HPE

An Introduction to Chapel

Daniel Fedorin

Productive parallel computing
at every scale.

HPE

Productive parallel computing

atﬁvery scale. &

hy?
How? Why

HPE

Presentation Outline

1. Why is parallelism important?

— It can speed up your work
— It can make intractable problems, tractable

— ltiseverywhere

2. How do | use Chapel to make parallel computing productive?

— Parallel computation is baked into the language, not an add-on
— Multi-resolution philosophy lets you work at the level of abstraction you need
— Many powerful features fall out from these guiding principles

HPE

Parallelis

HPE

Parallel Computing For Performance

— Parallel computing allows programs to run much, much faster
« Consider an analogy to wheat. It would take 3-4 months for a single seed to mature
« If grown one-by-one, a single-acre wheat field would take 225,000 years
« Fortunately, wheat can be grown in parallel

- Sequential

- Grow a single

~ seed before

' planting anything
else

Parallel

Grow plants
simultaneously

HPE

Parallel Computing For Tractability

— Some problems are too big to solve on a single machine
« E.g., Large, detailed physics simulations, massive computations
« As part of one of our benchmarks, Arkouda sorted 256 TiB of data in 30 seconds

« This far exceeds the memory capacity of a single machine (Linux kernel can handle 64TB)
6,000 1 Average Rate (GB/s) To Sort Elements
8,000
7,000

. 6,000

% 5,000

0]

% 4,000

o
3,000
2,000
1,000

0
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

Number of Nodes
Source: Arkouda argsort Benchmark

Hardware: HPE Cray EX with a Slingshot-11 network (200 Gb/s)

HPE

Parallel Hardware is Available

Parallelism can (1) speed up your code and (2) let you handle bigger problems...

...and practically anyone with a computer already has access to parallel hardware!

PC NUMBER OF CPUS PER COMPUTER

28.79%
14.61%
3.45%

CLICK FOR MORE INFO

99.97% of surveyed computers
have more than 1 CPU!

HPE |

Measure the Performance of your
Gaming GPU with Chapel

Posted on August 27, 2024.

Tags: GPU Programming How-to || Windows
By: Ahmad Rezaii

If you have a GPU, you have a ton of tiny cores!

Everyone Needs Parallelism

If you are an HPC programmer, you have access to that parallel hardware, and more

— HPC systems also have multiple cores and many of them have GPUs
— Performant parallel code on an HPC system can be trickier to write
« Compute nodes on HPC systems can have multiple network interfaces and CPUs
« This poses other programming and performance challenges, including NUMA effects
— In an HPC context, you might also want to parallelize your workload across multiple nodes

* You still want all the aforementioned forms of parallelism

HPE

Chapel
parallelis

The Format

— | don’t know your background

— |l only have 30 minutes

— This will be a high-level overview advertising many features
— Specific tutorials today and tomorrow cover the details

October 7: Tutorials, Day 1

Time (PDT)

9:00

9:10

9:40 -

10:20 -

11:00 -
11:30 -

12:10 -

12:50 -

-9:10

-9:40

10:20

11:00

11:30
12:10

12:50

14:00

Welcome/Introduction
Brandon Neth

» Description

An Introduction to Chapel

Daniel Fedorin

» Description

10 Demo/Exercise Session

Lydia Duncan

» Description

Parallel Loops Demo/Exercise Session
Shreyas Khandekar

» Description

Break

Distributions Demo/Exercise Session
Brandon Neth

» Description

Aggregate Data Structures Demo/Exercise Session
Jade Abraham

» Description

Free-Code Session
» Description

Confidential | Authorized HPE Partner Use Only

12

The Parallel Programming Landscape

— Parallel programming is important, so there are many technologies to help with it.
— As I've already mentioned, there are many different types of parallel programming!
* Multi-core programming (threads?)
« POSIX threads / pthreads in C
« std::thread in C++
 Rayon in Rust
« OpenMP
« GPU Programming
« CUDA/HIP
 PyTorch / NumPy (wraps vendor GPU libs)
« Kokkos
« OpenCL
« OpenACC
« OpenMP
» Distributed Programming
« MPI

HPE

The Parallel Programming Landscape

GPU Programming

Shared Distributed From Portable Solutions
Vendors (directives) (C++ templates)
HPC Expe_rts

Memo Memo
Potential Users ok v
o o @ U 8 OpenMP OpenAcc W
Ul w
OpenMP *

All are effective, powerful, essential and tested technologies!

GPUS ARE EASY TO FIND... BUT DIFFICULT TO PROGRAM
No distributed memory

support here

uow

=
=
El::i%
e Lt

e .. but programming for multiple nodes with GPUs appears to require at least 2 programming models

« as aresult, using GPUs in HPC has a high barrier of entry

14

A New Language.

Chapel is designed from the ground up with two major philosophical goals, which makes it uniquely suited
for writing parallel code

— Parallelism-by-default
While other languages provide parallelism as an extension on top of the language, or a third-party library, Chapel
keeps parallelism at the forefront.

— A multi-resolution philosophy
Chapel provides high-level, elegant parallel programming constructs, but gives the user more control if these
constructs prove insufficient.

