
Confidential | Authorized HPE Partner Use Only 1

Daniel Fedorin, HPE

Advanced Chapel Programming

What does
‘Advanced Chapel’
Mean to You?’

Confidential | Authorized HPE Partner Use Only 2

— “Advanced Chapel” can mean a
lot of things

— I picked features that I thought
will be particularly relevant for
the tutorials today

— Much “advanced” material
cannot be covered in this time

— Performance work

• Engin Kayraklioğlu will give a performance debugging tutorial later today! (9:40 PT)

• Michael Ferguson has written an extensive optimization technical note

— Advanced parallel programming

• Shreyas covered parallel loops in his tutorial yesterday in much depth

• Advent of code 2022 days 11 and 12 cover low -level task spawning and synchronization

• With these building blocks, the algorithms matter more than the language

— Interfacing with C/C++/Fortran/Python

• Scott Bachman’s NetCDF blog posts cover using a C library from Chapel

• Brandon Neth’s & Michelle Strout’s blog posts, in collaboration with [C]Worthy, cover interop with Fortran

• The ‘Python’ module bundled as of release 2.4 can be used to create and run Python interpreters

Not Covered Here

Confidential | Authorized HPE Partner Use Only 3

Not Covered Here

Confidential | Authorized HPE Partner Use Only 4

Parallel
Loops Demo

Optimization
technical note

AoC day 11
(syncs, coforall)

AoC day 12
(atomics, coforall)

C Interop
(w/NetCDF)

FORTRAN Interop
(w/MARBL)

Python module
documentation

— Many of Chapel’s lower -level features require a deeper understanding of the specifics of the language

— This is true both for how the feature is implemented, and for how the user ought to engage with it

— This can muddy the waters while trying to make the jump

— Today, I want to give a primer on advanced features that come up in lower -level uses of Chapel

• A lot of this turns out to be Chapel’s type system

Motivation & Goals

Confidential | Authorized HPE Partner Use Only 5

Many of Chapel’s features are written using generic code

— Distributions, Iterators, Serializers

At the surface -level, Chapel’s generics were designed to be familiar to folks coming from Python.

— Type annotations are not required

— Programs can be gradually enhanced with types after prototyping

— Functions can inspect arguments’ types to adjust their behavior

Python achieves this with dynamic typing

— Conditions on values’ types execute at runtime

— Type annotations don’t do anything…

— …So, they can be added later.

But Chapel is statically typed!

Compile -Time Generics

Confidential | Authorized HPE Partner Use Only 6

Consider this function:

proc foo(x, y) do return x + y;

‘foo’ does not have enough static type information to be compiled as -is.

— This information is provided from calls to the function.

— For each set of argument types, we produce a copy of the function that has the corresponding types statically

— In simple cases, think of this as substitution.

— These copies are called instantiations.

Consider calls ‘foo(1.0, 2)’ and ‘foo(1i, 1.0)’. This creates two instantiations:

proc foo(x: real, y: int) do return x + y;

proc foo(x: imag, y: real) do return x + y;

Each instantiation is resolved separately.

Compile -Time Generics

Confidential | Authorized HPE Partner Use Only 7

Conditionals on types are also handled at compile -time

— This is because conditionals with compile -time -known conditions are are eliminated

Compile -Time Generics

Confidential | Authorized HPE Partner Use Only 8

if x.type == string {
 foo();
else {
 bar();
}

if true {
 foo();
else {
 bar();
}

if false {
 foo();
else {
 bar();
}

foo();

bar();

 Recall each
instantiation gets one
copy of this conditional

Type resolution proceeds in a fixed order

— Roughly: left -to-right, top -to-bottom

— This enables early -returning patterns and prevents dead code (which may not compile) from being resolved

Resolution Order

Confidential | Authorized HPE Partner Use Only 9

proc myHash(x) {
 if x.type == int {
 return x;
 }
 if !canResolveMethod(x, “hash”) then
 return 0; // no hash method, return default value

 return x.hash();
}

Type resolution proceeds in a fixed order

— Roughly: left -to-right, top -to-bottom

— This enables early -returning patterns and prevents dead code (which may not compile) from being resolved

