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Methodology



Models

There are 4 models:

- C++
} Implemented from scratch

- Chapel
- PyTorchA  _ From Transformer-from-Scratch

- PyTorch B _ PyTorch A with the transformer layer replaced with torch.nn.Transformer

*This project does performance tests on CPU, single thread, and multiple threads
*The Chapel and C++ implementations were very similar; all variables could be mapped from one
to the other.

Gihub link for all code : https://github.com/markthitrin/Transformer.qit
Transformer-from-scratch : https://aithub.com/ES7/Transformer-from-Scratch.git
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Test Environments

Property Machine A

Machine B

CPU
RAM
Clang

Chapel

Python

AMD Ryzen 7 4800H with Radeon Graphics
6.67 GB

Ubuntu clang version 19.1.1 (Tubuntul) Target:
X86_64-pc-linux-gnu Thread model: posix

chpl version 2.4.0 built with LLVM version 19.7.1
available LLVM targets: xtensa, m68k, xcore, x86-
64, x86, wasmo64, wasm32, ve, systemz, sparcel,
sparcv9, sparc, riscvb4, riscv32, ppcb4le, ppcoh4,

ppc32le, ppc32, nvptx64, nvptx, msp430, mipsbdiel,

mips64, mipsel, mips, loongarch64, loongarch32,
lanai, hexagon, bpfeb, bpfel, bpf, avr, thumbeb,
thumb, armeb, arm, amdgcn, r600, aarch64_32,
aarch64_be, aarch64, arm64_32, arm64

Python 3.11.13 PyTorch : 2.3.0 Numpy : 2.3.0

Intel(R) Xeon Phi(TM) CPU 7250 @ 1.40GHz
204.45 GB

clang version 19.1.3 Target: x86_64-unknown-linux-
gnu Thread model: posix

chpl version 2.4.0 built with LLVM version 19.1.3
available LLVM targets: amdgcn, r600, nvptx64,
nvptx, aarch64_32, aarch64_be, aarch64,
armo4_32, armo4, x86-64, x86

Python 3.11.13 PyTorch : 2.5.1 Numpy : 2.0.1




Model Configuration

Parameter Machine A Machine B Description

dModel 32 512 Dimension of embedding layer of the encoder and
decoder

sequencelLength 128 256 Maximum length of input sequence

dFF 256 2048 Dimension of the feed-forward layer inside the
encoder and decoder

N 6 6 Number of transformer encoder, decoder layers
(stacked).

head Number of attention heads in multi-head attention

8 8 layer
secVocab 15700 15700 Size of source vocabulary (number of unique tokens).
tgtVocab 22470 22470 Size of target vocabulary

The model architecture are based on the Attention Is All You Needed paper

attention is all you needed paper: https://arxiv.org/abs/1706.03762
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Performance Measurement

- Timers are inserted into each layers

- The Models were trained on English-Italian machine translation task, the dataset were taken from opus_book
- The time of each iteration of each was gathered, trimming 10% fastest and slowest iterations

- The average and standard deviation were calculated

The Hugging Face link for opus_book: https://huggingface.co/datasets/Helsinki-NLP/opus_books
The model was executed for 500 and 40 iterations on Machines A and B, respectively. I 7



https://huggingface.co/datasets/Helsinki-NLP/opus_books
https://huggingface.co/datasets/Helsinki-NLP/opus_books
https://huggingface.co/datasets/Helsinki-NLP/opus_books
https://huggingface.co/datasets/Helsinki-NLP/opus_books

Small-Size Model
on Single Thread



Description

- Tested small model on Machine A

- The models were run for 500 iterations

- GitHub link for all single-thread code:
https://qithub.com/markthitrin/Transformer/tree/SingleThread

- Google Spreadsheet for detailed results:
https://docs.google.com/spreadsheets/d/TaHKESCkIO-waxVwu-f4dlJ0peM6jIUQv3IUT -
bFa0p0/edit?qid=2029252533#9id=2029252533
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Result of Forward Pass

£00,000.00 570,036.51 I Transformer Forward
B ReLU
Linear
B Softmax

B Multiheadattention
400,000.00 3

Layertorm
32204509 B DropQut

()]
=
La]
—
|
oo
[e7]

301,143.49

B FositionalEncoder

B Embedding

Elapsedtime (us)

200,000.00

0.00
C++ Chapel Pytarch A Pytarch B

Time spent on each layer (in microseconds) during a single forward-pass training iteration for each
model, tested on Machine A (single-threaded) using the small model configuration.
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Result of Backward Pass
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Time spent on each layer (in microseconds) during a single backward-pass training iteration for each
model, tested on Machine A (single-threaded) using the small model configuration.
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Overall Result
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Time spent on each layer (in microseconds) per training iteration (including forward, backward, and
update) for each model, tested on Machine A (single-threaded) using the small model configuration.
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Matrix Representation

