
Spack: The Community’s Road
to HPSF and Version 1.0

ChapelCon 2025
Virtual Event
October 10, 2025

The most recent version of these slides can be found at:
https://spack-tutorial.readthedocs.io

https://spack.readthedocs.io/en/latest/tutorial.html
https://spack.readthedocs.io/en/latest/tutorial.html
https://spack.readthedocs.io/en/latest/tutorial.html

2LLNL-PRES-872707

C

• Spack automates the build and installa3on of scien3fic so6ware and its dependencies

• Packages are parameterized, so that users can easily tweak and tune configura3on

• Ease of use of mainstream tools, with flexibility needed for HPC
• Enabled by dependency solving via Clingo Answer Set Programming (ASP) library

• In addi3on to CLI, Spack also:
• Generates (but does not require) modules
• Allows conda/virtualenv-like environments
• Provides many devops features (CI, container generaDon, more)

$ spack install hdf5@1.10.5
$ spack install hdf5@1.10.5 %clang@6.0
$ spack install hdf5@1.10.5 +threadssafe

$ spack install hdf5@1.10.5 cppflags="-O3 –g3"
$ spack install hdf5@1.10.5 target=haswell
$ spack install hdf5@1.10.5 +mpi ^mpich@3.2

Simple syntax enables complex installs

github.com/spack/spack

What is Spack?

3LLNL-PRES-872707

C

Spack’s user base is quite diverse

3

4LLNL-PRES-872707

C

Workplace distribution is also diverse,
with industrial use growing

4

2025

5LLNL-PRES-872707

C

What does the Spack project look like?

Spack Community 💁💁💁💁💁💁💁💁💁💁💁💁💁💁💁💁

Core tool (CLI + Solver)

Package Recipes

xSDKLLNL
stackE4S

Vis
SDK . . .

CI Infrastructure

AppAWS

6LLNL-PRES-872707

C

• Build three things:
• Core tool
• CI infrastructure (scalable service)
• Package ecosystem

• Can’t sustain the package ecosystem ourselves, so we try to:
1. Grow adoption
2. Turn adopters into contributors
3. Find new areas for adoption
4. Turn those adopters into contributors
5. Retain contributors!

What are the goals of the Spack project?

From the start, we’ve focused on growing the community

7LLNL-PRES-872707

C

Spack is 12 years old!

2016

Spring
2018

Fall
2018

Fall
2020

Spring
2021

Fall
2021

2023

2024

8LLNL-PRES-872707

C

ECP is over, but Spack continues to grow

Over 8,400 software packages
Over 1,500 contributors

Most package contributions are not from DOE
But they help sustain the DOE ecosystem!

How do we grow the project from here?

2023 aggregate documentation user counts from GA4
(note: yearly user counts are almost certainly too large)

Spack and HPSF

10LLNL-PRES-872707

C

• We wanted:
• A neutral project home

• To encourage more participation in the project
• A way to fund project activities:

• More continuous integration resources
• User meetings, Slack, etc.

• Talked to LF onboarding team
• Learned about LF’s basic requirements:
• Technical charter
• Open Governance
• Trademark assignment

We started conversations with Linux Foundation in
December 2021, and talked through mid-2022

11LLNL-PRES-872707

C

• Spack and Kokkos were two of the most adopted
projects during ECP

• Enable performance portability at di=erent levels
• Spack: build level
• Kokkos: application/runtime level

• Goals:
• Leverage proven track record of community

building
• Leverage industry and labs’ familiarity
• Get more projects on board to build an umbrella

organization

We joined forces with Kokkos to start a larger umbrella,
which eventually became HPSF

11

WarpX

Open HAMI

12LLNL-PRES-872707

C

• Spack has a legal entity: a 501(c)(6) non-profit company
• This is a neutral legal entity
• Can be in legal agreements (e.g. for distributing binaries)
• Can get discounts on, e.g., Slack

• Spack will have a Technical Steering Committee (TSC)
• Plan is to make the main developer meetings more public
• Also have official steering committee meetings
• Working on initial GOVERNANCE.md, initial TSC members

• Trademark (Spack name, logo) assigned to Linux Foundation
• Spack project resources owned by Linux Foundation:

• spack.io website
• GitHub Organization

What does it mean to be a Linux Foundation Project?

