Comparing Distributed-Memory Frameworks:
Performance and Productivity with Radix Sort

Michael Ferguson, Matt Drozt, Shreyas Khandekar, and Michelle Strout
Advanced Programming Team

Oct 10th, 2025

It performance is po
oroductivity is peace
can one distributed me
orogramming framew

deliver both? '

How This Study Came to Be

« We evaluated several distributed-memory programming frameworks using a communication-
intensive LSD radix sort benchmark.

« The results and analysis are described in our paper:
“Comparing Distributed-Memory Programming Frameworks with Radix Sort”
submitted to the Parallel Applications Workshop, Alternatives to MPI+X (PAW-ATM), SC’'25

« The following slides summarize the key findings from that work

: ChapelCon 25

3

Experiment Overview

« Investigated five distributed
programming frameworks on

both HPE Cray EX (EX) and T
InfiniBand (IB) systems:

Chapel (with and without

aggregation)

OpenSHMEM (with and without
Conveyors for message aggregation)

023

MP] o

Lamellar (currently only IB support)

5/6|4

 With each framework, we

implemented a communication
intensive algorithm: Distributed
Least Significant Digit-First - -

014|5

Radix Sort (LSD Sort) 718! 8

: ChapelCon 25 4

Methodology

Minimum Time to Sort 237 Elements

o Development constraint: ~1 day using 128 Nodes on EX vs Lines of Code
of implementation effort per 35 Implementation L]
; OpenSHMEM
gramlework by an experienced . : ample fine-grained)
eveloper MPI
. . Chapel
* Tuning: Each LSD radix sort tested < (Simple fine-grained)
under multiple runtime © ‘ Conveyors
configurations to identify optimal § 20 | A (e ated)
launch parameters = 4
. £ 15
« Benchmark: Measured time to = <
sort datasets of 128-bit key/value 10 0
pairs across varying data sizes and A
resource counts 5
0
0 50 100 150 200 250 300 350 400

Lines of Code

: ChapelCon 25

Source Lines of Code and Performance Details

Lines of Code EX Sorting IB Sorting
Performance! Performance?

--- Compared LSD Sorting Implementations ---

m Simple, Fine-Grained s¢ 10 10,455 182
m Aggregated 113) s 16,782 v7 2,519
_ (AlltToAll) @ 410 7,823 1,018
Simple, Fine-Grained 291 @ 3,786 @ 48
Conveyors Aggregated 330 14,687 1,323
OpenSHMEM
Unsafe Array 185 -- 475
Atomic Array 175 -- 468

1. Sorting 237 elements using 128 Nodes (M elements sorted / second)

2. Sorting 234 elements using 32 Nodes (M elements sorted / second)

I

ChapelCon 25 6

Chapel Builtins Promote Developer Productivity

+ use CopyAggregation;

We showed multiple variants with
differing line counts and timings

Interestingly, Chapel saw a 1.6-13.8x
improvement with a small four-line
change in the original source code

Other frameworks typically required
larger code modifications or the use
of additional layers to achieve
comparable optimization

By contrast, Chapel’s standard library
offers several purpose built to allow
for incremental refactoring for
performance

The aggregated Chapel
implementation is used as the
representative version in this LSD
radix sort comparison

—1

+/-

// coforall task begin
var tD = calcBlock(task, 1D.low, 1D.high);

// calc new position and put data there in temp

var aggregator = new DstAggregator(t);

for i in tD
const ref tempi = temp.localAccess[i];
const key = comparator.key(tempi);
var bucket = getDigit(key, rshift, last, negs);
var pos = taskBucketPos[bucket];
taskBucketPos|[bucket] += 1;

aggosgatotemppy(apos|, tempi); // a[pos] = tempi;

aggregator.flush();

//coforall task ChapelCon 25

8

Weak-Scaling Results Across Frameworks

Weak Scaling Results

« Figure shows weak-scaling
performance of the most
performant LSD radix sort

2,000 implementation per framework

Sorted 230 elements per node on EX

EX B

16,000 2,500

14,000
12,000
10,000 1,500 ¢

Performance
(M Elements / Second)

8,000 e Sorted 22° elements per node on IB
6,000 1,000
4000 « Under ideal weak scaling,
’ 500 i . .
2,000 +'“;ﬁf;;ﬁ”ta"°" doubling nodes and data size
o I N (aogregaled) should increase total
0 20 40 60 80 100 120 0 5 10 15 20 25 30 onveyors

- MPI
-@- Lamellar

I N B OpenSHMEM
(simple fine-grained)
300

250

throughput while maintaining
constant runtime

« All the LSD sort
implementations showed good
200

& & weak scaling
150

w
[&)]

w
o

N
(&)

ol
e
B L

Time (Seconds)
o 3

-
o

The aggregated Chapel

100 ®
W o implementation achieved the
, B=R—%— ¢ highest performance on both

0 20 40 60 80 100 120 0 5 10 15 20 25 30

(@]

o

I

Node Count

Node Count

systems

ChapelCon 25 9

Source Lines of Code and Performance Details

Lines of Code EX Sorting IB Sorting
Performance! Performance?

