
1.44
1.44

m
258,688
20,340
19,688

mem

19,748

19,748
19,652
19,812
19,688

251,184

258,688
20,084
20,340
19,708
19,688
19,688

9z
377
555

322

E
1062
938
644
823
348
435
377
607
555
470
799
548

Cpu secs
2.85
2.85
2.85
2.85
2.88
3.64
4.07
5.69
5.68
5.70
5.64
5.71

cpu load

100% 100% 100% 100%
100% 100% 100% 100%
100% 100% 98% 100%
98% 98% 100% 100%
100% 98% 100% 100%
75% 99% 64% 67%
89% 64% 75% 71%
100% 99% 100% 99%
99% 99% 99% 99%
100% 100% 100% 100%
98% 99% 98% 98%

99% 99% 98% 98%

spectral-norm description
program measurements

Background

MathWorld: "Hundred-Dollar, Hundred-Digit Challenge
Problems", Challenge #3.

Thanks to Sebastien Loisel for suggesting this task.

How to implement

We ask that contributed programs not only give the correct
result, but also use the same algorithm to calculate that
result.

Each program should:

 calculate the spectral norm of an infinite matrix A, with
entries a11=1, a1,=1/2, a»1=1/3, a13=1/4, ay»=1/5,
az1=1/6, etc

e implement 4 separate functions / procedures / methods
like the Java program

diff program output N = 100 with this output file to check
your program output has the correct format, before you
contribute your program.

Use a larger command line argument (5500) to check
program performance.

https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/spectralnorm.html



https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/spectralnorm.html

Reading a Benchmark’s Results

The Computer Language
24.06 Benchmarks Game
spectral-norm
description
First a few simple programs.
Then optimisations, multicore parallelism, [pdf] vector
parallelism.
Last hand-written vector instructions and "unsafe" programs.
source secs mem gz
Julia #2 1.36 258,688 377
Go #4 1.43 20,340 555
Chapel 1.46 19,688 322
. ‘ , X source secs mem E Cpu secs cpu load
o By default, entries are sorted by ‘secs o Rut 45 072 19748 1062 2.85 100% 100% 100% 100%
° (Wa”-clock 1‘|me) 1.0 Rust #7 0.72 19,748 938 2.85 100% 100% 100% 100%
1.0 Classic Fortran #3 0.72 19,652 644 2.85 100% 100% 98% 100%
1.0 Rust #4 0.72 19,812 823 2.85  98% 98% 100% 100%
e This Chapel #2 entry took 0.73 seconds |0 chapel #2 073 19,688 348 2.8 100%98% 100% 100%
. . . 1.7 Julia #4 1.19 251,184 435 3.64 75% 99% 64% 67%
« and essentially runs in 1.0x of the baseline |, ulla #2 136 258,688 377 407 9% 6a% 7% 7%
- (the Rust #5 version at the top) 2.0 Swift #3 1.43 20,084 607 5.69  100% 99% 100% 99%
2.0 Go #4 1.43 20,340 555 5.68 99% 99% 99% 99%
. . 2.0 Cgcc #3 1.43 19,708 470 5.70 100% 100% 100% 100%
° CIICk on a headlng TO Change The sorT"' 2.0 Lisp SBCL #8 1.44 19,688 799 5.64 98% 99% 98% 98%
e e.g,’gz (code compactness) 2.0 Free Pascal #2 1.44 19,688 548 571 99% 99% 98% 98%

: https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/spectralnorm.html


https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/spectralnorm.html

Reading a Benchmark’s Results

e Sorting by code compactness... The conputer Language
24.06 Benchmarks Game
spectral-norm
description
First a few simple programs.
Then optimisations, multicore parallelism, _[_p_g_f_l_\_/_gg_gg_r:
parallelism.
Last hand-written vector instructions and "unsafe" programs.
source secs mem gz
Chapel 1.46 19,688 322
Julia #2 1.36 258,688 377
Go #4 1.43 20,340 555
X source secs mem gz cpu secs cpu load
1.0 Matz's Ruby 26 min 11,056 292 26 min 54% 1% 32% 14%
1 4 ji ! 0% 0% 100% 0%
o We see another Chapel version that’s 1.1x | *© Rubvwt 12841 22018, 290, 12841
1_ Th b I R b . 1.1 Chapel 1.46 19,688 322 5.78 100% 99% 99% 99%
as Com pac as e ase Ine u y VerS|on 1.1 Matz's Ruby #4 29 min 11,056 326 29 min 34% 13% 26% 32%
1.1 Node.js 5.38 51,676 326 5.39 0% 0% 100% 0%
1.1 Ruby yjit #4 129.81 22,912 333 129.81 0% 0% 100% 0%
1.1 Python 3 #6 5 min 19,660 334 5 min 0% 0% 100% 0%
1.1 Lua 78.68 19,652 335 78.68 35% 64% 0% 0%
1.2 Perl 104.08 19,652 340 104.08 0% 100% 0% 0%
e Our Chapel #2 entry is 1.2x as compact |12 pen#s 97.67 19,828 346 97.66 0% 0% 0% 100%
H . H H 1.2 Chapel #2 0.73 19,688 348 2.88 100% 98% 100% 100%
« Demonstrating a speed:code size tension —ape e
1.2 Perl #2 8 min 19,652 350 8 min 0% 100% 0% 0%