In C++, The TensorView is for capturing a portion of the Tensor.

class Tensor
int row, int column) {data = float[row * column];
[] data;
float* data;
class TensorView
Tensor& t data = t.data;
() {/*do nothing*/}
float* data;

>
But in Chapel, ref is not allowed in a class or record

class TensorView
// ref data; error




Matrix Representation

- 1D array

- No multi-dimensional array
- Slow when doing for (a,b) in zip(A,B)

No loop optimization (no loop unrolling, no vectorization)

Huge overhead from advance chpl

Can be avoided with for i in A.domain

Mentioned in the Chapel website as performance concern

- Nestarray, var A: [0..#N][0..#N] real(32),is better but not best
- Basically 1D array of 1D arrays
- Non-continuous array

GitHub Issue “Multidimensional zippered iteration kills performance”: https://github.com/chapel-lang/chapel/issues/13147

Chapel performance concerns: https://chapel-lang.org/docs/technotes/optimization.html#performance-problems-with-multidimensional-zippered-iteration I
14
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Matrix Multiplication

Chapel can do better than C++ at some specific size of matrix, and worse at other size.
Even though the compiler-generated code looks the same.

15



Matrix Operation

- Element-wise addition, multiplication, reduction, etc.
- Design matters a lot than expected

PlusReducel( A: [?D] (32), output: (32)) : {
output = 5
i D {
output += A[1i];

PlusReduce2(D: (1), A: [] (32)) : {
output = 5
i D {
output += A[1i];




Matrix Operation

PlusReduce3( start: s count: s A: [] (32), output: (32))
{
output = 5
i start. .#count {
output += A[i];
}
}

PlusReduce4( A: [?D] (32), output (32)) : {

output = + (A);




Matrix Operation

Design Optimization
PlusReduceT No

PlusReduce? Unrolling
PlusReduce3 Unrolling + vectorize
PlusReduce4 No, create task

To prevent future problem, PlusReduce3'’s design is used

*This is hard to reproduce; it happens only on sorme specific code structures
X have tried operator overloading too. It gives the same performance as PlusReduce].

+=( sum: (32), A (32))
output (32) =
i A {
output += A[i];
}

sum = output;




Softmax

- Slow compared to C++

- Chapel don't exponential vectorization (_ZGVdN8v_expf avx2) while Clang enables

vectorization using -fveclib=1ibmvec

- Chapel refuses to vectorize exponential function, even with:
- Simple for loop iterating over the array’s domain
- Simple for loop iterating over the array’s elements

- Switching from real(32) toreal(64)
- Direct assignment B = exp(A)
- Using foreach loops.

- Passing the same flags used in Clang via --ccflag

- Using --no-ieee-float

Process

Performance (us)

Softmax Forward

Softmax Backward

Softmax Total

C++  53,759.49
Chapel: 75,521.40

C++  25,531.68
Chapel: 20,907.40

C++  79,291.17
Chapel: 96,428.80
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Dropout

- Use randomStream.fill()

- Need CHPL_RT_NUM THREADS PER_LOCALE=1 when do single thread experiment
- Use integer random.

Process Performance (ps)
Dropout Forward C++:. 87,045.49
Chapel: 288,983.16
Dropout Backward C++: 35605.02
Chapel: 34,410.46
Dropout Total C++. 122,650.57

Chapel: 323,393.62




Multihead Attention

- The forward pass works fine
- Theissue is in the weight gradient and the next layer's gradient computation during the backward pass

Transformer/Chapel/MultiheadAttention.chpl

for i in @..#batch {
MatMulPlusAB(dModel, sequencelength, dModel, QTGradient[(i * block)..#block], inputQ[(i * block)..#block], WQOpt.gradient);
MatMulPlusAB(dModel, sequencelength, dModel, KTGradient[(i * block)..#block], inputK[(i * block)..#block], WKOpt.gradient);
MatMulPlusAB(dModel, sequencelength, dModel, VTGradient[(i * block)..#block], inputV[(i * block)..#block], WVOpt.gradient);

i in O..#batch {

MatMulPlusATB(sequencelength, dModel, dModel, QTGradient[(i * block)..#block], WQ, inputGradientQ[(i * block)..#block]};
MatMulPlusATB(sequencelength, dModel, dModel, KTGradient[(i * block)..#block], WK, inputGradientK[(i * block)..#block]);
MatMulPlusATB(sequencelength, dModel, dModel, VTGradient[(i * block)..#block], WV, inputGradientV[(i * block)..#block]);

