
The (Software) Engineering
of Julia’s SciML

Chris Rackauckas

VP of Modeling and Simulation, JuliaHub / Research Affiliate MIT / Others

SciML Docs: Comprehensive Documentation of Differentiable
Simulation

What is the SciML Open Source Organization?
The SciML Open Source organization is a non-profit organization, part of the NumFOCUS affiliate libraries,
which builds and supports the development of packages in Julia, Python, and R for scientific simulation and
scientific machine learning.

● Over 100 Github repositories, many of which are 10’s of packages themselves.
○ Totals ~200 Julia packages. All MIT open source licensed.

● 20,000+ Github stars across the set of packages
● ~100+ unique contributors monthly (variable month to month)
● ~20 core maintainers owning some aspect of the project
● ~5-10 summer students and other trainees per year

○ Many maintainers from the ~20 folks associated with the MIT Julia Lab (and alumni!)
○ Many companies have spun off (PumasAI, JuliaHub, Neuroblox, etc.) which “house” a good number of maintainers with full

time jobs related to their contributions.
○ ~10 grant submissions per year related to trying to get more folks into the SciML organization, usually to MIT though

sometimes facilitated through one of the contributor’s commercial entities or to the non-profit itself
● I (Chris Rackauckas) am the BDFL, i.e. someone stupid enough to be a maintainer on all of the

repositories in order to give it a unifying force

Tl;dr, it will be very hard to summarize all of the activity going on in 30 minutes but I will try my best. If I
leave off a topic you like, I’m sorry but many cuts have to have been made. About ¼ of the organization’s
work is represented here. I hope to start a recurring series on Youtube that better tracks these updates.

First of all, what is the core topic the open source software
is about?

Julia is a high-level language that is faster than Matlab, Python, R

expressive

DifferentialEquations.jl is generally:

• 50x faster than SciPy

• 50x faster than MATLAB

• 100x faster than R’s deSolve

, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated algorithm
development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

Foundation: Fast Differential
Equation Solvers

https://github.com/SciML/SciMLBenchmarks.jl

Rackauckas, Christopher, and Qing Nie. "Differentialequations.jl–a performant
and feature-rich ecosystem for solving differential equations in julia." Journal
of Open Research Software 5.1 (2017).

Rackauckas, Christopher, and Qing Nie. "Confederated modular differential
equation APIs for accelerated algorithm development and benchmarking."
Advances in Engineering Software 132 (2019): 1-6.

1. Speed
2. Stability
3. Stochasticity
4. Adjoints and Inference
5. Parallelism

Non-Stiff ODE: Rigid Body System

8 Stiff ODEs: HIRES Chemical Reaction Network

New Parallelized GPU ODE Parallelism: 20x-100x Faster than Jax and PyTorch

Utkarsh, U., Churavy, V., Ma, Y., Besard, T., Srisuma, P., Gymnich, T., ... &
Rackauckas, C. (2024). Automated translation and accelerated solving of differential
equations on multiple GPU platforms. Computer Methods in Applied Mechanics and
Engineering, 419, 116591.

Matches State of the Art on CUDA, but also
works with AMD, Intel, and Apple GPUs

 An Incomplete List of the SciML
 Common Interface for Julia Equation Solvers

● LinearSolve.jl

● NonlinearSolve.jl

● DifferentialEquations.jl

● Integrals.jl

● Optimization.jl

How do we simultaneously use both sources of knowledge?

Scientific Machine Learning is model-based data-efficient machine learning

Good
Predictions

Universal (Approximator) Differential Equations

Accurate Model Extrapolation Mixing in Physical Knowledge

Automated discovery of geodesic
equations from LIGO black hole
data: run the code yourself!

https://docs.sciml.ai/Overview/stabl
e/showcase/blackhole/

Keith, B., Khadse, A., & Field, S. E. (2021). Learning orbital
dynamics of binary black hole systems from gravitational wave
measurements. Physical Review Research, 3(4), 043101.

Technical Story: The Composability Model

What is the SciML Open Source Organization?

SciML Docs: Comprehensive Documentation of Differentiable
Simulation

What is the SciML Open Source Organization?

