
1

Daniel Fedorin

An Introduction to Chapel

Productive parallel computing
at every scale.

2

Productive parallel computing
at every scale.

3

Why?
How?

1. Why is parallelism important?
— It can speed up your work

— It can make intractable problems, tractable

— It is everywhere

2. How do I use Chapel to make parallel computing productive?
— Parallel computation is baked into the language, not an add -on

— Multi -resolution philosophy lets you work at the level of abstraction you need

— Many powerful features fall out from these guiding principles

Presentation Outline

4

Parallelism is Important

5

— Parallel computing allows programs to run much, much faster

• Consider an analogy to wheat. It would take 3 -4 months for a single seed to mature

• If grown one -by -one, a single -acre wheat field would take 225,000 years

• Fortunately, wheat can be grown in parallel

Parallel Computing For Performance

6

Sequential

Grow a single
seed before
planting anything
else

Parallel

Grow plants
simultaneously

— Some problems are too big to solve on a single machine

• E.g., Large, detailed physics simulations, massive computations

• As part of one of our benchmarks, Arkouda sorted 256 TiB of data in 30 seconds

• This far exceeds the memory capacity of a single machine (Linux kernel can handle 64TB)

Parallel Computing For Tractability

7

Average Rate (GB/s) To Sort Elements

Parallelism can (1) speed up your code and (2) let you handle bigger problems…

…and practically anyone with a computer already has access to parallel hardware!

Parallel Hardware is Available

8

99.97% of surveyed computers
have more than 1 CPU!

If you have a GPU, you have a ton of tiny cores!

If you are an HPC programmer, you have access to that parallel hardware, and more

— HPC systems also have multiple cores and many of them have GPUs

— Performant parallel code on an HPC system can be trickier to write

• Compute nodes on HPC systems can have multiple network interfaces and CPUs

• This poses other programming and performance challenges, including NUMA effects

— In an HPC context, you might also want to parallelize your workload across multiple nodes

• You still want all the aforementioned forms of parallelism

Everyone Needs Parallelism

9

Chapel brings
parallelism to the table

11

The Format

Confidential | Authorized HPE Partner Use Only 12

— I don’t know your background

— I only have 30 minutes

— This will be a high -level overview advertising many features

— Specific tutorials today and tomorrow cover the details

The Parallel Programming Landscape

13

— Parallel programming is important, so there are many technologies to help with it.

— As I’ve already mentioned, there are many different types of parallel programming!

• Multi -core programming (threads?)

• POSIX threads / pthreads in C

• std::thread in C++

• Rayon in Rust

• OpenMP

• GPU Programming

• CUDA/HIP

• PyTorch / NumPy (wraps vendor GPU libs)

• Kokkos

• OpenCL

• OpenACC

• OpenMP

• Distributed Programming

• MPI

The Parallel Programming Landscape

14

Chapel is designed from the ground up with two major philosophical goals, which makes it uniquely suited
for writing parallel code

— Parallelism -by -default
While other languages provide parallelism as an extension on top of the language, or a third -party library, Chapel
keeps parallelism at the forefront.

— A multi -resolution philosophy
Chapel provides high -level, elegant parallel programming constructs, but gives the user more control if these
constructs prove insufficient.

In some ways, most of Chapel’s features are consequences of these two design goals.

A New Language.

17

Chapel’s design enables it to seamlessly accommodate various parallel programming paradigms

— Locales describe where a computation could take place and where data could be stored

• Locales are a fundamental building block in Chapel, supporting its parallel -by -default nature

— Distributions provide recipes for representing and distributing data

• Distributed, sparse, GPU arrays are just arrays, but the language knows to treat them specially when they need it!

— Parallel Iterators enable data -structure -specific parallelism

• Generic, high -level code can use the appropriate parallelization depending on the data structure provided

— Low -level features provide explicit control when high -level abstractions won’t do

• Explicit task parallelism, locks, atomics, barriers, etc. are all part of the standard library!

— A Parallel Standard Library enables uniform and on -by -default high performance

• Summations, bulk operations, standard library sort are parallel

— A global memory view makes accessing remote and local data uniform, hiding implementation details

• No need to explicitly fetch data from other places

Chapel as a Unified Parallel Language

Confidential | Authorized HPE Partner Use Only 18

https://chapel-lang.org/blog/posts/std-sort-performance/

What does Chapel look like?