: https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/spectralnorm.html


https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/spectralnorm.html

Reading a Benchmark’s Results

° Sorﬂng by Wa”'CIOCk Time again... Matz's Ruby #4 29 min 11,056 326 29 min 34% 13% 26% 32%
. C gcc #8 Make Error
« Scrolling down, at the end... F# NET #2 Timed out

hand-written vector instructions | "unsafe"

X source secs mem gz cpu secs cpu load

. . “ ” . 0.5 Cgcc #6 0.39 19,724 1203 1.54 100% 100% 100% 100%
..we find hand-written... / “unsafe” versions |, o ... s 072 19854 1050 285  100% o6 100% 0%
« | refer to these as “heroic” for brevity 30 R #e 022, A0700 N, 2000, 0% LN ok 100k
. 1.0 Cgcc #5 0.72 19,708 576 2.86 100% 100% 100% 100%

« Note these can oquerform the baseline... 1.0 Cgcc #4 0.72 19,724 1145 2.85  100% 100% 98% 98%
1.0 Cgcc #7 0.72 19,724 906 2.85 100% 100% 98% 98%

1.0 Ada 2012 GNAT #4 0.74 19,784 2777 2.86 97% 97% 97% 97%

1.1 Rust #2 0.78 19,748 1117 3.04 98% 98% 98% 98%

1.1 M 0.79 19,748 1262 3.02 98% 100% 98% 97%

1.3 Rust #3 0.92 19,748 1060 3.56 98% 98% 100% 98%

1.3 C# .NET #5 0.93 36,476 776 3.41 96% 92% 90% 92%

1.9 C++ g++ #5 1.33 19,788 1050 5.27 100% 100% 100% 99%

5.5 Racket #3 3.91 76,412 639 14.84 93% 94% 99% 93%

21 Racket #2 15.10 75,252 539 15.10 0% 100% 0% 0%

31 Haskell GHC #2 22.30 19,688 410 22.48 0% 69% 31% 0%

by secs by mem by gz by cpu secs

How programs are measured

: https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/spectralnorm.html


https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/spectralnorm.html

Reading a Benchmark’s Results

 Scolling back up...
« Let’s find the other Chapel version’s timings

e Hereitis...
e ...2.0 slower than the Rust baseline:

—

x
1.0
1.0
1.0
1.0
1.0
1.7
1.9
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.1
2.1
2.1

source
Julia #2
Go #4

Chapel

source
Rust #5

Rust #7

Rust #4
Chapel #2
Julia #4

Julia #2

Swift #3

Go #4

C gcc #3

Lisp SBCL #8
Free Pascal #2
Free Pascal #3
Lisp SBCL #2
Dart #6

Lisp SBCL #3
Chapel

Lisp SBCL #7

Ada 2012 GNAT #3

Haskell GHC #4
Go #2

Secs

1.36
1.43
1.46

secs
0.72
0.72
0.72
072
0.73
1.19
1.36
1.43
1.43
1.43
1.44
1.44
1.45
1.45
1.45
1.46
1.46
1.46
1.47
1.48
1.50

mem
258,688
20,340

19,688

m
19,748
19,748
19,652
19,812
19,688

251,184
258,688
20,084
20,340
19,708
19,688
19,688
19,688
19,688
19,972
19,688
19,688
19,688
19,784
19,688
20,148

%
377
555
322

9z
1062
938
644
823
348
435
377
607
555
470
799
548
656
920
1202
893
322
769
1725
994
674

cpu secs
2.85
2.85
2.85
2.85
2.88
3.64
4.07
5.69
5.68
5.70
5.64
5.71
5.71
5.64
5.70
5.63
5.78
5.65
5.73
572
5.69

cpu load

100% 100% 100% 100%
100% 100% 100% 100%
100% 100% 98% 100%
98% 98% 100% 100%
100% 98% 100% 100%
75% 99% 64% 67%
89% 64% 75% 71%
100% 99% 100% 99%
99% 99% 99% 99%
100% 100% 100% 100%
98% 99% 98% 98%
99% 99% 98% 98%
98% 99% 98% 99%
98% 98% 99% 99%
98% 98% 98% 98%
98% 99% 98% 97%
100% 99% 99% 99%
97% 98% 99% 97%
98% 97% 97% 98%
96% 98% 96% 97%