In some ways, most of Chapel’s features are consequences of these two design goals.

HPE

17

Chapel as a Unified Parallel Language

Chapel’s design enables it to seamlessly accommodate various parallel programming paradigms

— Locales describe where a computation could take place and where data could be stored
» Locales are a fundamental building block in Chapel, supporting its parallel-by-default nature

— Distributions provide recipes for representing and distributing data
« Distributed, sparse, GPU arrays are just arrays, but the language knows to treat them specially when they need it!

— Parallel Iterators enable data-structure-specific parallelism
« Generic, high-level code can use the appropriate parallelization depending on the data structure provided
— Low-level features provide explicit control when high-level abstractions won’t do
« Explicit task parallelism, locks, atomics, barriers, etc. are all part of the standard library!
— A Parallel Standard Library enables uniform and on-by-default high performance
« Summations, bulk operations, standard library sort are parallel
— A global memory view makes accessing remote and local data uniform, hiding implementation details

« No need to explicitly fetch data from other places

HPE

Confidential | Authorized HPE Partner Use Only

18

https://chapel-lang.org/blog/posts/std-sort-performance/

What does Chapel look like?

Chapel Python

MyPair:
__init_ (self, x:
self.x = x
self.y =y

foo(self):
(f"({self.x}, {self.y})”)

p = myPair(42, "hello"); p = MyPair(42, “hello”)
Ap: [1..10] myPair; Ap = [MyPair() i

HPE

19

Chapel’s General Features

Chapel has many of the usual features of imperative languages. We'll cover some of them today.

Input and Output Aggregate Data Structures
Covers reading, writing, Covers records, classes,
and formatted 10 and memory management

HPE |

20

What next?

— In the remainder of the talk, | will talk at a high level about Chapel’s unique parallel features
— During the rest of the tutorial days, these features (and more!) will be discussed in-depth

HPE

22

Locales

In Chapel, a locale refers to a compute resource with...

— processors, so it can run tasks
— memory, so it can store variables

For now, think of each locale as a compute node

Compute
Node

HPE

I Processor Core
Il Memory

23

Locales

Scalable parallel computing has two major concerns:

— parallelism: Which tasks should run simultaneously?
— locality: Where should tasks run? Where should data be allocated?

HPE

Locale O Locale1

Locale 2

Locale 3

B i — e — e e
o o o O o O o O

I Processor Core

Il Memory

24

Locales for modeling GPUs

— Complicating matters, compute nodes now often have GPUs with their own processors and memory

— We represent these as sub-locales in Chapel.

HPE

Locale O

GPUO GPU1

GPU2

GPU3

Locale1

. l
GPUO GPU1

GPU2

GPU3

Locale 2

. l
GPUO GPU1

GPU2

GPU3

Locale 3

. .
GPUO GPU1

GPU2

GPU3

GPU Core

I cPU Core
Il Memory

25

Locale Examples

.gpus[0]

.gpus|[1]

.gpus[2] {
B*B;

Locales[1] {
D = C;

HPE

[1)2)3)4)5];
A;

Locale O

GPUO ‘GPUI.

Locale1

Locales

Locality is a central notion to Chapel.

— All code is executing on some locale (always available via the ‘here’ variable)
— All variables have a locale on which they are stored (you can write ‘myVar.locale’ to retrieve it)

HPE

28

Arrays, Domains, and Distributions

Arrays are a core data structure for many parallel tasks.

Chapel’s arrays are very general, allowing the user control of how they are indexed, stored, and iterated

A domain (like ‘D1’) can describe the shape of the array

— its dimensions (1D, 2D) Al D1
— its size (1x10, 200x200)
Multiple arrays can share a domain
— So indices into ‘A’ are always valid for ‘B’ and ‘C’
D2

Arrays, Domains, and Distributions

A domain can also describe at what indices array elements reside
— for some problems, it’s convenient to index arrays at O, for others it isn’t

) i) i)) Inner
— Even if ‘D’ is O-indexed, it's convenient to 1-index ‘Inner’
— sometimes, we can allow indices can come and go D
D = {0..3, 8..7}; Everything Interior

Everything: [D]

Interior: [Inner]

Inner = D.expand(-1); | -

Everything[0,0] Everything[1l,1]

HPE

31

Arrays, Domains, and Distributions

Distributions describe many properties of the array, including...

