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Productive parallel computing 
at every scale.
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Productive  parallel  computing 
at every scale.
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Why?
How?



1.  Why  is parallelism important?
— It can speed up your work

— It can make intractable problems, tractable

— It is everywhere

2.  How  do I use Chapel to make parallel computing productive?
— Parallel computation is baked into the language, not an add -on

— Multi -resolution philosophy lets you work at the level of abstraction you need

— Many powerful features fall out from these guiding principles 

Presentation Outline
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Parallelism is Important
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— Parallel computing allows programs to run much, much faster

• Consider an analogy to wheat. It would take 3 -4 months for a single seed to mature

• If grown one -by -one, a single -acre wheat field would take 225,000 years

• Fortunately, wheat can be grown in parallel

Parallel Computing For Performance
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Sequential

Grow a single 
seed before 
planting anything 
else

Parallel

Grow plants 
simultaneously



— Some problems are too big to solve on a single machine

• E.g., Large, detailed physics simulations, massive computations

• As part of one of our benchmarks, Arkouda  sorted 256 TiB of data in 30 seconds

• This far exceeds the memory capacity of a single machine (Linux kernel can handle 64TB)

Parallel Computing For Tractability
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Average Rate (GB/s) To Sort Elements



Parallelism can (1) speed up your code and (2) let you handle bigger problems…

…and practically anyone with a computer already has access to parallel hardware! 

Parallel Hardware is Available
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99.97% of surveyed computers 
have more than 1 CPU!

If you have a GPU, you have a ton of tiny cores!



If you are an HPC programmer, you have access to that parallel hardware, and more

— HPC systems also have multiple cores and many of them have GPUs

— Performant parallel code on an HPC system can be trickier to write

• Compute nodes on HPC systems can have multiple network interfaces and CPUs

• This poses other programming and performance challenges, including NUMA effects

— In an HPC context, you might also want to parallelize your workload across multiple nodes

• You still want all the aforementioned forms of parallelism

Everyone Needs Parallelism
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Chapel brings 
parallelism to the table
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The Format
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— I don’t know your background

— I only have 30 minutes

— This will be a high -level overview advertising many features

— Specific tutorials today and tomorrow cover the details



The Parallel Programming Landscape
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— Parallel programming is important, so there are many technologies to help with it.

— As I’ve already mentioned, there are many different types of parallel programming!

• Multi -core programming (threads?)

• POSIX threads / pthreads  in C

• std::thread in C++

• Rayon in Rust

• OpenMP

• GPU Programming

• CUDA/HIP

• PyTorch  / NumPy (wraps vendor GPU libs)

• Kokkos

• OpenCL

• OpenACC

• OpenMP

• Distributed Programming

• MPI



The Parallel Programming Landscape
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Chapel is designed from the ground up with two major philosophical goals, which makes it uniquely suited 
for writing parallel code

— Parallelism -by -default
While other languages provide parallelism as an extension on top of the language, or a third -party library, Chapel 
keeps parallelism at the forefront.

— A multi -resolution philosophy
Chapel provides high -level, elegant parallel programming constructs, but gives the user more control if these 
constructs prove insufficient.

In some ways, most of Chapel’s features are consequences of these two design goals.

A New Language.
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Chapel’s design enables it to seamlessly accommodate various parallel programming paradigms

— Locales  describe where a computation could take place and where data could be stored

• Locales are a fundamental building block in Chapel, supporting its parallel -by -default  nature

— Distributions  provide recipes  for representing and distributing data

• Distributed, sparse, GPU arrays are just arrays, but the language knows to treat them specially when they need it!

— Parallel Iterators  enable data -structure -specific parallelism

• Generic, high -level  code can use the appropriate parallelization depending on the data structure provided

— Low -level features  provide explicit control  when high -level abstractions won’t do

• Explicit task parallelism, locks, atomics, barriers, etc. are all part of the standard library!

— A Parallel Standard Library enables uniform and on -by -default  high performance

• Summations, bulk operations, standard library sort  are parallel

— A global memory view makes accessing remote and local data uniform, hiding implementation details

• No need to explicitly fetch data from other places

Chapel as a Unified Parallel Language
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https://chapel-lang.org/blog/posts/std-sort-performance/


What does Chapel look like?
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record myPair {
  var x: int;
  var y: string;

  proc foo() {
    writeln("(", x, ", ", y, ")");
  }  
}

var p = new myPair(42, "hello");
var Ap: [1..10] myPair;

class MyPair:
    def __init__(self, x: int = 0, y: string = ""):
        self.x = x
        self.y = y

    def foo(self):
        print(f"({self.x}, {self.y})”)

p = MyPair(42, “hello”)
Ap = [MyPair() for i in range(10)]

Chapel Python



Chapel has many of the usual features of imperative languages. We’ll cover some of them today.

