Recursion and slicing impacts on performance in Chapel, C, and Fortran

Nelson Luis Dias’

'Department of Environmental Engineering, Federal University of Parana, Brazil
MM nelsonluisdias@gmail . com %: www.nldias. github.io

ChapelCon '25, Octorber 10 2025

nelsonluisdias@gmail.com
www.nldias.github.io

Context 2/16

Context|

CHAPEL

D
ChapelCon 25 @

Context 3/16

Array slicing is a nice feature in modern languages

In

Python,
. R,

Fortran,

and Chapel

it allows for elegant and concise expression of array operations.

ChapelCon '25 @EL

Context 4/16

However, the performance of slicing in Chapel lags behind some other languages (known issue)

See for example

https://stackoverflow.com/questions/48243717/array-slicing-performance-in-chapel
and

https://chapel.discourse.group/t/new-issue-improve-the-performance-of-slices-and-rank-
change-operations/30503

Reason: slicing in Chapel generates an array view.

-
ChapelCon 25 @

https://stackoverflow.com/questions/48243717/array-slicing-performance-in-chapel
https://chapel.discourse.group/t/new-issue-improve-the-performance-of-slices-and-rank-change-operations/30503
https://chapel.discourse.group/t/new-issue-improve-the-performance-of-slices-and-rank-change-operations/30503

Context 4/16

However, the performance of slicing in Chapel lags behind some other languages (known issue)

See for example

https://stackoverflow.com/questions/48243717/array-slicing-performance-in-chapel
and

https://chapel.discourse.group/t/new-issue-improve-the-performance-of-slices-and-rank-
change-operations/30503

Reason: slicing in Chapel generates an array view.

This presentation is not intended as criticism of Chapel.

Instead, it calls attention to a current limitation in Chapel and shows alternatives to obtain good perfor-
mance using an artificial and simple example.

ChapelCon '25 @EL

https://stackoverflow.com/questions/48243717/array-slicing-performance-in-chapel
https://chapel.discourse.group/t/new-issue-improve-the-performance-of-slices-and-rank-change-operations/30503
https://chapel.discourse.group/t/new-issue-improve-the-performance-of-slices-and-rank-change-operations/30503

Implementation

5/16

Implementation|

ChapelCon 25

Implementation 6/16

Steps
Repeat 10 times: for each language: Chapel, C (gcc), C (clang) and Fortran (gfortran),

1. Fill an array with 64,000,000 random 64-bit floating point numbers.

2. Sum the array sequentially.
3. Sum the array recursively, passing indices.
4. Sum the array recursively, with slicing (only Chapel and Fortran).

Arrays are filled with the same “Even Quicker Generator” in Press et al. (1992, p. 284). Since my version of Fortran does not
have unsigned 32-bit integers, the Fortran test programs are linked with the object file from the C random generator source,

Via

gcc -03 -c qdran.c

N

ChapelCon '25 K@m

Implementation 7/16

Computer specs

System: Kernel: 6.14.0-33-generic arch: x86_64 bits: 64
compiler: gcc v: 13.3.0 clocksource: tsc

Desktop: Cinnamon v: 6.4.38 tk: GTK v: 3.24.41 wm:

Muffin v: 6.4.1 vt:7 dm: LightDM v: 1.30.0
Distro: Linux Mint 22.2 Zara base: Ubuntu 24.04 noble

Machine:
Type: Desktop Mobo: Gigabyte model: B660M GAMING X

CPU:
Info: 16-core (8-mt/8-st) model: 12th Gen Intel Core i9-12900K bits

Memory: total: 64 GiB note: est. available: 62.57 GiB used: 3.94 GiB (6.3%)

N

ChapelCon '25 K@m

Implementation 8/16

Code snippets: non-recursive, sequential

// --> seqsum: non-recursive sequential sum
// ————mmmmmm e
proc seqsumn (

const ref a: [] real

): real where a.rank == 1 {

var sum: real = 0.0;

for x in a do

sum += X ;
+

return sum,

ChapelCon '25 K@FEL

Implementation 9/16

Code snippets: recursive, index and slicing

// ———m—mmmm e // —————mmmmm e
// --> recsum: recursive sum using indices // --> precsum: recursive sum using slices
// ——————m e // ————— e
proc recsum (proc precsumn(
const ref A: [] real, const ref A: [] real
const in low: int,): real where A.rank == 1 {
const in high: int var low = A.dim(0).1low;
): real where A.rank == 1 { var high = A.dim(0).high;
if low == high then { if low == high then {
return A[low]; return A[low];
+ +
var mid = (low+high)/2; var mid = (low+high)/2;
return recsum(A,low,mid) + return precsum(A[low..mid]) +
recsum (A,mid+1,high) ; precsum (A[mid+1..high]);
+ ¥

K(C:HA PEL

ChapelCon 25 =

Results 10/16

Results]

CHAPEL

D
ChapelCon 25 @

Results

11/16

Running times

All

Lang

algorithm

sum

elapsed time

Chapel
C gcc
Clang

Fortran

sequential
sequential
sequential

sequential

3.2002e+07
3.2002e+07
3.2002e+07
0.3200E+08

0.19449900 s
0.32388200 s
0.31900100 s
0.32615100 s

Chapel
C gcc
Clang
Fortran

recursive/index
recursive/index
recursive/index

recursive/index

3.2002e+07
3.2002e+07
3.2002e+07
0.3200E+08

1.30998300 s
0.90463100 s
1.22071800 s
0.76957000 s

Chapel

Fortran

recursive/slices

recursive/slices

3.2002e+07
0.3200E+08

34.87501100 s

0.77340900 s

Best

Algorithm Language elapsed time
overalll Chapel 0.19449900 s
sequential Chapel 0.19449900 s

recursive/index Fortran

recursive/slice Fortran

0.76957000 s
0.77340900 s

Chapel & Clang recursive/index are close: coincidence or re-
sult of the same LLVM backend?

ChapelCon 25

Conclusions 12/16

Conclusions|

=
ChapelCon '25 @FEL

13/16

Conclusions

e In this example, Chapel is the best overall for the straightforward solution of summing an array.

« Fortran’s performance is almost the same between recursive sum passing indices and recursive sum

with slicing.

« Chapel’s performance with slicing is much poorer than Fortran’s. But note that this is an artificial
case with huge amounts of slicing involved.

ChapelCon 25

14/16

Thanks for the attention.

ChapelCon 25

15/16

References]

CHAPEL

D
ChapelCon 25 @

16/16

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical Recipes in C; The Art of Scientific Computing
(214 ed.). Cambridge University Press.

=

! CHAPEL
—

ChapelCon 25 =/

	Context
	Implementation
	Results
	Conclusions