94% 94% 96% 94%

So we have...
...Chapel: 2.0x slower, 1.1x less compact
..Chapel #2: 1.0x slower, 1.2x less compact

Let’s plot this tension!

https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/spectralnorm.html



https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/spectralnorm.html

CLBG: Scatter Plot of Chapel’s fastest/most-compact benchmarks capr 5, 2024)

chapel
10 P
m chapel

[0 smallest
O fastest

[ ] gmean-smallest
O gmean-fastest

Execution Time
(normalized to fastest non-heroic entry)

. .. 1 . 1 1 1 1 1
1.00 1.25 1.50 175 2.00 2.25 2.50 2.75 3.00

Compressed Code Size (normalized to smallest non-heroic entry)



CLBG: Chapel’s fastest/most-compact versions of spectral norm (apr5,2024)

Execution Time

" chapel
m chapel
[0 smallest
@ O fastest
N\ D gmean-smallest
> O gmean-fastest
(-
f—
c
U 4
L
(©]
@
c ]
1
c
(@)
[
5o
] (]
f—
()]
©
G
(@) @
f—
3 -
N o
£
B (]
@
E Chapel spectralnorm N
2- o ®
Chapel #2 spectralnorm on
B ol g

1 1 1 1 1
1.00 1.25 1.50 175 2.00 2.25 2.50 2.75 3.00

Compressed Code Size (normalized to smallest non-heroic entry)



CLBG: Chapel’s fastest/most-compact versions of all benchmarks apr 5, 2024)

Execution Time
(normalized to fastest non-heroic entry)

0 chapel

g binary-trees

Ooo |}

o]
T

m mandelbrot (compact)

o
|

@ regex-redux (compact)

o regex-redux (fast)

E
|

o revcomp (compact)

chapel

smallest

fastest
gmean-smallest
gmean-fastest

k-nucleotide (compact) g

spectralnorm (compact) = k-nucleotide (fast) ©
2- | ® revcomp (fasfi
specfralnorm (fasT).pidigi’rs fasta mandelbrot (fast) ®@fannkuch (1.9x slower than fastest
n-body,5, i 250 175 2.5 250 25 s00 ‘+8x bigger than smallest

Compressed Code Size (normalized to smallest non-heroic entry)



CLBG: Geometric Means of Chapel’s fastest/most-compact versions (Apr 5,2024)

Execution Time
(normalized to fastest non-heroic entry)

0 chapel

g binary-trees

OOool|

m mandelbrot (compact)

@ regex-redux (compact)
o regex-redux (fast)

o revcomp (compact)

m Geometric Mean of most compact programs
spectralnorm (compact)

N 5| ~ Geometric Mean of fastest programs
spectralnorm (fas‘rz. pidigits fasta  ondelbrot (fast) ®®fannkuch
n-body, 5, 5o 175 235 250

Compressed Code Size (normalized to smallest non-heroic entry)

chapel

smallest

fastest
gmean-smallest
gmean-fastest

k-nucleotide (compact) g

k-nucleotide (fast) @

revcomp (fasfi

(1.9x slower than fastest

4.8x bigger than smallest)
3.00



We can then use these geometric
means to summarize each

language compactly...

13



CLBG Summary, Apr 12, 2024 (selected languages, w/ heroic versions)

—

Execution Time
(normalized to fastest entry)
o

chapel
csharpcore
gcc

go

gpp

ifc

java

julia

node

perl

python3

ruby

rust

swift
gmean-smallest
gmean-fastest

100 - \

\
\
80 -

60 -

ocToill I HHINRINE

40 -

20l Javaserph -

Julia

1.0 15 4.5

Compressed Code Size (normalized to smallest entry)

Note: Regrettably, the version of this chart presented at ChapelCon 24 included incorrect summary results for C, C#, Go, Java, Perl, Python, and Ruby due to a bug in our scripts; this is the corrected version

14



CLBG Summary, Apr 12, 2024 (sclected languages, w/ heroic versions, zoomed-in)

—

Execution Time
(normalized to fastest entry)

10 -

1.0

chapel
csharpcore
gcc

go

gapp

ifc

java

julia

node

perl

python3

ruby

rust

swift
gmean-smallest
gmean-fastest

ool I HHINRIND

15 2.0 2.5 3.0 3.5

® ¢ ® Rusi® C++
4.0

4.5

Compressed Code Size (normalized to smallest entry)

Note: Regrettably, the version of this chart presented at ChapelCon 24 included incorrect summary results for C, C#, Go, and Java due to a bug in our scripts; this is the corrected version

15



Those graphs included the heroic
versions; removing those...