--- Compared LSD Sorting Implementations ---

2B simole, Fine Grained

Aggregated s 16,782 v 2,519

_(AIItToAII) @ 410 7,823 1,018
msmple, Fine-Grained 291 @ 3,786 @ 48

Conveyors Aggregated 330 14,687 1,323
OpenSHMEM

Unsafe Array 185 -- 475

m Atomic Array 175 -- 468

--- Additional Sorting Implementations for Comparison ---
MSD Sort (Standard Libary) 2,200 27,555 2,432

KaDiS AMS Sort 4,200 29,209 -

1. Sorting 237 elements using 128 Nodes (M elements sorted / second)
2. Sorting 234 elements using 32 Nodes (M elements sorted / second) ChapelCon 25

—1

10

Chapel Shows Superior Performance to Contemporaries at
High Node Counts

« The bar plot shows the the sort
Performance Sorting 23’ Elements i 37 -
Leing 128 Noties on EX performance wher) sorting 237128-byte
elements when using 128 nodes on an EX

Chapel
(aggregated) system
Conveyors Bars shown above the dashed line are
comparable implementations of an LSD
Chapel Radix sort

(simple fine-grained) « Of these, the Chapel version utilizing aggregation

was performed the best, approximately 4x faster
than OpenSHMEM and 2x faster than MPI

¢ The Chapel and Conveyors implementations benefit
from message aggregation, one-sided
communication, and communication overlap

MPI

OpenSHMEM
(simple fine-grained)

Chapel

(MSD in stdlib) Bars shown below the dashed line are
other, more complex, distributed sorting

algorithms for comparison

0 5 000 10.000 15000 20.000 25000 30.000 ¢ Chapel is capable of being as performant as other
Performance (M Elements / Second) more sophisticated distributed sorting algorithms

: ChapelCon 25 "

MPI KaDiS AMS Sort

Chapel Offers Combined Performance and Productivity

Time (Seconds)
=i [} fud
tn = th

—u
e

s00 1,000

Minimum Time to Sort 277 Elements
using 128 Nodes on EX vs Lines of Code

>

V> OA+D

Lines of Code

Implementation

OpensHMEM
isimple fine-grained)
P

Chapel
(simple fine-grained)

Conveyors

Chapel
(aggragated)

MPI KaDis AMS Sort

Chapel
(M5S0 in stdlib)

&

1,500 2,000 2500 3,000 3500 4000

This scatterplot compares

« time it takes each sorting implementation to sort 237
elements using 128 nodes on an EX system

« and the number of source lines of code as counted by
cloc

Optimal frameworks will approach the origin in
the lower left: fewer lines of code indicate
increased developer productivity and shorter
run times indicating high performance

Of the LSD sort implementations, the
aggregated Chapel version is the most
performant while containing ~4x fewer lines of
source code as compared to MPI

Shorter codes benefited from native support for
distributed arrays and parallel aggregation,
aiding developer productivity

ChapelCon 25 12

A Qualitative Comparison of Examined Frameworks

+ Pro: v ‘ery easy to install, follows the standard installation path of most Rust
cra

« Pro: The industry « Pro: Concise ability « Pro: Very easy to :_;g;lmg;;e;s;q woimm
standard, very large to create parallel install 2‘?“..,005(?;,@“ |
developer tasks across cores . Pro: Fast compile
community and nodes across a times

- Con: Missing supercomputer . Con: Uses a custom
primitives that « Pro: Documentation collective allocator,

. ChapelCon 25
developers may and extensive limiting

P A D T [- .

Contribute to this Study

The source code for each of the LSB-Radix sort
implementations is open source and available on
GitHub

Repository can be found at:
https://qithub.com/hpc-ai-adv-dev/distributed-

lsb/

Contributions are both welcome and extremely
appreciated

We plan to make this a “living study repository”
and hope that as others find or submit optimized
versions of LSB-Radix sort we can keep this
repository up to date with later findings

Tell us what we did wrong!! ©

ChapelCon 25

14

https://github.com/hpc-ai-adv-dev/distributed-lsb/
https://github.com/hpc-ai-adv-dev/distributed-lsb/
https://github.com/hpc-ai-adv-dev/distributed-lsb/
https://github.com/hpc-ai-adv-dev/distributed-lsb/
https://github.com/hpc-ai-adv-dev/distributed-lsb/
https://github.com/hpc-ai-adv-dev/distributed-lsb/
https://github.com/hpc-ai-adv-dev/distributed-lsb/
https://github.com/hpc-ai-adv-dev/distributed-lsb/
https://github.com/hpc-ai-adv-dev/distributed-lsb/

Thank You Happy Sorting

Shreyas Khandekar - shr khan
Matt Drozt - drozt@hpe.com

Michael Ferguson - michael.fer n@h m
Ryan Friese - ryan.fri nnl.com

ChapelCon 25 15
—1 i

© 2025 Hewlett Packard Enterprise Development LP

mailto:shreyas.khandekar@hpe.com
mailto:drozt@hpe.com
mailto:michael.ferguson@hpe.com
mailto:ryan.friese@pnnl.com

	Presentation
	Slide 1: Comparing Distributed-Memory Frameworks: Performance and Productivity with Radix Sort
	Slide 2: If performance is power, and productivity is peace — can one distributed memory programming framework deliver both?
	Slide 3: How This Study Came to Be
	Slide 4: Experiment Overview
	Slide 5: Methodology
	Slide 6: Source Lines of Code and Performance Details
	Slide 8: Chapel Builtins Promote Developer Productivity
	Slide 9: Weak-Scaling Results Across Frameworks
	Slide 10: Source Lines of Code and Performance Details
	Slide 11: Chapel Shows Superior Performance to Contemporaries at High Node Counts
	Slide 12: Chapel Offers Combined Performance and Productivity
	Slide 13: A Qualitative Comparison of Examined Frameworks
	Slide 14: Contribute to this Study
	Slide 15: Thank You – Happy Sorting

