
Transformer From Scratch
Thitrin Sastarasadhit1, Prof. Kenjiro Taura2

¹Chulalongkorn University, Bangkok, Thailand
²University of Tokyo, Tokyo, Japan

Agenda

2

- Methodology

- Small-Size Model on Single Thread

- Full-Size Model on Single and Multiple Threads

- Productivity

- Conclusion

Methodology

Models

4

- C++

- Chapel

- PyTorch A

- PyTorch B

Implemented from scratch

From Transformer-from-Scratch

Gihub link for all code : https://github.com/markthitrin/Transformer.git
Transformer-from-scratch : https://github.com/ES7/Transformer-from-Scratch.git

*This project does performance tests on CPU, single thread, and multiple threads
*The Chapel and C++ implementations were very similar; all variables could be mapped from one
to the other.

PyTorch A with the transformer layer replaced with torch.nn.Transformer

There are 4 models:

https://github.com/ES7/Transformer-from-Scratch?tab=readme-ov-file
https://github.com/ES7/Transformer-from-Scratch?tab=readme-ov-file
https://github.com/ES7/Transformer-from-Scratch?tab=readme-ov-file
https://github.com/ES7/Transformer-from-Scratch?tab=readme-ov-file
https://github.com/ES7/Transformer-from-Scratch?tab=readme-ov-file
https://github.com/markthitrin/Transformer.git
https://github.com/ES7/Transformer-from-Scratch.git
https://github.com/ES7/Transformer-from-Scratch.git
https://github.com/ES7/Transformer-from-Scratch.git
https://github.com/ES7/Transformer-from-Scratch.git
https://github.com/ES7/Transformer-from-Scratch.git

Test Environments

5

Property Machine A Machine B

CPU AMD Ryzen 7 4800H with Radeon Graphics Intel(R) Xeon Phi(TM) CPU 7250 @ 1.40GHz

RAM 6.67 GB 204.45 GB

Clang Ubuntu clang version 19.1.1 (1ubuntu1) Target:
x86_64-pc-linux-gnu Thread model: posix

clang version 19.1.3 Target: x86_64-unknown-linux-
gnu Thread model: posix

Chapel chpl version 2.4.0 built with LLVM version 19.1.1
available LLVM targets: xtensa, m68k, xcore, x86-
64, x86, wasm64, wasm32, ve, systemz, sparcel,
sparcv9, sparc, riscv64, riscv32, ppc64le, ppc64,
ppc32le, ppc32, nvptx64, nvptx, msp430, mips64el,
mips64, mipsel, mips, loongarch64, loongarch32,
lanai, hexagon, bpfeb, bpfel, bpf, avr, thumbeb,
thumb, armeb, arm, amdgcn, r600, aarch64_32,
aarch64_be, aarch64, arm64_32, arm64

chpl version 2.4.0 built with LLVM version 19.1.3
available LLVM targets: amdgcn, r600, nvptx64,
nvptx, aarch64_32, aarch64_be, aarch64,
arm64_32, arm64, x86-64, x86

Python Python 3.11.13 PyTorch : 2.3.0 Numpy : 2.3.0 Python 3.11.13 PyTorch : 2.5.1 Numpy : 2.0.1

Model Configuration

5

Parameter Machine A Machine B Description

dModel 32 512 Dimension of embedding layer of the encoder and
decoder

sequenceLength 128 256 Maximum length of input sequence

dFF 256 2048 Dimension of the feed-forward layer inside the
encoder and decoder

N 6 6 Number of transformer encoder, decoder layers
(stacked).

head
8 8

Number of attention heads in multi-head attention
layer

secVocab 15700 15700 Size of source vocabulary (number of unique tokens).

tgtVocab 22470 22470 Size of target vocabulary

attention is all you needed paper: https://arxiv.org/abs/1706.03762

The model architecture are based on the Attention Is All You Needed paper

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

Performance Measurement

7
The Hugging Face link for opus_book: https://huggingface.co/datasets/Helsinki-NLP/opus_books
The model was executed for 500 and 40 iterations on Machines A and B, respectively.

