
ChapelCon ‘25 1

Michael Ferguson, Matt Drozt , Shreyas Khandekar, and Michelle Strout
Advanced Programming Team

Oct 10 th, 2025

Comparing Distributed -Memory Frameworks:
Performance and Productivity with Radix Sort

If performance is power, and
productivity is peace —
can one distributed memory
programming framework
deliver both?

ChapelCon ‘25 2

• We evaluated several distributed -memory programming frameworks using a communication -
intensive LSD radix sort benchmark.

• The results and analysis are described in our paper:
“Comparing Distributed -Memory Programming Frameworks with Radix Sort”
submitted to the Parallel Applications Workshop, Alternatives to MPI+X (PAW -ATM) , SC’25

• The following slides summarize the key findings from that work

How This Study Came to Be

ChapelCon ‘25 3

• Investigated five distributed
programming frameworks on
both HPE Cray EX (EX) and
InfiniBand (IB) systems:

• Chapel (with and without
aggregation)

• OpenSHMEM (with and without
Conveyors for message aggregation)

• MPI

• Lamellar (currently only IB support)

• With each framework, we
implemented a communication
intensive algorithm: Distributed
Least Significant Digit -First
Radix Sort (LSD Sort)

ChapelCon ‘25 4

Experiment Overview 4 3 2

1 2 1

0 0 1

0 2 3

5 6 4

7 8 8

0 4 5

1 2 1

0 0 1

4 3 2

0 2 3

5 6 4

0 4 5

7 8 8

0 0 1

1 2 1

0 2 3

4 3 2

0 4 5

5 6 4

7 8 8

0 0 1

0 2 3

0 4 5

1 2 1

4 3 2

5 6 4

7 8 8

• Development constraint: ~1 day
of implementation effort per
framework by an experienced
developer

• Tuning: Each LSD radix sort tested
under multiple runtime
configurations to identify optimal
launch parameters

• Benchmark: Measured time to
sort datasets of 128 -bit key/value
pairs across varying data sizes and
resource counts

ChapelCon ‘25 5

Methodology

1. Sorting 2 37 elements using 128 Nodes (M elements sorted / second)

2. Sorting 2 34 elements using 32 Nodes (M elements sorted / second)

6

Source Lines of Code and Performance Details

Framework Version Lines of Code EX Sorting
Performance 1

IB Sorting
Performance 2

--- Compared LSD Sorting Implementations ---

Chapel Simple, Fine -Grained 110 10,455 182

Chapel Aggregated 113 16,782 2,519

MPI (AlltToAll) 410 7,823 1,018

OpenSHMEM Simple, Fine -Grained 291 3,786 48

Conveyors Aggregated
OpenSHMEM

330 14,687 1,323

Lamellar Unsafe Array 185 -- 475

Lamellar Atomic Array 175 -- 468

ChapelCon ‘25

+ use CopyAggregation;

... // coforall task begin { ...

 var tD = calcBlock(task, lD.low, lD.high);

 // calc new position and put data there in temp

 {

+ var aggregator = new DstAggregator(t);

 for i in tD {

 const ref tempi = temp.localAccess[i];

 const key = comparator.key(tempi);

 var bucket = getDigit(key, rshift, last, negs);

 var pos = taskBucketPos[bucket];

 taskBucketPos[bucket] += 1;

+/- aggregator.copy(a[pos], tempi); // a[pos] = tempi;

 }

+ aggregator.flush();

 }

 } //coforall task

We showed multiple variants with
differing line counts and timings

Interestingly, Chapel saw a 1.6 -13.8x
improvement with a small four -line
change in the original source code

Other frameworks typically required
larger code modifications or the use
of additional layers to achieve
comparable optimization

By contrast, Chapel’s standard library
offers several purpose built to allow
for incremental refactoring for
performance

The aggregated Chapel
implementation is used as the
representative version in this LSD
radix sort comparison

8

Chapel Builtins Promote Developer Productivity

a[pos] = tempi;

ChapelCon ‘25

• Figure shows weak -scaling
performance of the most
performant LSD radix sort
implementation per framework

• Sorted 2 30 elements per node on EX

• Sorted 2 29 elements per node on IB

• Under ideal weak scaling,
doubling nodes and data size
should increase total
throughput while maintaining
constant runtime

• All the LSD sort
implementations showed good
weak scaling

• The aggregated Chapel
implementation achieved the
highest performance on both
systems

ChapelCon ‘25 9

Weak -Scaling Results Across Frameworks

1. Sorting 2 37 elements using 128 Nodes (M elements sorted / second)

2. Sorting 2 34 elements using 32 Nodes (M elements sorted / second) ChapelCon ‘25 10

Source Lines of Code and Performance Details

Framework Version Lines of Code EX Sorting
Performance 1

IB Sorting
Performance 2

--- Compared LSD Sorting Implementations ---

Chapel Simple, Fine -Grained 110 10,455 182

Chapel Aggregated 113 16,782 2,519

MPI (AlltToAll) 410 7,823 1,018

OpenSHMEM Simple, Fine -Grained 291 3,786 48

Conveyors Aggregated
OpenSHMEM

330 14,687 1,323

Lamellar Unsafe Array 185 -- 475

Lamellar Atomic Array 175 -- 468

--- Additional Sorting Implementations for Comparison ---

Chapel MSD Sort (Standard Libary) 2,200 27,555 2,432

MPI KaDiS AMS Sort 4,200 29,209 --

• The bar plot shows the the sort
performance when sorting 2 37 128-byte
elements when using 128 nodes on an EX
system

