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Models
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- C++

- Chapel

- PyTorch A

- PyTorch B

Implemented from scratch

From Transformer-from-Scratch

Gihub link for all code : https://github.com/markthitrin/Transformer.git
Transformer-from-scratch : https://github.com/ES7/Transformer-from-Scratch.git

*This project does performance tests on CPU, single thread, and multiple threads
*The Chapel and C++ implementations were very similar; all variables could be mapped from one 
to the other.

PyTorch A with the transformer layer replaced with torch.nn.Transformer

There are 4 models:

https://github.com/ES7/Transformer-from-Scratch?tab=readme-ov-file
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Test Environments
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Property Machine A Machine B

CPU AMD Ryzen 7 4800H with Radeon Graphics Intel(R) Xeon Phi(TM) CPU 7250 @ 1.40GHz

RAM 6.67 GB 204.45 GB

Clang Ubuntu clang version 19.1.1 (1ubuntu1) Target: 
x86_64-pc-linux-gnu Thread model: posix

clang version 19.1.3 Target: x86_64-unknown-linux-
gnu Thread model: posix

Chapel chpl version 2.4.0 built with LLVM version 19.1.1 
available LLVM targets: xtensa, m68k, xcore, x86-
64, x86, wasm64, wasm32, ve, systemz, sparcel, 
sparcv9, sparc, riscv64, riscv32, ppc64le, ppc64, 
ppc32le, ppc32, nvptx64, nvptx, msp430, mips64el, 
mips64, mipsel, mips, loongarch64, loongarch32, 
lanai, hexagon, bpfeb, bpfel, bpf, avr, thumbeb, 
thumb, armeb, arm, amdgcn, r600, aarch64_32, 
aarch64_be, aarch64, arm64_32, arm64

chpl version 2.4.0 built with LLVM version 19.1.3 
available LLVM targets: amdgcn, r600, nvptx64, 
nvptx, aarch64_32, aarch64_be, aarch64, 
arm64_32, arm64, x86-64, x86

Python Python 3.11.13 PyTorch : 2.3.0 Numpy : 2.3.0 Python 3.11.13 PyTorch : 2.5.1 Numpy : 2.0.1



Model Configuration

5

Parameter Machine A Machine B Description

dModel 32 512 Dimension of embedding layer of the encoder and 
decoder

sequenceLength 128 256 Maximum length of input sequence

dFF 256 2048 Dimension of the feed-forward layer inside the 
encoder and decoder

N 6 6 Number of transformer encoder, decoder layers 
(stacked).

head
8 8

Number of attention heads in multi-head attention 
layer

secVocab 15700 15700 Size of source vocabulary (number of unique tokens).

tgtVocab 22470 22470 Size of target vocabulary

attention is all you needed paper: https://arxiv.org/abs/1706.03762

The model architecture are based on the Attention Is All You Needed paper

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762


Performance Measurement
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The Hugging Face link for opus_book: https://huggingface.co/datasets/Helsinki-NLP/opus_books
The model was executed for 500 and 40 iterations on Machines A and B, respectively. 

- Timers are inserted into each layers
- The Models were trained on English-Italian machine translation task, the dataset were taken from opus_book 
- The time of each iteration of each was gathered, trimming 10% fastest and slowest iterations
- The average and standard deviation were calculated

https://huggingface.co/datasets/Helsinki-NLP/opus_books
https://huggingface.co/datasets/Helsinki-NLP/opus_books
https://huggingface.co/datasets/Helsinki-NLP/opus_books
https://huggingface.co/datasets/Helsinki-NLP/opus_books


Small-Size Model 
on Single Thread



Description
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- Tested small model on Machine A
- The models were run for 500 iterations
- GitHub link for all single-thread code: 

https://github.com/markthitrin/Transformer/tree/SingleThread
- Google Spreadsheet for detailed results: 

https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-
bFa0p0/edit?gid=2029252533#gid=2029252533

https://github.com/markthitrin/Transformer/tree/SingleThread
https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-bFa0p0/edit?gid=2029252533#gid=2029252533
https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-bFa0p0/edit?gid=2029252533#gid=2029252533
https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-bFa0p0/edit?gid=2029252533#gid=2029252533
https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-bFa0p0/edit?gid=2029252533#gid=2029252533
https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-bFa0p0/edit?gid=2029252533#gid=2029252533
https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-bFa0p0/edit?gid=2029252533#gid=2029252533
https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-bFa0p0/edit?gid=2029252533#gid=2029252533


Result of Forward Pass
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Time spent on each layer (in microseconds) during a single forward-pass training iteration for each 
model, tested on Machine A (single-threaded) using the small model configuration. 