13LLNL-PRES-872707

C

With HPSF, we’ve formalized our governance with
the Technical Steering Committee

13

Todd Gamblin, LLNL
TSC Chair

Greg Becker
LLNL

Massimiliano Culpo
n.p. complete s.r.l

Tammy Dahlgren
LLNL

Wouter Deconinck
U. Manitoba

Ryan Krattiger
Kitware

Mark Krentel
Rice University

John Parent
Kitware

Marc Paterno
Fermilab

Luke Peyralans
U. Oregon

Phil Sakievich
Sandia

Peter Scheibel
LLNL

Adam Stewart
TU Munich

Harmen Stoppels
Stoppels Consulting

14LLNL-PRES-872707

C

HPSF Governance in a nutshell

Governing Board (GB)

Technical Advisory Council (TAC)

GB Committees
Outreach

CI / CD

Working Groups

Software Security

Benchmarking Safety and Security

Technical Projects

Binaries Software Stacks

Events & Training

14

WarpX

Open HAMI

15LLNL-PRES-872707

C

What does HPSF do for projects?

• Build a community for your project grounded in
neutral open source governance

• Find synergies on common needs with other
HPSF projects

• CI, software engineering best practices,
community upkeep, marketing

• Share your knowledge with and learn from other
high performance software projects

• Participate in working groups that aim to bring
HPC open source software to the wider
computing world

15

16LLNL-PRES-872707

C

#HPSFcon

16

The TAC has established a project lifecycle as a
path to sustainability

Emerging
• Committed to open governance

• Working towards best practices

• Important projects for the HPC
ecosystem

Established
• Wide usage by at least 3 orgs

of sufficient size and scope

• Steady commits from at least
one organization

• Robust development
practices

Core
• Used commonly in production

environments

• Steady commits from more than
one organization

• Large, well-established project
communities

• Sustainable cycle of development
and maintenance

17LLNL-PRES-872707

C

• We ran the 2025 Spack User Survey from early April to early May

• We got the most responses ever
• 2025: 246 responses
• 2022: 182 responses
• 2021: 179 responses
• 2020: 169 responses

• Maybe the community is growing?
• Or maybe we just waited a while between surveys. Or both

How does the Spack community like HPSF?

17

18LLNL-PRES-872707

C

We asked the community before we joined HPSF

2021 2022

19LLNL-PRES-872707

C

Response to LF/HPSF seems positive

19

The Road to Spack v1.0

21LLNL-PRES-872707

C

• We wanted:
2020 New ASP-based concretizer
2021 Reuse of existing installations
2022 Stable production CI
2022 Stable binary cache
2025 Compiler dependencies
2025 Separate builtin repo
2025 Stable package API

• v1.0:
• Changes the dependency model for compilers
• Enables users to use entirely custom packages
• Improves reproducibility
• Improves stability 🤞

• This is the largest change to Spack… ever.

The road to v1.0 has been long

Todd, presenting how simple all
this would be at FOSDEM in 2018

22LLNL-PRES-872707

C

cuda is a variant (build option)

cuda_arch is only present
if cuda is enabled

dependency on cuda, but only
if cuda is enabled

Spack packages use a lot of (declarative) conditional logic

constraints on cuda version

compiler support for x86_64
and ppc64le

CudaPackage: a mix-in for packages that use CUDA

There is a lot of expressive power in the Spack package DSL.

23LLNL-PRES-872707

C

First challenge: we needed a new concre2zer to
model the expressiveness of the DSL

• new versions
• new dependencies
• new constraints

package.py repository

local preferences config
packages.yaml

yaml

local environment config
spack.yaml

yaml

admins,
users

users

Command line constraints
spack install hdf5@1.12.0 +debug

Contributors

default config
packages.yaml

yamlspack
developers

users

concretizer

Concrete spec is
fully constrained
and can be built.