Chapel’s General Features
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Input and Output
Covers reading, writing,
and formatted IO

Aggregate Data Structures
Covers records, classes, 
and memory management



— In the remainder of the talk, I will talk at a high level about Chapel’s unique parallel features

— During the rest of the tutorial days, these features (and more!) will be discussed in -depth

What next?
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In Chapel, a locale refers to a compute resource with…

— processors, so it can run tasks

— memory, so it can store variables

For now, think of each locale as a compute node

Locales
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Processor Core

Memory

Compute 
Node



Scalable parallel computing has two major concerns:

— parallelism:  Which tasks should run simultaneously?

— locality:  Where should tasks run?  Where should data be allocated?  

Locales
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Locale 0 Locale 1 Locale 2 Locale 3

Processor Core

Memory



— Complicating matters, compute nodes now often have GPUs with their own processors and memory

— We represent these as sub -locales  in Chapel. 

Locales for modeling GPUs
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Locale 0 Locale 1 Locale 2 Locale 3

CPU Core

Memory

GPU Core



Locale Examples
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on here.gpus[0] var A = [1,2,3,4,5];
on here.gpus[1] var B = A;
on here.gpus[2] {
  var C = B*B;

  on Locales[1] {
    var D = C;
  }
}

Locale 0 Locale 1

A B

C

D



Locality is a central notion to Chapel.

— All code is executing on some locale (always available via the ‘here’ variable) 

— All variables have a locale on which they are stored (you can write ’ myVar.locale ’ to retrieve it)

Locales
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Arrays are a core data structure for many parallel tasks.

Chapel’s arrays are very general, allowing the user control of how they are indexed, stored, and iterated

A domain (like ‘D1’) can describe the shape of the array

— its dimensions (1D, 2D)

— its size (1x10, 200x200)

Multiple arrays can share a domain

— So indices into ‘A’ are always valid for ‘B’ and ‘C’

Arrays, Domains, and Distributions
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D2
var A1 = [1,2,3,4];
var D1 = A.domain; // same as {0..3}

var D2 = {0..7, 0..3};
var A, B, C: [D2] int;

A1 D1

A
B

C



A domain can also describe at what indices array elements reside

— for some problems, it’s convenient to index arrays at 0, for others it isn’t

— Even if ‘D’ is 0 -indexed, it’s convenient to 1 -index ‘Inner’

— sometimes, we can allow indices can come and go

Arrays, Domains, and Distributions
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Everything

D

Inner

var D = {0..3, 0..7};
var Inner = D.expand(-1);

var Everything: [D] int;
var Interior: [Inner] int;

Interior

Everything[0,0] Everything[1,1]



Distributions describe many properties of the array, including…

— Where it’s stored:  single locale, split in even chunks across all locales, split round -robin across all locales, etc.?

• Previously, we’ve seen storing variables on different locales

• But big arrays may not fit in the memory of a single node!

— How it’s stored: by default, arrays are arranged consecutively in memory, but they don’t have to be!

• Compressed Sparse Columns and Compressed Sparse Rows are layouts for sparse arrays

Arrays, Domains, and Distributions
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A

Locale 0 Locale 1 Locale 2 Locale 3

Dense Sparse



Arrays, Domains, and Distributions
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distributed to
L0 L1 L2 L3

L4 L5 L6 L7

1
1

8
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L0 L1 L2 L3

L4 L5 L6 L7
distributed to

1

Cyclic

Block



Brandon’s demo on distributions will cover this topic in more depth

More on Arrays, Domains and Distributions
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Distributions
Covers arrays, domains, and distributions



In addition to sequential ‘for’ loops, Chapel provides parallel loops

— ‘foreach’ loops

• assert order -independence (iterations ought not to affect each other).

• could loosely correspond to vectorizable operations

— ‘forall ’ loops

• invoke the parallel iterator of the thing -being -iterated

• many of Chapel’s standard data structures come with parallel iterators (ranges, arrays, etc.)

• you can automatically parallelize computations, in a way that aligns with the data structure

Parallel Loops
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on here.gpus[0] var A = foreach i in 1..10 do i * i; 

forall i in zip(A.domain, B.domain) do B[i] = A[i] + 1; 



In addition to ”plain” ‘for’ loops, Chapel provides parallel loops

— ‘foreach’ loops

• assert order -independence (iterations ought not to affect each other).