Result of Backward Pass
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Time spent on each layer (in microseconds) during a single backward-pass training iteration for each 
model, tested on Machine A (single-threaded) using the small model configuration.



Overall Result

12

Time spent on each layer (in microseconds) per training iteration (including forward, backward, and 
update) for each model, tested on Machine A (single-threaded) using the small model configuration. 



Matrix Representation
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In C++, The TensorView is for capturing a portion of the Tensor.

class Tensor {
    Tensor(int row, int column) {data = new float[row * column];}
    ~Tensor() {delete[] data;}
    float* data;
};
class TensorView {
    TensorView(Tensor& t) {data = t.data;}
    ~TensorView() {/*do nothing*/}
    float* data;
};

But in Chapel, ref is not allowed in a class or record

class TensorView {
    // ref data; error
}



Matrix Representation
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Chapel performance concerns: https://chapel-lang.org/docs/technotes/optimization.html#performance-problems-with-multidimensional-zippered-iteration
GitHub Issue “Multidimensional zippered iteration kills performance”: https://github.com/chapel-lang/chapel/issues/13147

- 1D array
- No multi-dimensional array

- Slow when doing for (a,b) in zip(A,B)
- No loop optimization (no loop unrolling, no vectorization)
- Huge overhead from advance_chpl
- Can be avoided with for i in A.domain
- Mentioned in the Chapel website as performance concern

- Nest array, var A: [0..#N][0..#N] real(32), is better but not best
- Basically 1D array of 1D arrays
- Non-continuous array

https://chapel-lang.org/docs/technotes/optimization.html#performance-problems-with-multidimensional-zippered-iteration
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Matrix Multiplication
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- Chapel can do better than C++ at some specific size of matrix, and worse at other size.
- Even though the compiler-generated code looks the same.



Matrix Operation

16

- Element-wise addition, multiplication, reduction, etc.
- Design matters a lot than expected

proc PlusReduce1(ref A: [?D] real(32), out output: real(32)) : void { 
    output = 0.0; 
    for i in D {
        output += A[i]; 
    } 
}

proc PlusReduce2(D: domain(1), ref A: [] real(32)) : void { 
    output = 0.0; 
    for i in D { 
         output += A[i]; 
    } 
}



Matrix Operation
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proc PlusReduce3(in start: int, in count: int, ref A: [] real(32), out output: real(32)) 
: void {
    output = 0.0; 
    for i in start..#count { 
        output += A[i]; 
    } 
}

proc PlusReduce4(ref A: [?D] real(32), out output real(32)) : void { 
    output = + reduce(A); 
}



Matrix Operation
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Design Optimization

PlusReduce1 No 

PlusReduce2 Unrolling

PlusReduce3 Unrolling + vectorize

PlusReduce4 No, create task

To prevent future problem, PlusReduce3’s design is used

*This is hard to reproduce; it happens only on some specific code structures
*I have tried operator overloading too. It gives the same performance as PlusReduce1.

operator +=(ref sum: real(32), ref A: [] real(32)) {
    var output: real(32) = 0.0;
    for i in A.domain {
         output += A[i];
    }
    sum = output;
}



Softmax
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- Slow compared to C++
- Chapel don’t exponential vectorization (_ZGVdN8v_expf_avx2) while Clang enables 

vectorization using -fveclib=libmvec
- Chapel refuses to vectorize exponential function, even with:

- Simple for loop iterating over the array’s domain
- Simple for loop iterating over the array’s elements
- Switching from real(32) to real(64)
- Direct assignment B = exp(A)
- Using foreach loops.
- Passing the same flags used in Clang via --ccflag
- Using --no-ieee-float

Process Performance (μs)

Softmax Forward C++:      53,759.49
Chapel: 75,521.40

Softmax Backward C++:      25,531.68
Chapel: 20,907.40

Softmax Total C++:      79,291.17
Chapel: 96,428.80



Dropout
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- Use randomStream.fill()
- Need CHPL_RT_NUM_THREADS_PER_LOCALE=1 when do single thread experiment 

- Use integer random.