- Timers are inserted into each layers
- The Models were trained on English-Italian machine translation task, the dataset were taken from opus_book
- The time of each iteration of each was gathered, trimming 10% fastest and slowest iterations
- The average and standard deviation were calculated

https://huggingface.co/datasets/Helsinki-NLP/opus_books
https://huggingface.co/datasets/Helsinki-NLP/opus_books
https://huggingface.co/datasets/Helsinki-NLP/opus_books
https://huggingface.co/datasets/Helsinki-NLP/opus_books

Small-Size Model
on Single Thread

Description

9

- Tested small model on Machine A
- The models were run for 500 iterations
- GitHub link for all single-thread code:

https://github.com/markthitrin/Transformer/tree/SingleThread
- Google Spreadsheet for detailed results:

https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-
bFa0p0/edit?gid=2029252533#gid=2029252533

https://github.com/markthitrin/Transformer/tree/SingleThread
https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-bFa0p0/edit?gid=2029252533#gid=2029252533
https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-bFa0p0/edit?gid=2029252533#gid=2029252533
https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-bFa0p0/edit?gid=2029252533#gid=2029252533
https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-bFa0p0/edit?gid=2029252533#gid=2029252533
https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-bFa0p0/edit?gid=2029252533#gid=2029252533
https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-bFa0p0/edit?gid=2029252533#gid=2029252533
https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-bFa0p0/edit?gid=2029252533#gid=2029252533

Result of Forward Pass

10

Time spent on each layer (in microseconds) during a single forward-pass training iteration for each
model, tested on Machine A (single-threaded) using the small model configuration.

Result of Backward Pass

11

Time spent on each layer (in microseconds) during a single backward-pass training iteration for each
model, tested on Machine A (single-threaded) using the small model configuration.

Overall Result

12

Time spent on each layer (in microseconds) per training iteration (including forward, backward, and
update) for each model, tested on Machine A (single-threaded) using the small model configuration.

Matrix Representation

13

In C++, The TensorView is for capturing a portion of the Tensor.

class Tensor {
 Tensor(int row, int column) {data = new float[row * column];}
 ~Tensor() {delete[] data;}
 float* data;
};
class TensorView {
 TensorView(Tensor& t) {data = t.data;}
 ~TensorView() {/*do nothing*/}
 float* data;
};

But in Chapel, ref is not allowed in a class or record

class TensorView {
 // ref data; error
}

Matrix Representation

14
Chapel performance concerns: https://chapel-lang.org/docs/technotes/optimization.html#performance-problems-with-multidimensional-zippered-iteration
GitHub Issue “Multidimensional zippered iteration kills performance”: https://github.com/chapel-lang/chapel/issues/13147

- 1D array
- No multi-dimensional array

- Slow when doing for (a,b) in zip(A,B)
- No loop optimization (no loop unrolling, no vectorization)
- Huge overhead from advance_chpl
- Can be avoided with for i in A.domain
- Mentioned in the Chapel website as performance concern

- Nest array, var A: [0..#N][0..#N] real(32), is better but not best
- Basically 1D array of 1D arrays
- Non-continuous array

https://chapel-lang.org/docs/technotes/optimization.html#performance-problems-with-multidimensional-zippered-iteration
https://chapel-lang.org/docs/technotes/optimization.html#performance-problems-with-multidimensional-zippered-iteration
https://chapel-lang.org/docs/technotes/optimization.html#performance-problems-with-multidimensional-zippered-iteration
https://chapel-lang.org/docs/technotes/optimization.html#performance-problems-with-multidimensional-zippered-iteration
https://chapel-lang.org/docs/technotes/optimization.html#performance-problems-with-multidimensional-zippered-iteration
https://chapel-lang.org/docs/technotes/optimization.html#performance-problems-with-multidimensional-zippered-iteration
https://chapel-lang.org/docs/technotes/optimization.html#performance-problems-with-multidimensional-zippered-iteration
https://chapel-lang.org/docs/technotes/optimization.html#performance-problems-with-multidimensional-zippered-iteration
https://chapel-lang.org/docs/technotes/optimization.html#performance-problems-with-multidimensional-zippered-iteration
https://chapel-lang.org/docs/technotes/optimization.html#performance-problems-with-multidimensional-zippered-iteration
https://chapel-lang.org/docs/technotes/optimization.html#performance-problems-with-multidimensional-zippered-iteration
https://chapel-lang.org/docs/technotes/optimization.html#performance-problems-with-multidimensional-zippered-iteration
https://chapel-lang.org/docs/technotes/optimization.html#performance-problems-with-multidimensional-zippered-iteration
https://github.com/chapel-lang/chapel/issues/13147
https://github.com/chapel-lang/chapel/issues/13147
https://github.com/chapel-lang/chapel/issues/13147
https://chapel-lang.org/docs/technotes/optimization.html#performance-problems-with-multidimensional-zippered-iteration