16



CLBG Summary, Apr 12, 2024 (sclected languages, no heroic versions, zoomed-in)

—

ool I HHINRNND

Execution Time
(normalized to fastest non-heroic entry)

I Yo

Compressed Code Size (normalized to smallest entry)

chapel
csharpcore
gcc

go

app

ifc

java

julia

node

perl

python3

ruby

rust

swift
gmean-smallest
gmean-fastest

4.5

Note: Regrettably, the version of this chart presented at ChapelCon 24 included incorrect summary results for C, C#, Go, and Java due to a bug in our scripts; this is the corrected version



CLBG: Often, a single version is both Chapel’s fastest and most compact

10

Execution Time
(normalized to fastest non-heroic entry)

1.00

Compressed Code Size (normalized to smallest non-heroic entry)

..pIdIgITS

1
125

The Computer Language

24.06 Benchmarks Game

pidigits

description

Arbitrary precision arithmetic might be provided by wrapping

language. How would you know?
First a few simple programs.

Then optimisations, multicore parallelism, [pdf] vector
parallelism.

Last hand-written vector instructions and "unsafe" programs
and the more obvious foreign function interface programs.

The Computer Language

24.06 Benchmarks Game

pidigits

description

Arbitrary precision arithmetic might be provided by wrapping

language. How would you know?
First a few simple programs.

Then optimisations, multicore parallelism, [pdf] vector
parallelism.

Last hand-written vector instructions and "unsafe" programs
and the more obvious foreign function interface programs.

source secs mem gz source secs mem gz

Haskell GHC #6 1.62 19,688 368 Haskell GHC #6 1.62 19,688 368

Lisp SBCL #3 3.49 616,192 499 Racket 10.41 77,952 459

Racket 10.41 77,952 459 Lisp SBCL #3 3.49 616,192 499
X source secs mem gz cpu secs cpu load X source secs mem gz cpu secs cpu load
1.0 Rust #4 0.71 19,720 804 0.71 1% 100% 0% 1% 1.0 Python 3 #4 4.61 19,652 348 4.61 0% 0% 99% 0%
1.1 Chapel #2 0.76 19,976 423 0.77 98% 5% 2% 1% 1.0 Haskell GHC #4 1.83 19,688 355 1.89 66% 6% 2% 27%
1.1 Cgcc #2 0.82 19,704 422 0.82 100% 1% 1% 1% 1.1 Haskell GHC #6 1.62 19,688 368 1.67 2% 75% 22% 2%
1.2 Cgce 0.89 19,704 459 0.88 1% 100% 0% 1% 1.1 Haskell GHC #3 2.21 19,688 387 2.28 36% 60% 1% 2%
1.2 C++ g++ #4 0.89 19,736 521 0.88 1% 1% 1% 100% 1.1 PHP #4 1.04 19,656 396 1.04 100% 0% 0% 1%
1.4 PHP #5 1.03 19,656 405 1.03 1% 1% 100% 0% 1.2 PHP #5 1.03 19,656 405 1.03 1% 1% 100% 0%
1.5 PHP #4 1.04 19,656 396 1.04 100% 0% 0% 1% 1.2 Node.js #2 12.45 84,544 405 12.47 0% 1% 99% 0%
1.5 PHP #3 1.05 19,656 510 1.05 0% 100% 0% 0% 1.2 Cgcc #2 0.82 19,704 422 0.82 100% 1% 1% 1%
1.7 Node.js #4 1.23 56,100 487 1.26 0% 0% 2% 99% 1.2 Chapel #2 0.76 19,976 423 0.77 98% 5% 2% 1%
1.9 Go 1.34 19,700 715 1.36 75% 1% 0% 27% 1.2 Node.js #3 12.53 84,420 431 12.55 0% 99% 0% 0%




CLBG: As of Chapel 2.0, our #3 n-body is the baseline for both speed and size!