• Bars shown above the dashed line are
comparable implementations of an LSD
Radix sort

• Of these, the Chapel version utilizing aggregation
was performed the best, approximately 4x faster
than OpenSHMEM and 2x faster than MPI

• The Chapel and Conveyors implementations benefit
from message aggregation, one -sided
communication, and communication overlap

• Bars shown below the dashed line are
other, more complex, distributed sorting
algorithms for comparison

• Chapel is capable of being as performant as other
more sophisticated distributed sorting algorithms

Chapel Shows Superior Performance to Contemporaries at
High Node Counts

ChapelCon ‘25 11

• This scatterplot compares

• time it takes each sorting implementation to sort 2 37
elements using 128 nodes on an EX system

• and the number of source lines of code as counted by
cloc

• Optimal frameworks will approach the origin in
the lower left: fewer lines of code indicate
increased developer productivity and shorter
run times indicating high performance

• Of the LSD sort implementations, the
aggregated Chapel version is the most
performant while containing ~ 4x fewer lines of
source code as compared to MPI

• Shorter codes benefited from native support for
distributed arrays and parallel aggregation,
aiding developer productivity

Chapel Offers Combined Performance and Productivity

ChapelCon ‘25 12

A Qualitative Comparison of Examined Frameworks

MPI

• Pro: The industry

standard, very large

developer

community

• Con: Missing

primitives that

developers may

expect in other

frameworks

(distributed arrays,

etc.)

• Con: Can require

the mixing of

parallel strategies,

we saw optimal

performance when

running with less

than 1 rank per core

Chapel

• Pro: Concise ability

to create parallel

tasks across cores

and nodes across a

supercomputer

• Pro: Documentation

and extensive

standard library aid

developers in

achieving maximum

performance in

distributed

environments

• Con: Long compile

times can interrupt a

developer’s train of

thought during

iteration

OpenSHMEM

• Pro: Very easy to

install

• Pro: Fast compile

times

• Con: Uses a custom

collective allocator,

limiting

compatibility with

C++ data types (e.g.

std::vector)

• Con: Requires the

use of Conveyors to

provide aggregation

which led to

significant refactors

Lamellar

• Pro: Very easy to install, follows the standard installation path of most Rust
crates

• Pro: Familiar API to seasoned Rust developers

• Pro: Descriptive (albeit potentially cryptic to newcomers) error messages

aid develop to catch bugs at compile time

• Con: Currently only supports InfiniBand systems

• Con: Long compile times (typical of Rust projects)

ChapelCon ‘25 13

• The source code for each of the LSB -Radix sort
implementations is open source and available on
GitHub

• Repository can be found at:
https://github.com/hpc -ai-adv -dev/distributed -
lsb/

• Contributions are both welcome and extremely
appreciated

• We plan to make this a “living study repository”
and hope that as others find or submit optimized
versions of LSB -Radix sort we can keep this
repository up to date with later findings

• Tell us what we did wrong!! ☺

Contribute to this Study

ChapelCon ‘25 14

https://github.com/hpc-ai-adv-dev/distributed-lsb/
https://github.com/hpc-ai-adv-dev/distributed-lsb/
https://github.com/hpc-ai-adv-dev/distributed-lsb/
https://github.com/hpc-ai-adv-dev/distributed-lsb/
https://github.com/hpc-ai-adv-dev/distributed-lsb/
https://github.com/hpc-ai-adv-dev/distributed-lsb/
https://github.com/hpc-ai-adv-dev/distributed-lsb/
https://github.com/hpc-ai-adv-dev/distributed-lsb/
https://github.com/hpc-ai-adv-dev/distributed-lsb/

© 2025 Hewlett Packard Enterprise Development LP

Thank You – Happy Sorting
Shreyas Khandekar – shreyas.khandekar@hpe.com
Matt Drozt – drozt@hpe.com
Michael Ferguson – michael.ferguson@hpe.com
Ryan Friese – ryan.friese@pnnl.com

15ChapelCon ‘25

mailto:shreyas.khandekar@hpe.com
mailto:drozt@hpe.com
mailto:michael.ferguson@hpe.com
mailto:ryan.friese@pnnl.com

	Presentation
	Slide 1: Comparing Distributed-Memory Frameworks: Performance and Productivity with Radix Sort
	Slide 2: If performance is power, and productivity is peace — can one distributed memory programming framework deliver both?
	Slide 3: How This Study Came to Be
	Slide 4: Experiment Overview
	Slide 5: Methodology
	Slide 6: Source Lines of Code and Performance Details
	Slide 8: Chapel Builtins Promote Developer Productivity
	Slide 9: Weak-Scaling Results Across Frameworks
	Slide 10: Source Lines of Code and Performance Details
	Slide 11: Chapel Shows Superior Performance to Contemporaries at High Node Counts
	Slide 12: Chapel Offers Combined Performance and Productivity
	Slide 13: A Qualitative Comparison of Examined Frameworks
	Slide 14: Contribute to this Study
	Slide 15: Thank You – Happy Sorting