Made by maintainers
Torkel Lohman and
Vaibhav Dixit

Composability: key element of language design

14

✅ CPU

✅ GPU
✅ Memory

Composability, going further

15

✅ Memory

✅ CPU

✅ GPU

Code is truly composable

16

using DifferentialEquations, Plots

function simplependulum(du,u,p,t)
 g, L = p
 θ, dθ = u
 du[1] = dθ
 du[2] = -g/L * sin(θ) - 0.1dθ
end

g = 9.79 # Gravitational constant
L = 1.00 # Length of the pendulum
u₀ = [0, π/3] # Initial angle and velocity
prob = ODEProblem(simplependulum, u₀, (0, 20), (g, L))
sol = solve(prob)
plot(sol)

Code is truly composable – Uncertainty propagation

17

using DifferentialEquations, Plots, MonteCarloMeasurements

function simplependulum(du,u,p,t)
 g, L = p
 θ, dθ = u
 du[1] = dθ
 du[2] = -g/L * sin(θ) - 0.1dθ
end

g = 9.79 ± 0.02 # Gravitational constant
L = 1.00 ± 0.02 # Length of the pendulum
u₀ = [0, π/3 ± 0.02] # Initial angle and velocity
prob = ODEProblem(simplependulum, u₀, (0, 20), (g, L))
sol = solve(prob)
plot(sol, N=0)

Composing packages

Bayesian inference – Turing.jl

Differential equations – DifferentialEquations.jl

Bayesian inference in differential equations?

Turing.jl + DifferentialEquations.jl + Unitful.jl + …

https://turing.ml/stable/tutorials/10-bayesian-differential-equations/

Code is truly generic

19

-g/L * sin(θ) - 0.1dθ

 sin(θ) works not matter what type θ has

● Float64 (double)
● Uncertain value
● Symbolic value
● Dual number (for automatic diff.)

np.sin(θ) does not accept anything other than floating point

Code is truly generic – Neural ODEs

20

using DifferentialEquations, DiffEqFlux

function neural_pendulum(du,u,p,t)

 θ, dθ = u

 du[1] = dθ

 du[2] = neural_network(θ, dθ, p)

end

● Scientific Machine Learning in Julia requires no special solver
○ diffeqflux.sciml.ai/ (100s of solvers for SciML using ODE, DAE, PDE, DDE, SDE)
○ All solvers work with AD, GPU, units, uncertainty etc.

● Pure Julia solvers routinely benchmark faster than previous Fortran gold
standard

https://diffeqflux.sciml.ai/

21

Non-Technical Story: The Growth Model

2012

Julia announced in a blog post

Developed at MIT. Solves the two
language problem. 10-100x
faster than Python, Matlab and R.

2015

Julia Computing incorporated

Seed funding ($4.6M) from
General Catalyst and Founder
Collective in 2016.

2019

Julia 1.0 released in 2018
Wilkinson Prize for Julia

Pumas partnership initiated.
Enterprise support business. 12
Million Julia downloads.

2021

2022

2023

JuliaHub in production

FDA approval for the use
of Julia in regulatory
submissions. 38M Julia
downloads. 1M Julia
users. Company
rebranded to JuliaHub.

JuliaHub beta launched

Series A fundraise ($25M).
Dorilton Ventures, Menlo
Ventures, General Catalyst.
JuliaSim announced

Who are we? JuliaHub Timeline

JuliaSim beta launched

$17M investment led by
AeroEquity/HorizonX. JuliaSim
GUI demoed at JuliaCon 2023,
with Batteries and HVAC
libraries. Over 10,000 Julia
packages, and 50M downloads.
Julia made it to the list of Top 20
languages.

The MIT Julia Lab’s Effect on Open Source

Last Year’s Alumni• Runs major courses every year
that train new students in Julia
(Linear Algebra)

• Writes many of online training
materials

• Me!
• Creator and maintainer of ~200

packages in SciML and beyond

• Created and maintains the Lux.jl
deep learning system

• Maintains many of the SciML and
deep learning packages

• Becoming a maintainer of
Symbolics.jl

• Creator of NeuralLyopunov.jl

• Major contributions to SciML
packages

• Chair for JuliaCon
• Maintainer for Julia sparse linear

algebra libraries and LinearSolve.jl

• Creator of TaylorDiff.jl
• Getting involved in SciML packages

• Creator and maintainer of
Optimization.jl and related SciML
packages

• Creator of Julia’s AMD GPU support
stack

• Maintainer of Dagger.jl

• Creator of Catalyst.jl for systems biology
• Runs many community events and teaching workshops

• Maintainer of many SciML packages

• Creator of Symbolics.jl

• Creator of Julia’s HPC and GPU stack
• Creator of Enzyme automatic differentiation library