Matrix Multiplication

15

- Chapel can do better than C++ at some specific size of matrix, and worse at other size.
- Even though the compiler-generated code looks the same.

Matrix Operation

16

- Element-wise addition, multiplication, reduction, etc.
- Design matters a lot than expected

proc PlusReduce1(ref A: [?D] real(32), out output: real(32)) : void {
 output = 0.0;
 for i in D {
 output += A[i];
 }
}

proc PlusReduce2(D: domain(1), ref A: [] real(32)) : void {
 output = 0.0;
 for i in D {
 output += A[i];
 }
}

Matrix Operation

17

proc PlusReduce3(in start: int, in count: int, ref A: [] real(32), out output: real(32))
: void {
 output = 0.0;
 for i in start..#count {
 output += A[i];
 }
}

proc PlusReduce4(ref A: [?D] real(32), out output real(32)) : void {
 output = + reduce(A);
}

Matrix Operation

18

Design Optimization

PlusReduce1 No

PlusReduce2 Unrolling

PlusReduce3 Unrolling + vectorize

PlusReduce4 No, create task

To prevent future problem, PlusReduce3’s design is used

*This is hard to reproduce; it happens only on some specific code structures
*I have tried operator overloading too. It gives the same performance as PlusReduce1.

operator +=(ref sum: real(32), ref A: [] real(32)) {
 var output: real(32) = 0.0;
 for i in A.domain {
 output += A[i];
 }
 sum = output;
}

Softmax

19

- Slow compared to C++
- Chapel don’t exponential vectorization (_ZGVdN8v_expf_avx2) while Clang enables

vectorization using -fveclib=libmvec
- Chapel refuses to vectorize exponential function, even with:

- Simple for loop iterating over the array’s domain
- Simple for loop iterating over the array’s elements
- Switching from real(32) to real(64)
- Direct assignment B = exp(A)
- Using foreach loops.
- Passing the same flags used in Clang via --ccflag
- Using --no-ieee-float

Process Performance (μs)

Softmax Forward C++: 53,759.49
Chapel: 75,521.40

Softmax Backward C++: 25,531.68
Chapel: 20,907.40

Softmax Total C++: 79,291.17
Chapel: 96,428.80

Dropout

20

- Use randomStream.fill()
- Need CHPL_RT_NUM_THREADS_PER_LOCALE=1 when do single thread experiment

- Use integer random.

Process Performance (μs)

Dropout Forward C++: 87,045.49
Chapel: 288,983.16

Dropout Backward C++: 35,605.02
Chapel: 34,410.46

Dropout Total C++: 122,650.51
Chapel: 323,393.62

Multihead Attention

21

- The forward pass works fine
- The issue is in the weight gradient and the next layer’s gradient computation during the backward pass

Transformer/Chapel/MultiheadAttention.chpl

The loop was heavily unrolled but no vectorization

Multihead Attention

22

- The Problem was fixed by changing param to var in config.chpl

Transformer/Chapel/Config.chpl

This is quite a tricky solution

ReLU

23

- One problem is that the backward pass needs to be divided into two sections

Transformer/Chapel/ReLU.chpl (new)

Transformer/Chapel/ReLU.chpl (old)

This allows optimization to take place

ReLU

24

- Another mystery is that when tested on the small-size model, Chapel is slightly faster in the forward pass. But
when tested on the full-size model, it becomes much slower

Process Performance (μs)

ReLU Forward (Small Size) C++: 2,003.26
Chapel: 1,170.46

ReLU Forward (Full Size) C++: 42,211.31
Chapel: 239,258.80

- The only difference I found in the compiler-generated code is that Chapel and C++ took different approaches

// Chapel
load mem -> res
max 0,res -> res
store res -> mem

// C++
max 0,mem -> res
store res -> mem

- This effect can also be seen in the backward pass of LayerNorm.

