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The Story

I have a story in three parts.

1. I found it very hard to think through a section of compiler code.

Specifically, code that performed scope lookups for variables

2. I used the Alloy Analyzer to model the assumptions and behavior of the code.

I had little background in Alloy, but some background in formal logic

3. This led me to discover a bug in the compiler that I then fixed.

Re-creating the bug required some gymnastics that were unlikely to occur in practice.

https://alloytools.org/


Background: Chapel's Scope Lookups



The Humble foo

Imagine you see the following snippet of Chapel code:

foo();

Where do you look for foo ? The answer is quite complicated, and depends strongly on the
context of the call.

Moreover, the order of where to look matters: method calls are preferred over global
functions, "nearer" functions are preferred over "farther" ones.



The Humble foo  (example 1)

module M1 {
  record R {}

  proc R.foo() { writeln("R.foo"); }
  proc foo() { writeln("M1.foo"); }

  proc R.someMethod() {
    foo(); // which 'foo'?
  }
}

Both R.foo  and M1.foo  would be valid candidates.

We give priority to methods over global functions. So, the compiler would:

Search R  and its scope ( M1 ) for methods named foo .

If that fails, search M1  for any symbols foo .

We've had to look at M1  twice! (once for methods, once for non-methods)



The Humble foo  (example 2)

module M1 {
  record R {}

  proc foo() { writeln("R.foo"); }
}
module M2 {
  use M1;

  proc R.someMethod() {
    foo(); // which 'foo'?
  }
}

Here, we search the scope of R  and M1 , but only for public symbols.



How Chapel's Compiler Handles This

We want to:

Respect the priority order

Including preferring methods over non-methods

As a result, we search the scopes multiple times

Avoid any extra work

This includes redundant re-searches

Example redundant search: looked up "all symbols", then later "all public symbols"



Encoding Search Configuration

enum { PUBLIC = 1, NOT_PUBLIC = 2, METHOD_FIELD = 4, NOT_METHOD_FIELD = 8, /* ... */ };

1. For each scope, save the flags we've already searched with

2. When searching a scope again, exclude the flags we've already searched with

This was handled by two bitfields: filter  and excludeFilter .



Populating filter  and excludeFilter

if (skipPrivateVisibilities) { // depends on context of 'foo()'
  filter |= IdAndFlags::PUBLIC;
}

else if (!includeMethods && receiverScopes.empty()) {
  filter |= IdAndFlags::NOT_METHOD;
}

excludeFilter = previousFilter;

// scary!
previousFilter = filter & previousFilter;

Code notes previousFilter  is an approximation.



Possible Problems

previousFilter  is an approximation.

However, no case we knew of hit this combination of searches, or any like it.

All of our language tests passed.

Code seemed to work.

If only there was a way I could get a computer to check whether such a combination
could occur...



Formal Methods



Model Checking

Model checking involves formally describing the behavior of a system, then having a solver
check whether other desired properties hold.
- Alloy is an example of a model checker.
- TLA is another famous example.



A Primer on Logic (example)

Model checkers like Alloy are rooted in temporal logic, which builds on first-order logic.

Example statement: "Bob has a son who likes all compilers".

In Alloy:

some x { Son[x, Bob] and all y { Compiler[y] implies Likes[x, y] } }



A Primer on Temporal Logic

Temporal logic provides additional operators to reason about how properties change over
time.

 (in Alloy: always p ): A statement that is always true.

Example: 

 (in Alloy: eventually p ) : A statement that will be true at some point in the future.

Example: 

In Alloy specifically, we can mention the next state of a variable using ' .

// pseudocode:
//   the next future value of previousFilter will be the intersection of filter
//   and the current value
previousFilter' = filter & previousFilter;



Modeling Possible Searches

Alloy isn't an imperative language. We can't mutate variables like we do in C++. Instead, we
model how each statement changes the state, by relating the "current" state to the "next"
state.

  filter |= IdAndFlags::PUBLIC;   addBitfieldFlag[filterNow, filterNext, Public]

This might remind you of Hoare Logic, where statements like:

Read as:

If  is true before executing , then  will be true after executing .
“ “

https://en.wikipedia.org/wiki/Hoare_logic


Modeling Possible Searches

To combine several statements, we make it so that the "next" state of one statement is the
"current" state of the next statement.

  curFilter |= IdAndFlags::PUBLIC;
  curFilter |= IdAndFlags::METHOD_FIELD;

  addBitfieldFlag[filterNow, filterNext1, Public]
  addBitfieldFlag[filterNext1, filterNext2, Method]

This is reminiscent of sequencing Hoare triples:



Modeling Possible Searches

Finally, if C++ code has conditionals, we need to allow for the possibility of either branch being
taken. We do this by using "or" on descriptions of the next state.

  if (skipPrivateVisibilities) {
    curFilter |= IdAndFlags::PUBLIC;
  }
                                                                        
  if (!includeMethods && receiverScopes.empty()) {
    curFilter |= IdAndFlags::NOT_METHOD;
  }

  addBitfieldFlag[initialState.curFilter, bitfieldMiddle, Public] or
  bitfieldEqual[initialState.curFilter, bitfieldMiddle]

  // if it's not a receiver, filter to non-methods (could be overridden)
  addBitfieldFlagNeg[bitfieldMiddle, filterState.curFilter, Method] or
  bitfieldEqual[bitfieldMiddle, filterState.curFilter]

Putting this into a predicate, possibleState , we encode what searches the compiler can
undertake.

