
REPARTITIONING FOR PERFORMANCE: FLEXIBLE

DATA MOVEMENT IN CHAPEL
RYAN KECK

INTRODUCTION

 Software engineer working on Arkouda, a Python+Chapel data analytics framework

 Focus area: performance optimization

AN UNEXPECTED BOTTLENECK

PARALLELISM

HASH BASED SHARDING

 Compute hash(value) % numLocales

 Potential drawbacks

 Easy to generate data that would all get sent to the same locale

 An array could be entirely composed of one value

REPARTITIONING MODULE

 Redistributes data across locales based on a target mapping

 Includes the option to hash the data for you

 Performs the data movement in a single coordinated step

 Returns a new object with data placed on the right locales

Original data Mark destinations Redistributed data

IMPLEMENTATION DETAILS

 Data movement: Aggregators vs. bulk transfer

 Decided on bulk transfer because it is simpler when destination indices are unknown

 Data structure for transferring: Lists vs. Arrays

 Lists: No padding but many copies

 Arrays: Better performance but some padding

INNERARRAY

record innerArray {

 type t;

 var Dom: domain(1);

 var Arr: [Dom] t;

 proc init(in Dom: domain(1), type t) {

 this.t = t;

 this.Dom = Dom;

 }

 proc init(type t) {

 this.t = t;

 }

}

Thanks to Engin Kayraklıoğlu!

RESULTS

N Branch/Main Locale get put execute_on execute_on_nb

1,000,000 Main 0 295 253 380 721

1,000,000 Main Avg of others 315 401 383 0

1,000,000 Branch 0 239 928 84 1282

1,000,000 Branch Avg of others 116 1209 116 155

10,000,000 Main 0 967 925 1052 721

10,000,000 Main Avg of others 987 1072 1055 0

10,000,000 Branch 0 239 928 84 1282

10,000,000 Branch Avg of others 116 1209 116 155

100,000,000 Main 0 7544 7502 7629 721

100,000,000 Main Avg of others 7562 7648 7630 0

100,000,000 Branch 0 238 925 84 1283

100,000,000 Branch Avg of others 117 1210 116 155

CONCLUSION

 Flexible mechanism to reorganize data across locales

 Reduces communication overhead and improves scalability

 Provides a foundation for future optimization (e.g., GroupBy)

THANK YOU

QUESTIONS?

	Slide 1: Repartitioning for Performance: Flexible Data Movement in Chapel
	Slide 2: Introduction
	Slide 3: An unexpected bottleneck
	Slide 4: Parallelism
	Slide 5: Hash based sharding
	Slide 6: Repartitioning module
	Slide 7: Implementation details
	Slide 8: innerarray
	Slide 9: results
	Slide 10: conclusion
	Slide 11
	Slide 12