• Creator of StochasticAD.jl

Difficulties of Centering an Open Source Community on Academic Labs

Academic funding requires a lot of work
and is naturally transient

• Most positions have time limits (PhD student: 5 years, Postdoc: 3 years) or it can ruin their career
• All funding comes from writing 30 page grants and having a 17% chance of acceptance

○ ~$0.5-3 million at a time
○ University overhead is >50%
○ Must fund tuition for students

• No funding is guaranteed to reoccur after a few years (boom and bust cycles)
• Funding agencies are looking for scientific merit, not software maintenance
• Students need to spend a significant amount of time in early years on course work, and later years

time is spend on research papers and thesis writing
• Students are younger and earlier in their career (they are trainees!)

What is PumasAI and JuliaHub and how has it helped build
the Julia and SciML open source communities?

2012

Julia announced in a blog post

Developed at MIT. Solves the two
language problem. 10-100x
faster than Python, Matlab and R.

2015

Julia Computing incorporated

Seed funding ($4.6M) from
General Catalyst and Founder
Collective in 2016.

2019

Julia 1.0 released in 2018
Wilkinson Prize for Julia

Pumas partnership initiated.
Enterprise support business. 12
Million Julia downloads.

2021

2022

2023

JuliaHub in production

FDA approval for the use
of Julia in regulatory
submissions. 38M Julia
downloads. 1M Julia
users. Company
rebranded to JuliaHub.

JuliaHub beta launched

Series A fundraise ($25M).
Dorilton Ventures, Menlo
Ventures, General Catalyst.
JuliaSim announced

Who are we? JuliaHub Timeline

JuliaSim beta launched

$17M investment led by
AeroEquity/HorizonX. JuliaSim
GUI demoed at JuliaCon 2023,
with Batteries and HVAC
libraries. Over 10,000 Julia
packages, and 50M downloads.
Julia made it to the list of Top 20
languages.

Fundamental of Clinical Pharmacology: Nonlinear Mixed Effects (NLME) Modeling

Goal: Learn to predict patient behavior (dynamics) from simple data (covariates)

Covariates

Structural Model (pre)

Dynamics

Requires special fitting procedures (Pumas)

Why Pumas?
A Front-End to SciML and the Julia Ecosystem for Pharmacometrics

• Readers for the common dataset types
• Specialized tooling for NLME models
• Report generation processes for
FDA-compliant results

• Clinical consulting team to help
• Specialized domain-specific packages
for further analysis

• … many many features

SciML-enhanced modeling for clinical trials

We have been using Pumas software for our
pharmacometric needs to support our development
decisions and regulatory submissions.
Pumas software has surpassed our expectations on its accuracy and ease of use. We are
encouraged by its capability of supporting different types of pharmacometric analyses within
one software. Pumas has emerged as our "go-to" tool for most of our analyses in recent
months. We also work with Pumas-AI on drug development consulting. We are impressed by
the quality and breadth of the experience of Pumas-AI scientists in collaborating with us on
modeling and simulation projects across our pipeline spanning investigational therapeutics
and vaccines at various stages of clinical development

Husain A. PhD (2020)
Director, Head of Clinical Pharmacology and Pharmacometrics,
Moderna Therapeutics, Inc

The Impact of Pumas (PharmacUtical Modeling And Simulation)

“ Built on SciML

”

Why was it better for open source
for Pumas to be closed source?

• Industrial users are heavy users but not heavy
contributors

• The industrial system has solid methods for
paying for resources, but does not have solid
ways to make consistent and reliable donations

• Regulatory processes need an agency to ensure
it can be used in regulated practices

• It gives a funding mechanism to consistently
fund some of the major contributors to the open
source ecosystem with full time jobs

Highly specialized packages do not get industrial contributors

Benefits to

• Hires are already well-versed in the tools and
have demonstrated prior ability to work in large
teams to build usable software

• Hires have knowledge of the full software stack
and all of its dependencies

• “Free work” is usable: by being in the open
source system, they can guide and review the
PRs to ensure that new features that are being
developed by others are also useful to Pumas.

What is the concrete effect of PumasAI
on Open Source?