*Both version got same degree of vectorized and loop unrolling

Other Layers

25

- Other layers are working fine
- The parameter updating (Adam optimization) in C++ and Chapel is much faster than than in PyTorch

Full-Size Model
on Single and Multiple
Threads

Description

27

- Tested full-size model on the Machine B
- The models were run for 40 iterations
- C++ uses OpenMP
- Chapel uses forall, coforall , and custom iterators
- The degree of parallelism is estimated for each layer/operation
- The degree of parallelism is the same in both C++ and Chapel
- GitHub link for all single-thread code:

https://github.com/markthitrin/Transformer/tree/MultiThread
- Google Spreadsheet for detailed results:

https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-
bFa0p0/edit?gid=2029252533#gid=2029252533

https://github.com/markthitrin/Transformer/tree/MultiThread
https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-bFa0p0/edit?gid=2029252533#gid=2029252533
https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-bFa0p0/edit?gid=2029252533#gid=2029252533
https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-bFa0p0/edit?gid=2029252533#gid=2029252533
https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-bFa0p0/edit?gid=2029252533#gid=2029252533
https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-bFa0p0/edit?gid=2029252533#gid=2029252533
https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-bFa0p0/edit?gid=2029252533#gid=2029252533
https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-bFa0p0/edit?gid=2029252533#gid=2029252533

Result of Forward Pass

28

Time spent on each layer (in microseconds) during a single forward-pass training iteration for each model,
measured on Machine B (single-threaded (a), multi-threaded (b)) using the full-size model configuration.

(a) (b)

Result of Backward Pass

29

Time spent on each layer (in microseconds) during a single backward-pass training iteration for each model,
measured on Machine B (single-threaded (a), multi-threaded (b)) using the full-size model configuration.

(a) (b)

Overall Result

30

Time spent on each layer (in microseconds) per training iteration (including forward, backward, and update) for
each model tested on Machine B (single-threaded (a), multi-threaded (b)) using the full-size model

configuration.

(a) (b)

(a) (b)

Softmax

31

- A buffer is needed to store exponential values
- Unlike C++, Chapel can not perform stack allocation

// Chapel
forall i in Par(start, end, numThread) {
 var buffer: [0..&N] real(32);
 // do something
}

- This can be solved by moving the buffer declaration outside the loop

// C++
#pragma omp parallel
for(int i = 0;i < row;i++) {
 float buffer[size];// stack memory
 // do something
}

The buffer is stored in stack memory The buffer is allocated and deallocated in every iteration

Other Layer

32

- Many layer perform as well as C++, even if they are slower in single-threaded. This is likely due to being
bound by memory bandwidth

- Parameter Updates (Adam optimization) in C++ and Chapel are significantly faster than in PyTorch

Productivity

Productivity

34

- Things I like:
- Easy to learn, similar to Python
- Simple parallel programming through for loops
- Requires type declaration of variables
- Object memory management
- Memory management across threads
- Easier to run programs on multiple locales

- A Few Drawbacks I Noticed:
- Long compilation time
- All the performance issues that needed tricky solution I mentioned
- Type casting between number types (e.g. real(32) from/to real(64))
- Generative AI support is limited

Conclusion

Conclusion

36

- This project compares four transformer models, implemented in C++, Chapel, Python
- The achieve performance is reasonable
- Chapel outperforms C++ in some parts
- Performance issues were found, required tricky solutions

- Limitation in this project
- No GPU and multi-locales
- Not the most optimal code

For suggestions, advice, comments, or questions?, please contact me here:
thitrin.sastarasadhit@gmail.com

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

