Type-Level Programming in Chapel for Compile-Time
Specialization

Daniel Fedorin, HPE

Compile-Time Programming in Chapel

e Type variables, as their name suggests, store types instead of values.

,),

myArgs = (

e Procedures with return intent can construct new types.

toNilableIfClassType(arg)

isNonNilableClassType(arg)

: variables store values that are known at compile-time.

numberOfElements = ;
threeInts: numberOfElements *

e Compile-time conditionals are inlined at compile-time.

somethingThatWontCompile();

Restrictions on Compile-Time Programming

e Compile-time operations do not have mutable state.
o Cannot change values of or variables.

e Chapel's compile-time programming does not support loops.
0 loops are kind of an exception, but are simply unrolled.
o Without mutability, this unrolling doesn't give us much.

« Without state, our and functions are pure.

Did someone say "pure"?

| can think of another language that has pure functions...

o 4 Haskell doesn't have mutable state by default.
e U4 Haskell doesn't have imperative loops.

o Haskell functions are pure.

Programming in Haskell

Without mutability and loops, (purely) functional programmers use pattern-matching and
recursion to express their algorithms.

e Data structures are defined by enumerating their possible cases. A list is either empty, or a
head element followed by a tail list.

-- [] = Nil

-- [1] = Cons 1 Nil
-- [1,2,3] = Cons 1 (Cons 2 (Cons 3 Nil))

e Pattern-matching is used to examine the cases of a data structure and act accordingly.

sum :: ->

sum =
sum (i tail) = i + sum tail

Evaluating Haskell

Haskell simplifies calls to functions by picking the case based on the arguments.

sum (({)))

-- case: sum (Cons i tail) = i + sum tail

=+ sum (())

-- case: sum (Cons i tail) = i + sum tail
= 1+ (~ + sum ())

-- case: sum (Cons i tail) = i + sum tail
=+ (+ (© + sum))

-- case: sum Nil = @

t (2 + (3 +0))

A Familiar Pattern

Picking a case based on the arguments is very similar to Chapel's function overloading.

e A very familiar example:

foo(x:) { writeln(

foo(x:) { writeln(
foo(1); // prints "int"

o Aslightly less familiar example:

foo(X :) { compilerWarning(

foo(X :) { compilerWarning(
foo() // compiler prints "int”

A Type-Level List

Hypothesis: we can use Chapel's function overloading and types to write functional-ish
programs.

Nil {}
Cons { ; tail; }

myList = Cons(, Cons(, Cons(, Nil)));

myList =

sum :: ->
sum =
sum (i tail) = i + sum tail

sum (x: Nil)

sum(x: Cons(?i, ?tail)) i + sum(tail);

compilerWarning(sum(myList) :); // compiler prints 6

Type-Level Programming at Compile-Time

After resolution, our original program:

Nil {}
Cons { head: ; tail; }

myList = Cons(', Cons(~, Cons(', Nil)));

sum(x: Nil) ;
sum(x: Cons(?i, ?tail)) i + sum(tail);

writeln(sum(myList) :); // compiler prints 6

Becomes:

There is no runtime overhead!

Type-Level Programming at Compile-Time

I've MADE A

ROBOT THAT
ScReAms/

Type-Level Programming at Compile-Time

Why would | want to do this?!

- You, probably

29

e Do you want to write parameterized code, without paying runtime overhead for the
runtime parameters?

o Worked example: linear multi-step method approximator
e Do you want to have powerful compile-time checks and constraints on your function types?
o Worked example: type-safe function

Linear Multi-Step Method Approximator

Type-Safe

The Function

The function accepts a format string, followed by a variable number of arguments that
should match:

// totally fine:
printf(

// not good:
printf(

Can we define a function in Chapel that is type-safe?

Yet Another Type-Level List

e The general idea for type-safe [Igiuad: take the format string, and extract a list of the
expected argument types.

e To make for nicer error messages, include a human-readable description of each type in the
list.

e |'ve found it more convenient to re-define lists for various problems when needed, rather
than having a single canonical list definition.