• SciML steering
council member

• DiffEq.jl #4 all time?
• Bayesian statistics

(Turing.jl) top
maintainer

• Latexify.jl
• Contributions to

Catalyst.jl
• Many many solid bug

reports and MWEs
• Many training

materials

• TopOpt.jl
• AbstractDifferentation.jl
• Nonconvex.jl
• Many many posts in the

Julia discourse helping
people in the open
source community

• Makie.jl top 3
contributor

• Chain.jl
• DataFrameMacros.jl

• One of the
maintainers of the
Julia package
ecosystem repository

• One of the big
maintainers in the full
Julia CI/CD system

• TopOpt.jl

• Developed and
maintains Julia’s Linear
Algebra system

• Big contributor to
statistics libraries

• Maintains Optim.jl, currently the
most used nonlinear optimization
package in Julia

• Maintains JuliaNLSolvers
Organization, ~5 other packages

• Creator of the Documenter.jl
documentation system for Julia

• Created many of the Julia
packages for markdown support

• Me!

Dyad accelerates breakthrough engineering with

Software-Defined Machines

Powered by Julia and SciML. 100M+ downloads
across 10,000 organizations and 1,500 universities.

TECHNOLOGY

Built on Open Source
Dyad is the next-gen platform for systems modeling,
simulation, and digital twins

PRODUCT

AI-Native Modeling Platform
Enabling aerospace, automotive, utility and high-tech
manufacturing companies to innovate faster

CUSTOMERS

Accelerating Critical Industries

Scientific Machine Learning Digital Twins: More Realistic Results than
Pure ML

Result:

The Julia community and
JuliaHub making major
inroads into industrial use
cases

http://www.youtube.com/watch?v=5GZ3uA1cq50

Dyad is the first AI-native physics modeling platform

designed to accelerate hardware design

PRODUCT

PHYSICAL ENGINEERS

Dyad Builder
SOFTWARE DEVELOPERS

Dyad Studio

Text to model Agile development of hardware with Git and CI/CD1:1 mapping between GUI and code

• Co-Founder of Julia
• Continues to help with linear

algebra and binaries

• Co-Founder of Julia
• Lead developer of the Julia

compiler

• Many contributions to
Julia’s Base library (arrays)

• Moderator for Julia
community forums

• Moderator for Julia
community forums

• Major contributor to the
Julia compiler

• Me!

• Co-Founder of Julia
• Continues to develop the

Julia package manager

• Maintains MethodOfLines.jl
and other SciML PDE tools

• Maintainer of ModelingToolkit.jl
and other base SciML librares

• Major contributions to the Julia
compiler

• Keeps our CI/CD and devops alive
throughout the Julia community

• Major contributor to Flux.jl deep
learning library

• Major contributions to the Julia
compiler

• Creator and maintainer of the
Ferrite FEM library

• Major contributions to the Julia compiler

• Major contributions to the Julia core math
functions

• Maintainer of many SciML packages

• Created and maintains OnlineStats.jl
• Major contributions to JuliaStats libraries

• Maintains the Julia release process
• Creator and maintainer of the Ferrite FEM

library
• Major contributions to the package manager

• Creator and maintainer Julia VS
Code plugin

• Maintainer of Documenter.jl and Julia’s Documentation

• Maintainer of the Pluto.jl notebook system

• Major contributions to SciML and JuliaDynamics

• Creator and maintainer of the Julia GPU stack and CUDA.jl

SciML Docs: Comprehensive Documentation of Differentiable
Simulation

Conclusion
Julia might not have the most users right now, but as a development community it is
going strong

● Being high level = not requiring C/Fortran which means there is a higher percentage
of users that turn into package developers (I’d estimate this is at least an order of
magnitude higher!)

● The modular design greatly increases the developer base
○ Python has what seems to be 10 package managers, 10 JIT compilers, 10 GPU interfaces, 10 copies of

scientific computing and array libraries, and each combination seems incompatible…
● Designing research laboratories and companies into the open source community

has greatly increased the developer base

Tl;dr, when looking at package development statistics, you see far more contributors to
the Julia SciML ecosystem than even many of the major Python or R ecosystems, and this
is by design.

Let’s see how this developer focus turns out a decade from now.

Connect with SciML

Follow on Twitter
@ChrisRackauckas

Follow on LinkedIn
https://www.linkedin.com/in/chrisrackauckas/

Star the GitHub repositories
https://github.com/SciML

Join our community chatrooms
julialang.org/slack

Dr. Chris Rackauckas

VP of Modeling and Simulation
JuliaHub

Research Affiliate
MIT CSAIL

Director of Scientific Research
Pumas-AI

https://twitter.com/JuliaHub_Inc