Is stored in spack.lock
file after solve.

cmake

ncurses

openssl

diffutils

libiconv

pkgconf

libffi

zlib

hypre

openmpi

openblashdf5

python

sqlite

gettext

gdbm xz

readline

expat

bzip2perl

sundials

libxml2

tar

hwloc

metis

mfem

petsc

superlu-dist

parmetis

This part is
NP-hard!

24LLNL-PRES-872707

C

• Originally a greedy, custom Python algorithm
• ASP is a declarative programming paradigm

• Looks like Prolog
• Built around modern CDCL SAT solver techniques

• ASP program has 2 parts:
1. Large list of facts generated from recipes (problem instance)
2. Small logic program (~700 lines of ASP code)

• Algorithm is conceptually simpler:
• Generate facts for all possible dependencies
• Send facts and our logic program to the solver
• Read results and rebuild the resolved DAG

• Using Clingo, the Potassco grounder/solver package

We reimplemented Spack’s concretizer using
Answer Set Programming (ASP)

Some facts for HDF5 package

25LLNL-PRES-872707

C

node("mpi") node("hdf5").
depends_on("hdf5", "mpi").

node("lammps").
node("cuda").
variant_value("lammps", "cuda", "True").
depends_on("lammps", "cuda").

lammps

cuda

+cuda

Facts describe the graph

node(Dependency) :- node(Package), depends_on(Package, Dependency).

First-order rules (with variables) describe how to resolve nodes and metadata

ASP looks like Prolog but is converted to SAT with optimization

Ground
Rule

26LLNL-PRES-872707

C

Grounding converts a first-order logic program
into a propositional logic program, which can be
solved.

First-order Logic Program Propositional Program Stable Models (Answer Sets)

depends_on(a, b).
depends_on(a, c).
depends_on(b, d).
depends_on(c, d).

node(Dep)
 :- node(Pkg),
 depends_on(Pkg, Dep).

% at least one is true
1 { node(a); node(b) }.

depends_on(a, b).
depends_on(a, c).
depends_on(b, d).
depends_on(c, d).

node(b) :- node(a).
node(c) :- node(a).
node(d) :- node(c).
node(d) :- node(b).

% at least one is true
1 { node(a); node(b) }.

Answer 1:
node(b)
node(d)

Answer 2:
node(a)
node(b)
node(c)
node(d)Ground Solve

First-order Logic Program Propositional Program Stable Models (Answer Sets)

depends_on(a, b).
depends_on(a, c).
depends_on(b, d).
depends_on(c, d).

node(Dep)
 :- node(Pkg),
 depends_on(Pkg, Dep).

% at least one is true
1 { node(a); node(b) }.

depends_on(a, b).
depends_on(a, c).
depends_on(b, d).
depends_on(c, d).

node(b) :- node(a).
node(c) :- node(a).
node(d) :- node(c).
node(d) :- node(b).

% at least one is true
1 { node(a); node(b) }.

Answer 1:
node(b)
node(d)

Answer 2:
node(a)
node(b)
node(c)
node(d)Ground Solve

First-order Logic Program Propositional Program Stable Models (Answer Sets)

depends_on(a, b).
depends_on(a, c).
depends_on(b, d).
depends_on(c, d).

node(Dep)
 :- node(Pkg),
 depends_on(Pkg, Dep).

% at least one is true
1 { node(a); node(b) }.

depends_on(a, b).
depends_on(a, c).
depends_on(b, d).
depends_on(c, d).

node(b) :- node(a).
node(c) :- node(a).
node(d) :- node(c).
node(d) :- node(b).

% at least one is true
1 { node(a); node(b) }.

Answer 1:
node(b)
node(d)

Answer 2:
node(a)
node(b)
node(c)
node(d)Ground Solve

First-order Logic Program Propositional Program Stable Models (Answer Sets)

depends_on(a, b).
depends_on(a, c).
depends_on(b, d).
depends_on(c, d).

node(Dep)
 :- node(Pkg),
 depends_on(Pkg, Dep).

% at least one is true
1 { node(a); node(b) }.

depends_on(a, b).
depends_on(a, c).
depends_on(b, d).
depends_on(c, d).

node(b) :- node(a).
node(c) :- node(a).
node(d) :- node(c).
node(d) :- node(b).