_nil {
length

_cons A

expectedType; // type of the argument to printf

name : ;. // human-readable name of the type
rest;

length + rest.length();

Extracting Types from Format Strings

specifiers(
i >= s.size

s[i] == {
i+ >= s.size
compilerError(

s[i+] {
specifiers(s, i +);
_cons(: , specifiers(s, i1 +));
_cons(: , specifiers(s, i +));
_cons(, , specifiers(s, i +));
_cons(numeric, , specifiers(s, i + 7));
compilerError(),

specifiers(s, i +);

Extracting Types from Format Strings

Let's give it a quick try:

writeln(specifiers(

The above prints:

Validating Argument Types

e The Chapel standard library has a nice function that we can use to check if an
argument matches the expected type.

e Suppose the of our type specifiers matches the number of arguments to

e Chapel doesn't currently support empty tuples, so if the lengths match, we know that
is non-empty.

e Then, we can validate the types as follows:

validate(specifiers: _cons(?t, ?s, ?rest),
lisSubtype(argTup[idx], t)
compilerError (+ (idx +) : + + argTup[idx]:

idx + < argTup.size
validate(rest, argTup, idx +);

e The argument to avoids printing the recursive callsin the

error message.

The overloads

e | named it for "formatted print line".

e To support the empty-specifier case (Chapel varargs don't allow zero arguments):

fprintln(format: specifiers(format).length == {

writeln(format);

}

e |f we do have type specifiers, to ensure our earlier assumption of matching:

fprintln(format: , args...)
specifiers(format).length != args.size {
compilerError(

specifiers(format).length :
+ args.size :

The overloads

e All that's left is the main implementation:

fprintln(format: , args...) {
validate(specifiers(format), args. , 9);

writef(format + , (...args));

}

Using

fprintln(); // fine, prints "Hello, world!"
fprintln(:); // fine, prints "The answer is 42"

// compiler error: Argument 3 should be a string but got int(64)
fprintln(, 1, 2, 3);

More work could be done to support more format specifiers, escapes, etc., but the basic idea is
there.

Beyond Lists

Beyond Lists

e | made grand claims earlier
o "Write functional-ish program at the type level!"
e So far, we've just used lists and some recursion.

e |sthat all there is?

Algebraic Data Types

The kinds of data types that Haskell supports are called algebraic data types.

At a fundamental level, they can be built up from two operations: Cartesian product and
disjoint union.

e There are other concepts to build recursive data types, but we won't need them in Chapel.

o To prove to you | know what I'm talking about, some jargon:
initial algebras, the fixedpoint functor, catamorphismes...

o Check out Bananas, Lenses, Envelopes and Barbed Wire by Meijer et al. for more.

Claim: Chapel supports disjoint union and Cartesian product, so we can build any data type
that Haskell can.

Algebraic Data Types

e The kinds of data types that Haskell supports are called algebraic data types.

e At a fundamental level, they can be built up from two operations: Cartesian product and
disjoint union.

e Claim: Haskell supports disjoint union and Cartesian product, so we can build any data type
that Haskell can.

A General Recipe

To translate a Haskell data type definition to Chapel:

e For each constructor, define a with that constructor's name

e The fields of that record are fields for each argument of the constructor
o If the argument is a value (like jiifd), you can make it a field instead

e Avisual example, again:

Inserting and Looking Up in a BST

insert ::
insert(t: Empty, X:) Node(x, Empty, Empty); insert x
insert(t: Node(?v, ?left, ?right), :) insert x (v left right)
true {
X <V Node(v, insert(left, x), right); | X < v = v (insert x left) right
Node(v, left, insert(right, x)); | otherwise = v left (insert x right)

test = insert(insert(insert(Empty,), '), 7); test = insert (insert (insert))

lookup :: -> ->
X:) lookup x =
: Node(?v, ?left, ?right), : lookup x (v left right)

true;

|
lookup(left, x); | lookup x left
lookup(right, x); | otherwise = lookup x right

It really works!

writeln(test :);
// prints Node(2,Node(1, Empty, Empty), Node(3, Empty, Empty))

writeln(lookup(test, '));
// prints true for this one, but false for '4'