The loop was heavily unrolled but no vectorization



Multihead Attention

- The Problem was fixed by changing paramto var in config.chpl

Transformer/Chapel/Config.chpl

config var dModel: int = 512;

config var head: int = 8;

config var dFF: int = 28438;
config var dropoutRate: real(32) = 8.1;

config var N: int = 6;

This is quite a tricky solution




RelU

One problem is that the backward pass needs to be divided into two sections

Transformer/Chapel/Rel.U.chpl (old)
22 for i in D {

inputGradient[i] = if input[i] >=

@ then outputGradient[i] else 8.0:real(32);

for i in @..#(batch * sequencelength * dFF) {

outputGradient[i] = if dnput[i] >= @ then outputGradient[i] else 8.8:real(32);
1
S

Copy(@,8,batch * sequencelength * dFF,outputGradient,inputGradient);

This allows optimization to take place




RelU

- Another mystery is that when tested on the small-size model, Chapel is slightly faster in the forward pass. But
when tested on the full-size model, it becomes much slower

Process Performance (ps)

RelU Forward (Small Size) C++  2,003.26
Chapel: 1,170.46

RelLU Forward (Full Size) C++  42,211.31

Chapel: 239,258.80

- The only difference | found in the compiler-generated code is that Chapel and C++ took different approaches

// Chapel // C++

load -> max 9, ->
max 9, -> store ->
store ->

*Both version got same degree of vectorized and loop unrolling
- This effect can also be seen in the backward pass of LayerNorm.




Other Layers

- Other layers are working fine
- The parameter updating (Adam optimization) in C++ and Chapel is much faster than than in PyTorch




Full-Size Model
on Single and Multiple
Threads



Description

- Tested full-size model on the Machine B

- The models were run for 40 iterations

- C++ uses OpenMP

- Chapel uses forall, coforall , and custom iterators

- The degree of parallelism is estimated for each layer/operation

- The degree of parallelism is the same in both C++ and Chapel

- GitHub link for all single-thread code:
https://qithub.com/markthitrin/Transformer/tree/MultiThread

- Google Spreadsheet for detailed results:
https://docs.google.com/spreadsheets/d/TaHKESCkIO-waxVwu-f4dlJ0peM6jIUQv3IUT -
bFa0p0/edit?qid=2029252533#9id=2029252533
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Result of Forward Pass
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Time spent on each layer (in microseconds) during a single forward-pass training iteration for each model,
measured on Machine B (single-threaded (a), multi-threaded (b)) using the full-size model configuration.




Elapsed time (us)

Result of Backward Pass
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Time spent on each layer (in microseconds) during a single backward-pass training iteration for each model,
measured on Machine B (single-threaded (a), multi-threaded (b)) using the full-size model configuration.




Overall Result
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each model tested on Machine B (single-threaded (a), multi-threaded (b)) using the full-size model
configuration.
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Softmax

- A buffer is needed to store exponential values
- Unlike C++, Chapel can not perform stack allocation

/] C++ // Chapel
omp parallel i Par(start, end, numThread) {
int 1 = 0;1 < row;i++ buffer: [0..&N] (32);
float buffer[size];// stack memory // do something
// do something }
The buffer is stored in stack memory The buffer is allocated and deallocated in every iteration

- This can be solved by moving the buffer declaration outside the loop




Other Layer

- Many layer perform as well as C++, even if they are slower in single-threaded. This is likely due to being
bound by memory bandwidth
- Parameter Updates (Adam optimization) in C++ and Chapel are significantly faster than in PyTorch




Productivity



Productivity

- Thlngs | like:
Easy to learn, similar to Python
- Simple parallel programming through for loops
- Requires type declaration of variables
- Object memory management
- Memory management across threads
- Easier to run programs on multiple locales
- A Few Drawbacks | Noticed:
- Long compilation time
- All the performance issues that needed tricky solution | mentioned
- Type casting between number types (e.g. real(32) from/to real(64))
- Generative Al support is limited




Conclusion




Conclusion

- This project compares four transformer models, implemented in C++, Chapel, Python
- The achieve performance is reasonable
- Chapel outperforms C++ in some parts
- Performance issues were found, required tricky solutions
- Limitation in this project
- No GPU and multi-locales
- Not the most optimal code

For suggestions, advice, comments, or questions?, please contact me here:
thitrin.sastarasadhit@gmail.com




Thank you
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