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Comparing Distributed -Memory Frameworks:
Performance and Productivity with Radix Sort



If performance is power, and 
productivity is peace —
can one distributed memory 
programming framework 
deliver both?
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• We evaluated several distributed -memory programming frameworks  using a communication -
intensive LSD radix sort  benchmark.

• The results and analysis are described in our paper:
“Comparing Distributed -Memory Programming Frameworks with Radix Sort”
submitted to the Parallel Applications Workshop, Alternatives to MPI+X (PAW -ATM) , SC’25

• The following slides summarize the key findings from that work

How This Study Came to Be
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• Investigated five distributed 
programming frameworks on 
both HPE Cray EX (EX) and 
InfiniBand (IB) systems:

• Chapel (with and without 
aggregation)

• OpenSHMEM (with and without 
Conveyors for message aggregation)

• MPI

• Lamellar (currently only IB support)

• With each framework, we 
implemented a communication 
intensive algorithm: Distributed 
Least Significant Digit -First 
Radix Sort (LSD Sort)
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• Development constraint:  ~1 day 
of implementation effort per 
framework by an experienced 
developer

• Tuning:  Each LSD radix sort tested 
under multiple runtime 
configurations to identify optimal 
launch parameters

• Benchmark:  Measured time to 
sort datasets of 128 -bit key/value 
pairs  across varying data sizes and 
resource counts

ChapelCon ‘25 5

Methodology



1. Sorting 2 37  elements using 128 Nodes (M elements sorted / second)

2. Sorting 2 34  elements using 32 Nodes (M elements sorted / second)
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Source Lines of Code and Performance Details

Framework Version Lines of Code EX Sorting 
Performance 1

IB Sorting 
Performance 2

---  Compared LSD Sorting Implementations ---

Chapel Simple, Fine -Grained    110 10,455 182

Chapel Aggregated 113    16,782    2,519

MPI (AlltToAll )    410 7,823 1,018

OpenSHMEM Simple, Fine -Grained 291      3,786          48

Conveyors Aggregated 
OpenSHMEM

330 14,687 1,323

Lamellar Unsafe Array 185 -- 475

Lamellar Atomic Array 175 -- 468
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+ use CopyAggregation;

...      // coforall task begin { ...

             var tD = calcBlock(task, lD.low, lD.high);

             // calc new position and put data there in temp

             {

+                var aggregator = new DstAggregator(t);

                 for i in tD {

                     const ref tempi = temp.localAccess[i];

                     const key = comparator.key(tempi);

                     var bucket = getDigit(key, rshift, last, negs);

                     var pos = taskBucketPos[bucket];

                     taskBucketPos[bucket] += 1;

+/-                  aggregator.copy(a[pos], tempi); // a[pos] = tempi;

                 }

+                aggregator.flush();

              }

         } //coforall task

We showed multiple variants  with 
differing line counts and timings

Interestingly, Chapel saw a 1.6 -13.8x  
improvement with a small four -line 
change in the original source code

Other frameworks typically required 
larger code modifications or the use 
of additional layers to achieve 
comparable optimization

By contrast, Chapel’s standard library 
offers several purpose built to allow 
for incremental refactoring for 
performance

The aggregated Chapel 
implementation  is used as the 
representative version in this LSD 
radix sort comparison
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Chapel Builtins  Promote Developer Productivity

a[pos] = tempi;
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• Figure shows weak -scaling 
performance  of the most 
performant LSD radix sort 
implementation per framework

• Sorted 2 30  elements per node on EX

• Sorted 2 29  elements per node on IB

• Under ideal weak scaling, 
doubling nodes and data size 
should increase total 
throughput  while maintaining 
constant runtime

• All the LSD sort 
implementations showed good 
weak scaling

• The aggregated Chapel 
implementation achieved the 
highest performance  on both 
systems
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Weak -Scaling Results Across Frameworks