Takeaway: We encoded the logic that configures possible searches in Alloy. This instructs the
analyzer about possible cases to consider.



Are there any bugs?

Model checkers ensure that all properties we want to hold, do hold. To find a counter example,
we ask it to prove the negation of what we want.

wontFindNeeded: run {
    all searchState: SearchState {
        eventually some props: Props, fs: FilterState, fsBroken: FilterState {
            // Some search (fs) will cause a transition / modification of the search state...
            configureState[fs]
            updateOrSet[searchState.previousFilter, fs]
            // Such that a later, valid search... (fsBroken)
            configureState[fsBroken]

            // Will allow for a set of properties...
            // ... that are left out of the original search...
            not bitfieldMatchesProperties[searchState.previousFilter, props]
            // ... and out of the current search
            not (bitfieldMatchesProperties[fs.include, props] and not bitfieldMatchesProperties[searchState.previousFilter, props])
            // But would be matched by the broken search...
            bitfieldMatchesProperties[fsBroken.include, props]
            // ... to not be matched by a search with the new state:
            not (bitfieldMatchesProperties[fsBroken.include, props] and not bitfieldOrNotSetMatchesProperties[searchState.previousFilter', props])
        }
    }
}



Uh-Oh!



The Bug

We need some gymnastics to figure out
what variables make this model possible.

Alloy has a nice visualizer, but it has a lot
of information.

In the interest of time, I found:

If the compiler searches a scope first
for PUBLIC  symbols, ...

...then for METHOD_OR_FIELD , ...

...then for any symbols, they will miss
things!



The Reproducer

To trigger this sequence of searches, we needed a lot more gymnastics.

module TopLevel {
  module XContainerUser {
    public use TopLevel.XContainer;
  }
  module XContainer {
    private var x: int;
    record R {}
    module MethodHaver {
      use TopLevel.XContainerUser;
      use TopLevel.XContainer;
      proc R.foo() {
        var y = x;
      }
    }
  }
}

the scope of R  is searched with for methods

The scope of R ’s parent ( XContainer ) is searched for
methods

The scope of XContainerUser  is searched for public
symbols (via the use )

The scope of XContainer  is searched with public
symbols (via the public use )

The scope of XContainer  searched for with no filters
via the second use; but the stored filter is bad, so
the lookup returns early, not finding x .



Thank you!

Read more



Extra Slides



Terms

What are formal methods?

Techniques rooted in computer science and mathematics to specify and verify systems

What part of the Chapel compiler?

The 'Dyno' compiler front-end, particularly its scope lookup phase

This piece is used by the production Chapel compiler.



The Humble foo  (example 1)

module M1 {
  record R {
    proc foo() { writeln("R.foo"); }
  }
  proc foo() { writeln("M1.foo"); }

  foo(); // which 'foo'?
}

Here, things are pretty straightforward: we look in scope M1 . R.foo  is not
in it, but M1.foo  is. We return it.



The Humble foo  (example 2)

module M1 {
  record R {}

  proc R.foo() { writeln("R.foo"); }
  proc foo() { writeln("M1.foo"); }

  foo(); // which 'foo'?
}

Here, things are bit trickier. Since we are not inside a method, we know
that foo()  could not be a call to a method. Thus, we rule out R.foo ,
and find M1.foo  in M1 .



The Humble foo  (example 3)

module M1 {
  record R {}

  proc R.foo() { writeln("R.foo"); }
  proc foo() { writeln("M1.foo"); }

  proc R.someMethod() {
    foo(); // which 'foo'?
  }
}

Both R.foo  and M1.foo  would be valid candidates.

We give priority to methods over global functions. So, the compiler would:

Search R  and its scope ( M1 ) for methods named foo .

If that fails, search M1  for any symbols foo .

We've had to look at M1  twice! (once for methods, once for non-methods)



The Humble foo  (example 4)

module M1 {
  record R {}

  proc foo() { writeln("R.foo"); }
}
module M2 {
  use M1;

  proc R.someMethod() {
    foo(); // which 'foo'?
  }
}

Here, we search the scope of R  and M1 , but only for public symbols.