% at least one is true
1 { node(a); node(b) }.

Answer 1:
node(b)
node(d)

Answer 2:
node(a)
node(b)
node(c)
node(d)Ground Solve

First-order Logic Program Propositional Program Stable Models (Answer Sets)

depends_on(a, b).
depends_on(a, c).
depends_on(b, d).
depends_on(c, d).

node(Dep)
 :- node(Pkg),
 depends_on(Pkg, Dep).

% at least one is true
1 { node(a); node(b) }.

depends_on(a, b).
depends_on(a, c).
depends_on(b, d).
depends_on(c, d).

node(b) :- node(a).
node(c) :- node(a).
node(d) :- node(c).
node(d) :- node(b).

% at least one is true
1 { node(a); node(b) }.

Answer 1:
node(b)
node(d)

Answer 2:
node(a)
node(b)
node(c)
node(d)Ground Solve

a

cb

d

a

cb

d

b

d

Answer 1: Only node(b) is true
Answer 2: Both node(a) and node(b) are true

27LLNL-PRES-872707

C

• Stable models are also called answer sets

• A stable model (loosely) is a set of true atoms that can be
deduced from the inputs, where every rule is idempotent.

• Similar to fixpoints
• Put more simply: a set of atoms where all your rules are true!

• Unlike Prolog:
• Stable models contain everything that can be derived (vs. just querying

values)
• Good ways to do optimization to select the “best” stable model
• ASP is guaranteed to complete!

ASP searches for stable models of the input program

28LLNL-PRES-872707

C

Second challenge: Spack’s original concretizer
did not reuse existing installations

• Hash matches are
very sensitive to
small changes

• In many cases, a
satisfying cached or
already installed
spec can be missed

• Nix, Spack, Guix,
Conan, and others
reuse this way

mpileaks

mpi

callpath dyninst

libdwarf

libelf

Package
cache

6zvh4ueem6f5yrcfugh67k2hrtxbgbcs

74mwnxgn6nujehpyyalhwizwojwn5zga

4xxvh5ldm7gm32ngtixcm2odaer3cvvb

k2yumgxwq6ijubivfpbjpmrrbzyqcoot

qo2af23r2npatxdtna3fmwkeennywixp

cwx4qwk4bkamf4gjrglmxfu3bhasyt74

1. Resolve metadata

2. Create per-node hashes

3. Query for exact hash match

??

29LLNL-PRES-872707

C

--reuse (now the default) was enabled by ASP
• --reuse tells the solver about all the installed packages!
• Add constraints for all installed packages, with their hash as the associated ID:

30LLNL-PRES-872707

C

Minimizing builds is surprisingly simple in ASP

1. Allow the solver to choose a hash for any package:

2. Choosing a hash means we impose its constraints:

3. Define a build as something without a hash:

4. Minimize builds!

There’s more to it than this,
but you get the idea…

31LLNL-PRES-872707

C

With and without --reuse optimization

Pure hash-based reuse: all misses With reuse: 16 packages were reusable

32LLNL-PRES-872707

C

• Only one configuration per package
allowed in the DAG
• Ensures ABI compatibility but is too

restrictive

• Needed to enable compiler mixing
with compiler dependencies

• Also needed for Python ecosystem
• In the example py-numpy needs to use

py-cython@0.29 as a build tool
• That enforces using an old py-gevent,

because newer versions depend on
py-cython@3.0 or greater

Third challenge: we needed to allow multiple
versions of build dependencies in the DAG

gptune

py-cython@0.29

py-gevent@1.5 py-numpy

33LLNL-PRES-872707

C

• The constraint on build dependencies
can be relaxed, without compromising
the ABI compatibility

• Having a single configuration of a
package is now enforced on unification
sets

• These are the set of nodes used
together at runtime (the one shown is
for gptune)

• This allows us to use the latest version
of py-gevent, because now we can
have two versions of py-cython

Objective: dependency splitting

gptune

py-gevent@23.7 py-numpy

py-cython@0.29py-cython@3.0

Unification
Set

34LLNL-PRES-872707

C

We want to dynamically “split” nodes when needed

node(DependencyName)
:- dependency_holds(PkgName, DependencyName)

1. Start with deducing single dependency nodes:

2. Allow solver to choose to duplicate a node:
Converted node identifier
from name to (name, id)

1 {
depends_on(PkgNode, node(0..Y-1, DepNode), Type)
: max_dupes(DepNode, Y)

} 1
:- dependency_holds(PkgNode, DepNode).