Process Performance (μs)

Dropout Forward C++:      87,045.49
Chapel: 288,983.16

Dropout Backward C++:      35,605.02
Chapel: 34,410.46

Dropout Total C++:      122,650.51
Chapel: 323,393.62



Multihead Attention
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- The forward pass works fine
- The issue is in the weight gradient and the next layer’s gradient computation during the backward pass

Transformer/Chapel/MultiheadAttention.chpl

The loop was heavily unrolled but no vectorization



Multihead Attention
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- The Problem was fixed by changing param to var in config.chpl

Transformer/Chapel/Config.chpl

This is quite a tricky solution



ReLU
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- One problem is that the backward pass needs to be divided into two sections 

Transformer/Chapel/ReLU.chpl (new)

Transformer/Chapel/ReLU.chpl (old)

This allows optimization to take place



ReLU
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- Another mystery is that when tested on the small-size model, Chapel is slightly faster in the forward pass. But 
when tested on the full-size model, it becomes much slower

Process Performance (μs)

ReLU Forward (Small Size) C++:      2,003.26
Chapel: 1,170.46

ReLU Forward (Full Size) C++:      42,211.31
Chapel: 239,258.80

- The only difference I found in the compiler-generated code is that Chapel and C++ took different approaches

// Chapel
load mem -> res
max 0,res -> res
store res -> mem

// C++
max 0,mem -> res
store res -> mem

- This effect can also be seen in the backward pass of LayerNorm.

*Both version got same degree of vectorized and loop unrolling



Other Layers
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- Other layers are working fine
- The parameter updating (Adam optimization) in C++ and Chapel is much faster than than in PyTorch



Full-Size Model
on Single and Multiple
Threads



Description
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- Tested full-size model on the Machine B
- The models were run for 40 iterations
- C++ uses OpenMP
- Chapel uses forall, coforall , and custom iterators
- The degree of parallelism is estimated for each layer/operation
- The degree of parallelism is the same in both C++ and Chapel
- GitHub link for all single-thread code: 

https://github.com/markthitrin/Transformer/tree/MultiThread
- Google Spreadsheet for detailed results: 

https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-
bFa0p0/edit?gid=2029252533#gid=2029252533

https://github.com/markthitrin/Transformer/tree/MultiThread
https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-bFa0p0/edit?gid=2029252533#gid=2029252533
https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-bFa0p0/edit?gid=2029252533#gid=2029252533
https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-bFa0p0/edit?gid=2029252533#gid=2029252533
https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-bFa0p0/edit?gid=2029252533#gid=2029252533
https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-bFa0p0/edit?gid=2029252533#gid=2029252533
https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-bFa0p0/edit?gid=2029252533#gid=2029252533
https://docs.google.com/spreadsheets/d/1aHkE9Ckl0-waxVwu-f4dIJ0peM6jIUQv3IU1-bFa0p0/edit?gid=2029252533#gid=2029252533


Result of Forward Pass
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Time spent on each layer (in microseconds) during a single forward-pass training iteration for each model, 
measured on Machine B (single-threaded (a), multi-threaded (b)) using the full-size model configuration.

(a) (b)



Result of Backward Pass
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Time spent on each layer (in microseconds) during a single backward-pass training iteration for each model, 
measured on Machine B (single-threaded (a), multi-threaded (b)) using the full-size model configuration.

(a) (b)



Overall Result
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Time spent on each layer (in microseconds) per training iteration (including forward, backward, and update) for 
each model tested on Machine B (single-threaded (a), multi-threaded (b)) using the full-size model 

configuration.

(a) (b)

(a) (b)



Softmax
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- A buffer is needed to store exponential values
- Unlike C++, Chapel can not perform stack allocation

// Chapel
forall i in Par(start, end, numThread) {
    var buffer: [0..&N] real(32);
    // do something
}

- This can be solved by moving the buffer declaration outside the loop

// C++
#pragma omp parallel
for(int i = 0;i < row;i++) {
    float buffer[size];// stack memory
    // do something
}

The buffer is stored in stack memory The buffer is allocated and deallocated in every iteration 



Other Layer
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- Many layer perform as well as C++, even if they are slower in single-threaded. This is likely due to being 
bound by memory bandwidth

- Parameter Updates (Adam optimization) in C++ and Chapel are significantly faster than in PyTorch



Productivity



Productivity
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- Things I like:
- Easy to learn, similar to Python
- Simple parallel programming through for loops
- Requires type declaration of variables
- Object memory management
- Memory management across threads
- Easier to run programs on multiple locales

- A Few Drawbacks I Noticed:
- Long compilation time
- All the performance issues that needed tricky solution I mentioned
- Type casting between number types (e.g. real(32) from/to real(64))
- Generative AI support is limited



Conclusion



Conclusion
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- This project compares four transformer models, implemented in C++, Chapel, Python
- The achieve performance is reasonable
- Chapel outperforms C++ in some parts
- Performance issues were found, required tricky solutions

- Limitation in this project
- No GPU and multi-locales
- Not the most optimal code

For suggestions, advice, comments, or questions?, please contact me here: 
thitrin.sastarasadhit@gmail.com



Thank you
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