Resolution Order

Confidential | Authorized HPE Partner Use Only 10

proc myHash(x: someType) {
 if someType == int {
 return x;
 }
 if !canResolveMethod(x, “hash”) then
 return 0; // no hash method, return default value

 return x.hash();
}

Type resolution proceeds in a fixed order

— Roughly: left -to-right, top -to-bottom

— This enables early -returning patterns and prevents dead code (which may not compile) from being resolved

Resolution Order

Confidential | Authorized HPE Partner Use Only 11

proc myHash(x: someType) {
 if someType == int {
 return x;
 }
 if !canResolveMethod(x, “hash”) then
 return 0; // no hash method, return default value

 return x.hash();
}

Type resolution proceeds in a fixed order

— Roughly: left -to-right, top -to-bottom

— This enables early -returning patterns and prevents dead code (which may not compile) from being resolved

Resolution Order

Confidential | Authorized HPE Partner Use Only 12

proc myHash(x: someType) {
 if false {
 return x;
 }
 if !canResolveMethod(x, “hash”) then
 return 0; // no hash method, return default value

 return x.hash();
}

Type resolution proceeds in a fixed order

— Roughly: left -to-right, top -to-bottom

— This enables early -returning patterns and prevents dead code (which may not compile) from being resolved

Resolution Order

Confidential | Authorized HPE Partner Use Only 13

proc myHash(x: someType) {

 if !canResolveMethod(x, “hash”) then
 return 0; // no hash method, return default value

 return x.hash();
}

Type resolution proceeds in a fixed order

— Roughly: left -to-right, top -to-bottom

— This enables early -returning patterns and prevents dead code (which may not compile) from being resolved

Resolution Order

Confidential | Authorized HPE Partner Use Only 14

proc myHash(x: someType) {

 if !canResolveMethod(x, “hash”) then
 return 0; // no hash method, return default value

 return x.hash();
}

Type resolution proceeds in a fixed order

— Roughly: left -to-right, top -to-bottom

— This enables early -returning patterns and prevents dead code (which may not compile) from being resolved

Resolution Order

Confidential | Authorized HPE Partner Use Only 15

proc myHash(x: someType) {

 if true then
 return 0; // no hash method, return default value

 return x.hash();
}

Type resolution proceeds in a fixed order

— Roughly: left -to-right, top -to-bottom

— This enables early -returning patterns and prevents dead code (which may not compile) from being resolved

Resolution Order

Confidential | Authorized HPE Partner Use Only 16

proc myHash(x: someType) {

 return 0; // no hash method, return default value

 return x.hash()
}

Type resolution proceeds in a fixed order

— Roughly: left -to-right, top -to-bottom

— This enables early -returning patterns and prevents dead code (which may not compile) from being resolved

Resolution Order

Confidential | Authorized HPE Partner Use Only 17

proc myHash(x: someType) {

 return 0; // no hash method, return default value

}

Each instantiation of a generic function is resolved separately

— So, we can use overloading to change the calls in the function body

Luca Ferranti’s ForwardModeAD does this for forward -mode automatic differentiation

— This leans on the concept of “dual numbers”, which carry their value and an approximation of a derivative

— These have the form ‘a + bε’, where can be thought of as a “small constant” (𝜀2 = 0)

— By overloading ’+’, ‘sin’, etc. for these numbers, we can define operations that also compute derivatives

Example Application: ForwardModeAD

Confidential | Authorized HPE Partner Use Only 18

// generic
proc f(x) do return exp(-x) * sin(x) - log(x);

// instances (created by compiler)
proc f(x: real) do return exp(-x) * sin(x) - log(x);
proc f(x: dual) do return exp(-x) * sin(x) - log(x);