1. Sorting 2 37  elements using 128 Nodes (M elements sorted / second)

2. Sorting 2 34  elements using 32 Nodes (M elements sorted / second) ChapelCon ‘25 10

Source Lines of Code and Performance Details

Framework Version Lines of Code EX Sorting 
Performance 1

IB Sorting 
Performance 2

---  Compared LSD Sorting Implementations ---

Chapel Simple, Fine -Grained    110 10,455 182

Chapel Aggregated 113    16,782    2,519

MPI (AlltToAll )    410 7,823 1,018

OpenSHMEM Simple, Fine -Grained 291      3,786          48

Conveyors Aggregated 
OpenSHMEM

330 14,687 1,323

Lamellar Unsafe Array 185 -- 475

Lamellar Atomic Array 175 -- 468

---  Additional Sorting Implementations for Comparison ---

Chapel MSD Sort (Standard Libary ) 2,200 27,555 2,432

MPI KaDiS AMS Sort 4,200 29,209 --



• The bar plot shows the the sort 
performance when sorting 2 37  128-byte 
elements when using 128 nodes on an EX 
system

• Bars shown above the dashed line are 
comparable implementations of an LSD 
Radix sort

• Of these, the Chapel version utilizing aggregation 
was performed the best, approximately 4x  faster 
than OpenSHMEM and 2x  faster than MPI

• The Chapel and Conveyors implementations benefit 
from message aggregation, one -sided 
communication, and communication overlap

• Bars shown below the dashed line are 
other, more complex, distributed sorting 
algorithms for comparison

• Chapel is capable of being as performant as other 
more sophisticated distributed sorting algorithms 

Chapel Shows Superior Performance to Contemporaries at 
High Node Counts
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• This scatterplot compares

• time it takes each sorting implementation to sort 2 37  
elements using 128 nodes on an EX system

• and the number of source lines of code as counted by 
cloc

• Optimal frameworks will approach the origin in 
the lower left: fewer lines of code indicate 
increased developer productivity and shorter 
run times indicating high performance

• Of the LSD sort implementations, the 
aggregated Chapel version is the most 
performant while containing ~ 4x fewer lines of 
source code  as compared to MPI

• Shorter codes benefited from native support for 
distributed arrays and parallel aggregation, 
aiding developer productivity

Chapel Offers Combined Performance and Productivity
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A Qualitative Comparison of Examined Frameworks

MPI

• Pro:  The industry 

standard, very large 

developer 

community 

• Con: Missing 

primitives that 

developers may 

expect in other 

frameworks 

(distributed arrays, 

etc.)

• Con: Can require 

the mixing of 

parallel strategies, 

we saw optimal 

performance when 

running with less 

than 1 rank per core

Chapel

• Pro:  Concise ability 

to create parallel 

tasks across cores 

and nodes across a 

supercomputer

• Pro: Documentation 

and extensive 

standard library aid 

developers in 

achieving maximum 

performance in 

distributed 

environments

• Con: Long compile 

times can interrupt a 

developer’s train of 

thought during 

iteration

OpenSHMEM

• Pro:  Very easy to 

install

• Pro: Fast compile 

times

• Con: Uses a custom 

collective allocator, 

limiting 

compatibility with 

C++ data types (e.g. 

std::vector)

• Con: Requires the 

use of Conveyors to 

provide aggregation 

which led to 

significant refactors

Lamellar

• Pro:  Very easy to install, follows the standard installation path of most Rust 
crates

• Pro: Familiar API to seasoned Rust developers

• Pro: Descriptive (albeit potentially cryptic to newcomers) error messages 

aid develop to catch bugs at compile time

• Con: Currently only supports InfiniBand systems

• Con: Long compile times (typical of Rust projects)
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• The source code for each of the LSB -Radix sort 
implementations is open source and available on 
GitHub

• Repository can be found at: 
https://github.com/hpc -ai-adv -dev/distributed -
lsb/

• Contributions are both welcome and extremely 
appreciated

• We plan to make this a “living study repository” 
and hope that as others find or submit optimized 
versions of LSB -Radix sort we can keep this 
repository up to date with later findings

•  Tell us what we did wrong!! ☺

Contribute to this Study
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Thank You – Happy Sorting
Shreyas Khandekar – shreyas.khandekar@hpe.com
Matt Drozt – drozt@hpe.com
Michael Ferguson – michael.ferguson@hpe.com
Ryan Friese – ryan.friese@pnnl.com
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