— Where it's stored: single locale, split in even chunks across all locales, split round-robin across all locales, etc.?
« Previously, we've seen storing variables on different locales

« But big arrays may not fit in the memory of a single node!
| | |

A

Locale O Locale1 Locale 2 Locale 3

— How it's stored: by default, arrays are arranged consecutively in memory, but they don’t have to be!
« Compressed Sparse Columns and Compressed Sparse Rows are layouts for sparse arrays

Dense Sparse

HPE

Arrays, Domains, and Distributions

L1 L2 L3

Block “ distributed to
L4 L5 L6 L7
L1 L2 L3

- H e
L4 L5 L6 L7

HPE

More on Arrays, Domains and Distributions

Brandon’s demo on distributions will cover this topic in more depth

Distributions
Covers arrays, domains, and distributions

HPE

34

Parallel Loops

In addition to sequential ‘for’ loops, Chapel provides parallel loops

— ‘foreach’ loops
« assert order-independence (iterations ought not to affect each other).
« could loosely correspond to vectorizable operations

— ‘forall’ loops
« invoke the parallel iterator of the thing-being-iterated
« many of Chapel’s standard data structures come with parallel iterators (ranges, arrays, etc.)
e you can automatically parallelize computations, in a way that aligns with the data structure

HPE

35

Parallel Loops

” ¢

In addition to “plain” ‘for’ loops, Chapel provides parallel loops

— ‘foreach’ loops
« assert order-independence (iterations ought not to affect each other).
« could loosely correspond to vectorizable operations

— ‘forall’ loops
« invoke the parallel iterator of the thing-being-iterated
« many of Chapel’s standard data structures come with parallel iterators (ranges, arrays, etc.)
« this means you can automatically parallelize computations, in the most appropriate way

HPE |

36

Parallel Loops

Distributions customize the parallel iterator, so distributed arrays are processed distributedly

var A = blockDist.createArray(l..24, int);

forall a in A { /* ... */ }
A Ll 1 II NN II L [[| RN
Locale O Locale1 Locale 2 Locale 3

oo oo oo o o
B EE N e

HPE

Parallel Loops

'forall’ loops are high-level parallelism constructs.

— “How many tasks?”
« Data structure decides, often depending on the available hardware and load

— “Which task gets what piece of the work?”
« Data structure decides (e.g., block distributed array gives each thread a “block”)

— “What nodes / devices / domains does the code run on?”
« Data structure decides (local is a common default, except for distributed arrays)

A lot of the time, fire and forget!

With generics, the same code can be used for a variety of parallel behaviors.

HPE

More on Parallel Loops

Shreyas’ demo on parallel loops will cover this topic in more depth

Parallel Loops

Covers ‘coforall’, ‘forall’, and ‘foreach’

loops, and more!

HPE

39

Lower-Level Parallel Constructs

Chapel is a multi-resolution language: high-level features can give ways to low-level features

— ‘coforall’ loops

« spawn exactly one task for each iteration of the loop
« allow for explicit control over task parallelism

.maxTaskPar foo();

— ‘cobegin’ statement

« executes each statementin the block in a new task

{ foo(); bar(); }

— atomics, syncs, barriers

« if you need various synchronization idioms

X: ; X.exchange(1);

The high-level features (parallel iterators for ‘forall’ loops) are written using the low-level features.

HPE |

40

Sync and Atomic Variables

Our advent of code articles cover these lower-level features as tools for solving programming puzzles.

Day 11: Monkeying Around Day 12: On the Summit
Covers ‘coforall’, ‘sync’, barriers Covers ‘atomic’, ‘coforall’

HPE

42

Conclusio

HPE

Recap

1. Why is parallelism important?

It can speed up your work
It can make intractable problems, tractable
making efficient use desktops and HPC machines requires parallelism

2. How do | use Chapel to make parallel computing productive?

HPE

Chapel bundles parallelism from the get-go, giving you consistent tools to express a variety of parallel work
Locales + ‘on’ statements let you talk about where code should run and memory should be stored

Arrays, Domains and Distributions offer powerful tools for storing and distributing collections of elements
High-level parallel loops provide quick and easy parallelism for many data structures

Low-level features like ‘coforall’ loops, atomics, etc., let you implement traditional parallel idioms and more

44

	Slide 1: An Introduction to Chapel
	Slide 2
	Slide 3
	Slide 4: Presentation Outline
	Slide 5: Parallelism is Important
	Slide 6: Parallel Computing For Performance
	Slide 7: Parallel Computing For Tractability
	Slide 8: Parallel Hardware is Available
	Slide 9: Everyone Needs Parallelism
	Slide 11: Chapel brings parallelism to the table
	Slide 12: The Format
	Slide 13: The Parallel Programming Landscape
	Slide 14: The Parallel Programming Landscape
	Slide 17: A New Language.
	Slide 18: Chapel as a Unified Parallel Language
	Slide 19: What does Chapel look like?
	Slide 20: Chapel’s General Features
	Slide 22: What next?
	Slide 23: Locales
	Slide 24: Locales
	Slide 25: Locales for modeling GPUs
	Slide 27: Locale Examples
	Slide 28: Locales
	Slide 30: Arrays, Domains, and Distributions
	Slide 31: Arrays, Domains, and Distributions
	Slide 32: Arrays, Domains, and Distributions
	Slide 33: Arrays, Domains, and Distributions
	Slide 34: More on Arrays, Domains and Distributions
	Slide 35: Parallel Loops
	Slide 36: Parallel Loops
	Slide 37: Parallel Loops
	Slide 38: Parallel Loops
	Slide 39: More on Parallel Loops
	Slide 40: Lower-Level Parallel Constructs
	Slide 42: Sync and Atomic Variables
	Slide 43: Conclusion
	Slide 44: Recap