3. Re-encode package metadata so that it can be associated with duplicates

35LLNL-PRES-872707

C

First try at allowing duplicates in a single solve

Increased runtimes by
>> 2x in some cases

36LLNL-PRES-872707

C

Cycle detection in the solver is expensive

• Has to maintain path() predicate representing paths between nodes
• Cycles are actually rare in solutions

• Switched to post-processing for cycle detection
• Only do expensive solve if a cycle is detected in a solution

• Eventually moved this calculation into the solver
using some custom directives from the developers

path(A, B) :- depends_on(A, B).
path(A, C) :- path(A, B), depends_on(B, C).

% this constraint says "no cycles"
:- path(A, B), path(B, A).

50%+ improvement
in solve time

37LLNL-PRES-872707

C

• Unification set creation was
originally recursive for any build
dependencies
• Ends up blowing up grounding

• Mitigation:
• Only create new sets for explicitly
marked build tools

• Transitive build dependencies that
are not from marked build tools go
into a common unification set

• Need better heuristics to split when
necessary for full generality

Unification sets can be expensive too

gptune

py-gevent@23.7 py-numpy

py-cython@0.29py-cython@3.0

38LLNL-PRES-872707

C

Through many di.erent optimizations, we were able to reclaim enough
performance to make duplicate build dependencies tractable

39LLNL-PRES-872707

C

• We tried an iterative version with multiple
solves

• Multiple solves had some disadvantages:
• Slower due to overhead of multiple solves
• Not coupled, so feedback from build to run

environment (and back) was awkward
• Packagers needed to “help” the solver

• Requiring packagers to provide solve hints
in packages isn’t practical

It was not trivial to find a model that was both
performant and tightly coupled

40LLNL-PRES-872707

C

• Spack has historically made these compilers available to every package
• A compiler was actually “something that supports c + cxx + fortran + f77”
• Made for a lot of special cases
• Also makes for duplication of purely interpreted packages (e.g. python)

• Required in 1.0 if you want to use c, cxx, or fortran
• No-op in v0.23 and prior as we prepared for this feature

Fourth Challenge: v1.0 adds language dependencies

41LLNL-PRES-872707

C

• Compilers are now build dependencies

• Runtime libraries modeled as packages
• gcc-runtime is injected as link dependency by gcc
• packages depend on c, cxx,

fortran virtuals, which are satisfied by gcc node

• glibc is an automatically detected external
• Injected as a `libc` virtual dependency
• Does not require user configuration

• Will eventually be able to choose
implementations (e.g., musl)

Compiler Dependencies

42LLNL-PRES-872707

C

toolchains:
clang_gfortran:

- spec: %c=clang
when: %c

- spec: %cxx=clang
when: %cxx

- spec: %fortran=gcc
when: %fortran

- spec: cflags="-O3 -g"
- spec: cxxflags="-O3 -g"
- spec: fflags="-O3 -g"

• Can lump many dependencies, flags together and use them with a single name
• Any spec in a toolchain can be conditional

• Only apply when needed

Spack 1.x introduces toolchains
toolchains.yaml

toolchains:
intel_mvapich2:

- spec: %c=intel-oneapi-compilers @2025.1.1
when: %c

- spec: %cxx=intel-oneapi-compilers @2025.1.1
when: %cxx

- spec: %fortran=intel-oneapi-compilers @2025.1.1
when: %fortran

- spec: %mpi=mvapich2 @2.3.7-1 +cuda
when: %mpi

spack install foo %clang_gfortran spack install foo %intel_mvapich2

43LLNL-PRES-872707

C

packages:
gcc:
externals:
- spec: gcc@12.3.1+binutils
prefix: /usr
extra_attributes:
compilers:
c: /usr/bin/gcc
cxx: /usr/bin/g++
fc: /usr/bin/gfortran

modules: [...]