A Key-Value Map

Empty {}
Node { key: ; value; right; }

insert(t: Empty, k: : Node(k, v, Empty, Empty);
insert(t: Node(?k, ?v, ?left, ?right), nk : : nv)
true {
nk < k Node(k, v, insert(left, nk, nv), right);
Node(k, v, left, insert(right, nk, nv));

: Empty, k:
: Node(?k, ?v, ?left,

\
lookup(left,
lookup(right,

test = insert(insert(insert(Empty,
writeln(lookup(test, ')); // prints "one"
writeln(lookup(test, 3)); // prints "three”
writeln(lookup(test, 4)); // prints "not found"”

Conclusion

Chapel's type-level programming is surprisingly powerful.

e We can write compile-time programs that are very similar to Haskell programs.

This allows us to write highly parameterized code without paying runtime overhead.

This also allows us to devise powerful compile-time checks and constraints on our code.

This approach allows for general-purpose programming, which can be applied to

your use-case

Extra Slides

Linear Multi-Step Method Approximator

Euler's Method

A first-order differential equation can be written in the following form:

y = f(t,v)

In other words, the derivative of of y depends on ¢ and y itself. There is no solution to this
equation in general; we have to approximate.

If we know an initial point (to, yo), we can approximate other points. To get the point at
t1 = tg + h, we can use the formula:

Yy (to) = f(to, yo)
y(to +h) ~ yo + h x ¢ (to)
~ yo + h x f(to, yo)

We can name the first approximated y-value y4, and set it:

y1 = yo + h X f(to,yo)

Euler's Method

On the previous slide, we got a new point (tl, yl). We can repeat the process to get ys:

Yo = y1 + h X f(t1,y1)
ys = ya + h X f(t2,y2)
ys = y3 + h X f(t3,ys3)

Ynt1l = Yn T+ h X f(tnayn)

Euler's Method in Chapel

This can be captured in a simple Chapel procedure:

runEulerMethod(step:
yo;
t0;
..count {
+= step*f(t,y);

+= step;

Y,

Other Methods

e |[n Euler's method, we look at the slope of a function at a particular point, and use it to
extrapolate the next point.

e Once we've computed a few points, we have more information we can incorporate.
o When computing y2, we can use both yg and vy;.

o To get a good approximation, we have to weight the points differently.

3 1
Yn+2 = Yny1 + h (Ef(tn—l—hyn—l—l) - Ef(tnayn))

o More points means better accuracy, but more computation.

e There are other methods that use more points and different weights.

o Another method is as follows:

23 16

Ynt+3 = Ynt2 + h <_f(tn+27 Yn+2) — 12

192 f(tn—l—h yn—l—l) + 1_52f(tn7 yn))

Generalizing Multi-Step Methods

Explicit Adams-Bashforth methods in general can be encoded as the coefficients used to
weight the previous points.

Equation Coefficient List

Euler's method |y, 1 = yn + b X f(tn, yn) 1
Two-step AB. |Yni2 = Yni1 + h (5 F(tnit, Uni1) — 5 F(tnsvn)) | 55— 3

Generalizing Multi-Step Methods

Explicit Adams-Bashforth methods in general can be encoded as the coefficients used to
weight the previous points.

Equation Chapel Type Expression

Euler's method | Y11 = yn + h X f(tna yn)
Two-step A.B. | Yni2 = Ynt1 + h (%f(tn+1,yn+1) — %f(tn,yn)) Cons(3/2,Cons(-1/2, Nil))

Supporting Functions for Coefficient Lists

length(x: Cons(?w, ?t)) + length(t);
length(x: Nil) ;

coeff(X:) 1st: Cons(?w, ?t)) X
coeff(X:) 1st: Cons(?w, ?t)) X coeff(x 1, t);

— W;

A General Solver

runMethod(method, h: , count: , Start:

ysS: ... length(method)): {

accepts a type-level list of coefficients.
. encodes the step size.

o is to, the initial time.
: is the number of steps to take.
o makes the function accept as many values (for yo, Y1, - - .) as there are weights