A Primer on Logic

Model checkers like Alloy are rooted in temporal logic, which builds on
first-order logic. This includes:

Variables (e.g. , )

These represent any objects in the logical system.

Predicates (e.g. , )

These represent properties of objects, or relationships between objects.

Logical connectives (e.g. , , , )

These are used to combine predicates into more complex statements.

 is "and",  is "or",  is "not",  is "implies".

Quantifiers (e.g. , )

 (in Alloy: all x { P(x) } ) means "for all ,  is true".

 (in Alloy: some x { P(x)} ) means "there exists an  such that  is true".



A Primer on Temporal Logic (example)

Some examples:

In Alloy:

// likeChargesRepel and theSunIsInTheSky are predicates defined elsewhere

always likeChargesRepel

// good thing it's not `always`
eventually theSunIsInTheSky



Search Configuration in Alloy

Instead of duplicating METHOD  and NOT_METHOD , use two sets of flags (the regular and the "not").

enum Flag {Method, MethodOrField, Public}

sig Bitfield {
    , positiveFlags: set Flag
    , negativeFlags: set Flag
}

sig FilterState { , curFilter: Bitfield }

Takeaway: We represent the search flags as a Bitfield , which encodes PUBLIC , NOT_PUBLIC ,
etc.



Constructing Bitfields

Alloy doesn't allow us to define functions that somehow combine bitfields. We might want to
write:

proc addFlag(b: Bitfield, flag: Flag): Bitfield {
    return Bitfield(b.positiveFlags + flag, b.negativeFlags);
}

Instead, we can relate two bitfields using a predicate.

pred addBitfieldFlag[b1: Bitfield, b2: Bitfield, flag: Flag] {
    b2.positiveFlags = b1.positiveFlags + flag
    b2.negativeFlags = b1.negativeFlags
}

This bitfield is like that bitfield, but with this flag added.
“ “



Constructing Bitfields

Alloy doesn't allow us to define functions that somehow combine bitfields. We might want to
write:

proc addFlag(b: Bitfield, flag: Flag): Bitfield {
    return Bitfield(b.positiveFlags + flag, b.negativeFlags);
}

Instead, we can relate two bitfields using a predicate.

pred bitfieldEqual[b1: Bitfield, b2: Bitfield] {
    b1.positiveFlags = b2.positiveFlags and b1.negativeFlags = b2.negativeFlags
}

This bitfield is exactly like that bitfield.
“ “



Modeling previousFilter

So far, all we've done is encoded what queries the compiler might make about a scope.

We still need to encode how we save the flags we've already searched with.

Model the search state with a "global" (really, unique) variable:

/* Initially, no search has happeneed for a scope, so its 'previousFilter' is not set to anything. */
one sig NotSet {}

one sig SearchState {
    , var previousFilter: Bitfield + NotSet
}

Above, +  is used for union. previousFilter  can either be a Bitfield  or NotSet .



Types of Formal Methods

Model checking involves formally describing the behavior of a system, then having a solver
check whether other desired properties hold.

Alloy is an example of a model checker.

TLA is another famous example.

Theorem proving is a heavier weight approach that involves building a formal proof of
correctness.

Coq and Isabelle are examples of theorem provers.



Types of Formal Methods

Model checking involves formally describing the behavior of a system, then having a solver
check whether other desired properties hold.

Alloy is an example of a model checker.

TLA is another famous example.

Theorem proving is a heavier weight approach that involves building a formal proof of
correctness.

Coq and Isabelle are examples of theorem provers.

Reason: I was in the middle of developing compiler code. I wanted to sketch
the assumptions I was making and see if they held up.



Putting it Together

We now have a model of what our C++ program is doing: it computes some set of filter flags,
then runs a search, excluding the previous flags. It then updates the previous flags with the
current search. We can encode this as follows:

fact step {
    always {
        // Model that a new doLookupInScope could've occurred, with any combination of flags.
        all searchState: SearchState {
            some fs: FilterState {
                // This is a possible combination of lookup flags
                possibleState[fs]

                // If a search has been performed before, take the intersection; otherwise,
                // just insert the current filter flags.
                updateOrSet[searchState.previousFilter, fs]
            }
        }
    }
}



Modeling previousFilter

If no previous search has happened, we set previousFilter  to the current filter .

Otherwise, we set previousFilter  to the intersection of filter  and previousFilter , as
mentioned before.

  if (hasPrevious) {
    previousFilter = filter & previousFilter;
  } else {
    previousFilter = filter;
  }

  pred update[toSet: Bitfield + NotSet, setTo: FilterState] {
toSet' != NotSet and bitfieldIntersection[toSet, setTo.include, toSet']

  }

  pred updateOrSet[toSet: Bitfield + NotSet, setTo: FilterState] {
      (toSet = NotSet and toSet' = setTo.include) or
      (toSet != NotSet and update[toSet, setTo])
  }