19

record myPair {
 var x: int;
 var y: string;

 proc foo() {
 writeln("(", x, ", ", y, ")");
 }
}

var p = new myPair(42, "hello");
var Ap: [1..10] myPair;

class MyPair:
 def __init__(self, x: int = 0, y: string = ""):
 self.x = x
 self.y = y

 def foo(self):
 print(f"({self.x}, {self.y})”)

p = MyPair(42, “hello”)
Ap = [MyPair() for i in range(10)]

Chapel Python

Chapel has many of the usual features of imperative languages. We’ll cover some of them today.

Chapel’s General Features

20

Input and Output
Covers reading, writing,
and formatted IO

Aggregate Data Structures
Covers records, classes,
and memory management

— In the remainder of the talk, I will talk at a high level about Chapel’s unique parallel features

— During the rest of the tutorial days, these features (and more!) will be discussed in -depth

What next?

22

In Chapel, a locale refers to a compute resource with…

— processors, so it can run tasks

— memory, so it can store variables

For now, think of each locale as a compute node

Locales

23

Processor Core

Memory

Compute
Node

Scalable parallel computing has two major concerns:

— parallelism: Which tasks should run simultaneously?

— locality: Where should tasks run? Where should data be allocated?

Locales

24

Locale 0 Locale 1 Locale 2 Locale 3

Processor Core

Memory

— Complicating matters, compute nodes now often have GPUs with their own processors and memory

— We represent these as sub -locales in Chapel.

Locales for modeling GPUs

25

Locale 0 Locale 1 Locale 2 Locale 3

CPU Core

Memory

GPU Core

Locale Examples

27

on here.gpus[0] var A = [1,2,3,4,5];
on here.gpus[1] var B = A;
on here.gpus[2] {
 var C = B*B;

 on Locales[1] {
 var D = C;
 }
}

Locale 0 Locale 1

A B

C

D

Locality is a central notion to Chapel.

— All code is executing on some locale (always available via the ‘here’ variable)

— All variables have a locale on which they are stored (you can write ’ myVar.locale ’ to retrieve it)

Locales

28

Arrays are a core data structure for many parallel tasks.

Chapel’s arrays are very general, allowing the user control of how they are indexed, stored, and iterated

A domain (like ‘D1’) can describe the shape of the array

— its dimensions (1D, 2D)

— its size (1x10, 200x200)

Multiple arrays can share a domain

— So indices into ‘A’ are always valid for ‘B’ and ‘C’

Arrays, Domains, and Distributions

30

D2
var A1 = [1,2,3,4];
var D1 = A.domain; // same as {0..3}

var D2 = {0..7, 0..3};
var A, B, C: [D2] int;

A1 D1

A
B

C

A domain can also describe at what indices array elements reside

— for some problems, it’s convenient to index arrays at 0, for others it isn’t

— Even if ‘D’ is 0 -indexed, it’s convenient to 1 -index ‘Inner’

— sometimes, we can allow indices can come and go

Arrays, Domains, and Distributions

31

Everything

D

Inner

var D = {0..3, 0..7};
var Inner = D.expand(-1);

var Everything: [D] int;
var Interior: [Inner] int;

Interior

Everything[0,0] Everything[1,1]

Distributions describe many properties of the array, including…

— Where it’s stored: single locale, split in even chunks across all locales, split round -robin across all locales, etc.?

• Previously, we’ve seen storing variables on different locales

• But big arrays may not fit in the memory of a single node!

— How it’s stored: by default, arrays are arranged consecutively in memory, but they don’t have to be!

• Compressed Sparse Columns and Compressed Sparse Rows are layouts for sparse arrays

Arrays, Domains, and Distributions

32

A

Locale 0 Locale 1 Locale 2 Locale 3

Dense Sparse

Arrays, Domains, and Distributions

33

1

1 8

4

distributed to
L0 L1 L2 L3

L4 L5 L6 L7

1
1

8

4

L0 L1 L2 L3

L4 L5 L6 L7
distributed to

1

Cyclic

Block

Brandon’s demo on distributions will cover this topic in more depth

More on Arrays, Domains and Distributions

34

Distributions
Covers arrays, domains, and distributions

In addition to sequential ‘for’ loops, Chapel provides parallel loops

— ‘foreach’ loops

• assert order -independence (iterations ought not to affect each other).

• could loosely correspond to vectorizable operations

— ‘forall ’ loops

• invoke the parallel iterator of the thing -being -iterated

• many of Chapel’s standard data structures come with parallel iterators (ranges, arrays, etc.)

• you can automatically parallelize computations, in a way that aligns with the data structure

Parallel Loops

35

on here.gpus[0] var A = foreach i in 1..10 do i * i;

forall i in zip(A.domain, B.domain) do B[i] = A[i] + 1;

In addition to ”plain” ‘for’ loops, Chapel provides parallel loops

— ‘foreach’ loops

• assert order -independence (iterations ought not to affect each other).