• We automatically convert compilers.yaml, when no compiler is configured
• We will still support reading the old configuration until at least v1.1
• All fields from compilers.yaml are supported in extra_attributes

Configuring compilers in Spack v1.*

compilers:
- compiler:

spec: gcc@12.3.1
paths:

c: /usr/bin/gcc
cxx: /usr/bin/g++
fc: /usr/bin/gfortran

modules: [...]

compilers.yaml packages.yaml
Spack v0.x Spack v1.x

44LLNL-PRES-872707

C

• Spack is two things:
• Command line tool spack
• Package repository with 8,500+ recipes

• Community wanted
• package updates without tool changes (e.g. new bugs)
• tool updates without package changes (reproducibility)

• But coupling between tool and packages was tight
1. Package classes are in core: CMakePackage, AutotoolsBuilder, etc.
2. Compiler wrapper was not a package until recently
3. Packages live in Spack’s GitHub repository with a long (git) history

Final challenge: Splitting the package repository

45LLNL-PRES-872707

C

• Repositories define API version used
• Versioned per commit

• Spack defines API version(s) supported
• Will complain if a repo is too new

• Packages can only import from:
• spack.package
• Core Python

• Any 1.x Spack will support the same
package API as all prior 1.x versions

• Won’t break package API unless we bump the
major version

Spack now has a Stable Package API

https://spack.rtfd.io/en/latest/package_api.html

46LLNL-PRES-872707

C

• Sync packages to spack/spack-packages
• Git history is preserved 😌

• Turn package repositories into Python namespace packages
• spack.pkg.builtin is now spack_repo.builtin

• Move build systems to spack_repo.builtin.build_systems

• Update packages to use fewer Spack internals

• Enable CI on spack/spack-packages

• Make Spack support Git-based package repositories

Package split process

47LLNL-PRES-872707

C

spack:
repos:
builtin:
git: https://github.com/spack/spack-packages.git
commit: aec1e3051c0e9fc7ef8feadf766435d6f8921490

You can now specify the package repo version
in an environment or config

spack:
repos:
builtin:
git: https://github.com/spack/spack-packages.git
destination: /path/to/clone/of/spack-packages
branch: develop

Pin a commit

Work on
a branch

48LLNL-PRES-872707

C

1.spack repo migrate: fixes imports in custom repos for you

2.spack repo set --destination ~/spack-pkgs builtin:
put packages in your favorite location

3.(spack repo update: update & pin package repos 🔜™)

New docs: https://spack.readthedocs.io/en/latest/repositories.html

Useful commands after repo split

https://spack.readthedocs.io/en/latest/repositories.html

49LLNL-PRES-872707

C

Slot 1

Slot 2

Queue:

Dep 1

Dep 2

Package A

Dep 3

Bonus feature:
Spack now supports concurrent builds!

• We sort of supported this already
• But the user had to launch multiple spack processes
• e.g., srun -N 4 -n 16 spack install hdf5

• Now spack handles on-node parallelism itself!
• Spack now has a scheduler loop
• Monitors dependencies, starts multiple processes, polls for completion
• User can control max concurrent processes with ‘-p’

Package A

Dep 1 Dep 2 Dep 3

50LLNL-PRES-872707

C

But wait! There’s more!

We hope to make distributing & using HPC software easy!

github.com/spack/spack
Star us on GitHub!slack.spack.io

— Join us and 3,900+ others on Spack slack
— Contribute packages, docs, and features on GitHub
— Con>nue the tutorial at spack-tutorial.rAd.io

@spackpm
@spackpm.bsky.social @spack@hpc.social

hpsf.io

Spack is a core project in the
High Performance Software Foundation

Join us online!

Join us at the Spack User Meeting at
HPSFCon 2026 next year!

spack.io

@hpsf.bsky.social

51LLNL-PRES-872707

C

Questions?