A General Solver

coeffCount = length(method);
// Repeat the methods as many times as requested
i ..count {
// We're computing by adding h*b_j*f(...) to y_n.
// Set total to y_n.
total = ys(coeffCount -);
// 'for param' loops are unrolled at compile-time -- this 1is just
// like writing out each iteration by hand.
j . .coeffCount
// For each coefficient b_j given by coeff(j, method),
// increment the total by h#*bj*f(...)
total += step * coeff(j, method) *
f(start + step*(i '+coeffCount-j), ys(coeffCount-j));
// Shift each y_i over by one, and set y_{n+s} to the
// newly computed total.
j ..< coeffCount -
ys(j) = ys(j+');
ys(coeffCount - ') = total;
b
// return final y_{n+s}
ys(coeffCount -);

Using the General Solver

euler = cons(, empty);
adamsBashforth = cons(/ , cons(, empty));

someThirdMethod = cons(/ , cons(/ , cons(, empty)));

Take a simple differential equation ¥’ = . For this, define [as follows:

Y,

Now, we can run Euler's method like so:

writeln(runMethod(euler, step= , count=4, start=0, 1)); // 5.6625

To run the 2-step Adams-Bashforth method, we need two initial values:

’

runMethod(euler, step= , count=1, start=",);

writeln(runMethod(adamsBashforth, step=" ", count=", start=" ~, y@, y1)); // 6.082344

The General Solver

We can now construct solvers for any explicit Adams-Bashforth method, without writing any
new code.

Cartesian Product

For any two types, the Cartesian product of these two types defines all pairs of values from
these types.

e Thisis like a two-element tuple at the value level in Chapel.
e We write thisas A x Bfor two types A and B.

e In (type-level) Chapel and Haskell:

myPair = Pair(myVall, myVal2); myVall myVal2

Disjoint Union

For any two types, the disjoint union of these two types defines values that are either from
one type or the other.

e This is almost like a in Chapel or C...

e But there's extra information to tell us which of the two types the value is from.
e We write this as A + B for two types A and B.

e |[n Chapel and Haskell:

InL { value; }
InR { value; }

myFirstCase = InL(myVall);
mySecondCase = InR(myVal2);

myFirstCase
mySecondCase

Algebraic Data Types

e We can build up more complex types by combining these two operations.
o Need a triple of types A, B, and C? Use A x (B x C).

o Similarly, "any one of three types" can be expressed as A + (B + C).

o A type (in Rust, or in C++) is T + Unit.
: is a type with a single value (there's only one 8 std::nullopt B

e Notice that in Chapel, we moved up one level

Thing Chapel Haskell
type value

type constructor | value constructor
List ?27?7? type

Algebraic Data Types

Since Chapel has no notion of a type-of-types, we can't enforce that our values are only

or (in the case of).

This is why, in Chapel versions, type annotations like [} and] are missing.

e So, we can't enforce that the user doesn't pass to our function defined on lists.

e We also can't enforce that is instantiated with the right type.

So, we lose some safety compared to Haskell...

e ...but we're getting the compiler to do arbitrary computations for us at compile-time.

Worked Example: Binary Search Tree

In Haskell, binary search trees can be defined as follows:

balancedOneTwoThree =

Written using Algebraic Data Types, this is:
BSTree = Unit + (Int x BSTree x BSTree)

In Haskell (using sums and products):

Worked Example: Binary Search Tree

e Recalling the Haskell version:

e We can't define in Chapel (no type-of-types), but we can define

balancedOneTwoThree' K

balancedOneTwoThree =
InR(Pair(~, Pair(InR(Pair(, Pair(InL(), InL()))),

InR(Pair(~, Pair(InL(), InL()))))));

° We can use algebraic data types to build arbitrarily complex data structures .

Returning to Pragmatism

« We could've defined our list type in terms of jijll, [, and [y
e However, it was cleaner to make it look more like the non-ADT Haskell version.

e Recall that it looked like this:

Nil {}
Cons { head: ; tail; }

myList = Cons(', Cons(~, Cons(', Nil)));

Empty {}
Node value: ; left; right; }

balancedOneTwoThree = Node(', Node(', Empty, Empty),
Node(', Empty, Empty));