10
The Computer Language The Computer Language
24.06 Benchmarks Game 24.06 Benchmarks Game
m
-
= n-body n-body
c description description
()] 8- —_— —_—
O
6 First a few simple programs. First a few simple programs.
E Then optimisations, multicore parallelism, [pdf] vector Then optimisations, multicore parallelism, [pdf] vector
Qo C parallelism. parallelism.
E IC Last hand-written vector instructions and "unsafe" programs. Last hand-written vector instructions and "unsafe" programs.
omm O
- c L source secs mem gz source secs mem gz
o 6 €S 2 2= 24
wn Chapel #3 3.89 19,672 967 Chapel #3 3.89 19,672 967
S 9 I+ —
"5 "5 C clang 5.52 19,672 1179 C clang 5.52 19,672 1179
b4 3 Java 7.89 41,464 1437 Java 7.89 41,464 1437
o
o L
T .
ﬁ X source secs mem gz cpu secs cpu load X source secs mem gz cpu secs cpu load
.T_U 1.0 Chapel #3 3.89 19,672 967 3.90 100% 0% 0% 0% 1.0 Chapel #3 3.89 19,672 967 3.90 100% 0% 0% 0%
E 1.0 Rust #2 3.94 19,700 1809 3.94 0% 0% 99% 0% 1.0 Chapel #2 5.64 19,672 977 5.65 100% 1% 0% 0%
—
o) 1.1 Julia #8 4.17 275,408 1129 4.26 2% 96% 0% 3% 1.1 Chapel #4 4,58 19,656 1027 4.59 100% 0% 0% 0%
C
\ 1.1 Classic Fortran #6 4,22 19,644 1530 4,22 0% 0% 100% 1% 1.1 Julia #2 23.88 303,148 1084 24.01 0% 100% 0% 0%
L =
2 1.1 Rust #6 4,32 19,716 1796 4,32 0% 100% 0% 0% 1.1 PHP #3 67.03 19,656 1088 67.03 0% 0% 0% 100%
b d 1.2 Rust #8 4.49 19,684 1774 4.49 100% 0% 1% 0% 1.2 Julia #8 4.17 275,408 1129 4.26 2% 96% 0% 3%
Nn-DoO - -
@ y oD 1.2 Chapel #4 4.58 19,656 1027 4.59 100% 0% 0% 0% 1.2 Matz's Ruby #2 44 min 11,096 1137 44 min 0% 100% 0% 0%
1.00 1.25

Compressed Code Size (normalized to smallest non-heroic entry)

—




Benchmark updates required by Chapel 2.0

fasta knucl mandelbrot pidigits2 regexredux revcomp spectralnorm

explicit ‘ref’ for passing arrays X X X

reader()/writer() signature updates X X X

read/writeBinary() updates X X

readline() -> readLine() changes

zip(keys, vals) instead of map.items()

sorted() iterator deprecated

X | X | X | X

need to declare record ‘hashable’

divCeilPos module/naming change X

bigint operator signature changes X

read(string) -> readAll()

compile(regex) -> new regex()

sub() -> replace() on regex

change to lo..<hi type inference X

stricter C pointer aliasing rules #8 only

: | 22




Unstable Features the current Chapel entries still rely on

binarytrees fannkuch2 knucleotide mandelbrot pidigitsé revcomp8
‘serial’ statement X
divCeilPos()
‘Dynamiclters’ module X X
‘Sort’ module X
‘GMP’ module X

23



Opportunities for Future Improvement

» binary-trees: Our worst outlier, due to lack of memory arenas / object pools / similar memory abstraction

e regex-redux:
« Michael has already optimized some things in Chapel 2.1, so this should improve after it’s released

" chapel

1 chapel
[J smallest
O fastest
[] ogmean-smallest
N
() gmean-fastest

e Fastest entries use PCRE?2, we use RE2...
- should we switch?

g binary-trees
e revcomp, k-nucleotide:
« not doing great in either dimension...
 1/0O could be a place for improvement

@ mandelbrot (compact)

= regex-redux (compact)

o regex-redux (fast)

e nbody, others...?:
« written long ago

_ revcomp (compact)

k-nucleotide (compact) g

Execution Time
(normalized to fastest non-heroic entry)

 can be rewritten using modern Chapel speciralnorm (chmpact) m Geometric Mean of most compact programs k-nucleotide (fast) ©
28 = s Geometric Mean of fastest programs revcomp (fas'ri
spectralnorm (fast) pidigits fasta eafannkuch (1.9x slower than fastest
O a mandelbrp’r (fast) annxuc 4.8x bigger than smallest)

- a . . . .
n bOdyl.OO 125 150 175 2.00 2.25 2.50 2.75 3.00

Caution: CLBG can be very addictive!

Compressed Code Size (normalized to smallest non-heroic entry)

: | 24