• could loosely correspond to vectorizable operations

— ‘forall ’ loops

• invoke the parallel iterator of the thing -being -iterated

• many of Chapel’s standard data structures come with parallel iterators (ranges, arrays, etc.)

• this means you can automatically parallelize computations, in the most appropriate way

Parallel Loops
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on here.gpus[0] var A = foreach i in 1..10 do i * i; 

B = A + 1; // use promotion 



Parallel Loops
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Locale 0 Locale 1 Locale 2 Locale 3

var A = blockDist.createArray(1..24, int);

forall a in A { /* ... */ }

A

Distributions customize the parallel iterator, so distributed arrays are processed distributedly



'forall ’ loops are high -level parallelism constructs.

— “How many tasks?”

• Data structure decides, often depending on the available hardware and load

— “Which task gets what piece of the work?”

• Data structure decides (e.g., block distributed array gives each thread a ”block”)

— “What nodes / devices / domains does the code run on?”

• Data structure decides (local is a common default, except for distributed arrays)

A lot of the time, fire and forget!

With generics, the same code can be used for a variety of parallel behaviors.

Parallel Loops
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Shreyas’ demo on parallel loops will cover this topic in more depth

More on Parallel Loops
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Parallel Loops
Covers ‘ coforall ’, ‘forall ’, and ‘foreach’ 
loops, and more! 



Chapel is a multi -resolution language: high -level features can give ways to low -level features

— ‘coforall ’ loops

• spawn exactly one task for each iteration of the loop

• allow for explicit control over task parallelism

— ‘cobegin ’ statement

• executes each statement in the block in a new task

— atomics, syncs, barriers

• if you need various synchronization idioms

The high -level features (parallel iterators for ‘ forall ’ loops) are written using the low -level features.

Lower -Level Parallel Constructs

40

coforall i in 1..here.maxTaskPar do foo();

cobegin { foo(); bar(); }

var x: atomic int; x.exchange(1);



Our advent of code articles cover these lower -level features as tools for solving programming puzzles.

Sync and Atomic Variables
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Day 11: Monkeying Around
Covers ‘ coforall ’, ‘sync’, barriers

Day 12: On the Summit
Covers ‘atomic’, ‘ coforall ’



Conclusion
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1.  Why  is parallelism important?
— It can speed up your work

— It can make intractable problems, tractable

— making efficient use desktops and HPC machines requires parallelism

2.  How  do I use Chapel to make parallel computing productive?
— Chapel bundles parallelism from the get -go , giving you consistent tools to express a variety of parallel work

— Locales  + ’on’ statements  let you talk about where code should run and memory should be stored

— Arrays, Domains and  Distributions offer powerful tools for storing and distributing collections of elements

— High -level parallel loops provide quick and easy parallelism for many data structures

— Low -level features like ‘ coforall ’ loops, atomics, etc., let you implement traditional parallel idioms and more

Recap

44


	Slide 1: An Introduction to Chapel
	Slide 2
	Slide 3
	Slide 4: Presentation Outline
	Slide 5: Parallelism is Important
	Slide 6: Parallel Computing For Performance
	Slide 7: Parallel Computing For Tractability
	Slide 8: Parallel Hardware is Available
	Slide 9: Everyone Needs Parallelism
	Slide 11: Chapel brings parallelism to the table
	Slide 12: The Format
	Slide 13: The Parallel Programming Landscape
	Slide 14: The Parallel Programming Landscape
	Slide 17: A New Language.
	Slide 18: Chapel as a Unified Parallel Language
	Slide 19: What does Chapel look like?
	Slide 20: Chapel’s General Features
	Slide 22: What next?
	Slide 23: Locales
	Slide 24: Locales
	Slide 25: Locales for modeling GPUs
	Slide 27: Locale Examples
	Slide 28: Locales
	Slide 30: Arrays, Domains, and Distributions
	Slide 31: Arrays, Domains, and Distributions
	Slide 32: Arrays, Domains, and Distributions
	Slide 33: Arrays, Domains, and Distributions
	Slide 34: More on Arrays, Domains and Distributions
	Slide 35: Parallel Loops
	Slide 36: Parallel Loops
	Slide 37: Parallel Loops
	Slide 38: Parallel Loops
	Slide 39: More on Parallel Loops
	Slide 40: Lower-Level Parallel Constructs
	Slide 42: Sync and Atomic Variables
	Slide 43: Conclusion
	Slide 44: Recap