• could loosely correspond to vectorizable operations

— ‘forall ’ loops

• invoke the parallel iterator of the thing -being -iterated

• many of Chapel’s standard data structures come with parallel iterators (ranges, arrays, etc.)

• this means you can automatically parallelize computations, in the most appropriate way

Parallel Loops

36

on here.gpus[0] var A = foreach i in 1..10 do i * i;

B = A + 1; // use promotion

Parallel Loops

37

Locale 0 Locale 1 Locale 2 Locale 3

var A = blockDist.createArray(1..24, int);

forall a in A { /* ... */ }

A

Distributions customize the parallel iterator, so distributed arrays are processed distributedly

'forall ’ loops are high -level parallelism constructs.

— “How many tasks?”

• Data structure decides, often depending on the available hardware and load

— “Which task gets what piece of the work?”

• Data structure decides (e.g., block distributed array gives each thread a ”block”)

— “What nodes / devices / domains does the code run on?”

• Data structure decides (local is a common default, except for distributed arrays)

A lot of the time, fire and forget!

With generics, the same code can be used for a variety of parallel behaviors.

Parallel Loops

38

Shreyas’ demo on parallel loops will cover this topic in more depth

More on Parallel Loops

39

Parallel Loops
Covers ‘ coforall ’, ‘forall ’, and ‘foreach’
loops, and more!

Chapel is a multi -resolution language: high -level features can give ways to low -level features

— ‘coforall ’ loops

• spawn exactly one task for each iteration of the loop

• allow for explicit control over task parallelism

— ‘cobegin ’ statement

• executes each statement in the block in a new task

— atomics, syncs, barriers

• if you need various synchronization idioms

The high -level features (parallel iterators for ‘ forall ’ loops) are written using the low -level features.

Lower -Level Parallel Constructs

40

coforall i in 1..here.maxTaskPar do foo();

cobegin { foo(); bar(); }

var x: atomic int; x.exchange(1);

Our advent of code articles cover these lower -level features as tools for solving programming puzzles.

Sync and Atomic Variables

42

Day 11: Monkeying Around
Covers ‘ coforall ’, ‘sync’, barriers

Day 12: On the Summit
Covers ‘atomic’, ‘ coforall ’

Conclusion

43

1. Why is parallelism important?
— It can speed up your work

— It can make intractable problems, tractable

— making efficient use desktops and HPC machines requires parallelism

2. How do I use Chapel to make parallel computing productive?
— Chapel bundles parallelism from the get -go , giving you consistent tools to express a variety of parallel work

— Locales + ’on’ statements let you talk about where code should run and memory should be stored

— Arrays, Domains and Distributions offer powerful tools for storing and distributing collections of elements

— High -level parallel loops provide quick and easy parallelism for many data structures

— Low -level features like ‘ coforall ’ loops, atomics, etc., let you implement traditional parallel idioms and more

Recap

44

	Slide 1: An Introduction to Chapel
	Slide 2
	Slide 3
	Slide 4: Presentation Outline
	Slide 5: Parallelism is Important
	Slide 6: Parallel Computing For Performance
	Slide 7: Parallel Computing For Tractability
	Slide 8: Parallel Hardware is Available
	Slide 9: Everyone Needs Parallelism
	Slide 11: Chapel brings parallelism to the table
	Slide 12: The Format
	Slide 13: The Parallel Programming Landscape
	Slide 14: The Parallel Programming Landscape
	Slide 17: A New Language.
	Slide 18: Chapel as a Unified Parallel Language
	Slide 19: What does Chapel look like?
	Slide 20: Chapel’s General Features
	Slide 22: What next?
	Slide 23: Locales
	Slide 24: Locales
	Slide 25: Locales for modeling GPUs
	Slide 27: Locale Examples
	Slide 28: Locales
	Slide 30: Arrays, Domains, and Distributions
	Slide 31: Arrays, Domains, and Distributions
	Slide 32: Arrays, Domains, and Distributions
	Slide 33: Arrays, Domains, and Distributions
	Slide 34: More on Arrays, Domains and Distributions
	Slide 35: Parallel Loops
	Slide 36: Parallel Loops
	Slide 37: Parallel Loops
	Slide 38: Parallel Loops
	Slide 39: More on Parallel Loops
	Slide 40: Lower-Level Parallel Constructs
	Slide 42: Sync and Atomic Variables
	Slide 43: Conclusion
	Slide 44: Recap