// Standard
proc exp(x: real) {}
proc sin(x: real) {}
proc log(x: real) {}

// ForwardModeAD
proc exp(x: dual) {}
proc sin(x: dual) {}
proc log(x: dual) {}

Generic Chapel procedures support a degree of dependency

— For example, the following procedure accepts three arguments of the same type:

proc fooMatching(x, y: x.type, z: y.type) do return x + y + z;

— In general, type expressions in formals can reference preceding formals

— To support this, resolution of formals notionally proceeds left -to-right

fooMatching(1, 2, 3);

proc fooMatching(x, y: x.type, z: y.type) do return x + y + z;

proc fooMatching(x: int, y: int, z: y.type) do return x + y + z;

proc fooMatching(x: int, y: int, z: int) do return x + y + z;

proc fooMatching(x: int, y: int, z: int) do return x + y + z;

“Dependent” Typing

Confidential | Authorized HPE Partner Use Only 19

In general, type expressions in formals can reference preceding formals

— This doesn’t have to be limited to exact matches

proc fooMatching(x, y: (x.type, x.type, ?)) do return x + y[0] + y[1];

fooMatching(1, (2, 3, “Hello”));

proc fooMatching(x, y: (x.type, x.type, ?)) do return x + y[0] + y[1];

proc fooMatching(x: int, y: (int, int, ?)) do return x + y[0] + y[1];

proc fooMatching(x: int, y: (int, int, string)) do return x + y[0] + y[1];

“Dependent” Typing

Confidential | Authorized HPE Partner Use Only 20

Instead of ‘.type ’, you can use type queries to extract type information from inferred formal types

— In this example, we accept an ‘int ’ and then as many 8 -bit values as we need to construct it

proc intAndBytes(x: int(?w), ref bs: int(8)...(w/8)) {}

var b0, b1: int(8);

intAndBytes(0x2025 : int(16), b0, b1);

proc intAndBytes(x: int(?w), ref bs: int(8)...(w/8)) {}

proc intAndBytes(x: int(16), ref bs: int(8)...(16/8)) {}

proc intAndBytes(x: int(16), ref bs_0: int(8), ref bs_1: int(8)) {}

Type Queries

Confidential | Authorized HPE Partner Use Only 21

Instead of ‘.type’, you can use type queries to extract type information from inferred formal types

— In this example, we accept an array and a value of the same type as the array’s elements

proc arrayAndElement(A: [] ?t, element: t) {}

Type Queries

Confidential | Authorized HPE Partner Use Only 22

Lots of standard library procedures use type queries and dependent formals. Some eclectic examples:

— Sets only allow union, intersection, etc. on same -element -type sets

 operator set.|(const ref a: set(?t, ?), const ref b: set(t, ?))

 operator set.&(const ref a: set(?t, ?), const ref b: set(t, ?))

— The ‘Random’ module uses array element type queries to constrain ‘ fillRandom ’ and others

proc fillRandom(ref arr: [] ?t, min: t, max: t, seed: int)

— Comparators for sorting use the same -type constraint we’ve already seen

 proc Self.compare(x, y: x.type)

Applications: Standard Library

Confidential | Authorized HPE Partner Use Only 23

The user -facing serializer API uses dependent types and type queries:

— In various helpers like ’ startRecord ’, the type of ‘this’ is used to parameterize the ‘ fileWriter ’

proc Serializer.startRecord(writer: fileWriter(false, this.type), name: string, size: int) throws;

— In other parts of the API, generics are written using type queries

proc T.serialize(writer: fileWriter(?), ref serializer: ?st) throws

Applications: Serializers

Confidential | Authorized HPE Partner Use Only 24

Serializers Demo
Covers reading and writing
custom data structures

Instead of conditionals in a function body, types can be restricted as part of the function’s signature

proc foo(x, y)

 where isNumericType(x.type) && isNumericType(y.type)

 do return x + y;

 Unlike what we’ve seen, this happens before a function’s body is resolved

— ‘where’ clauses are checked when picking applicable overloads

— The following program is unambiguous

proc bar(x) where x.type == string {} // (1)

proc bar(x) where x.type != string {} // (2)

bar(“hello”) // picks (1)

bar(1234) // picks (2)

where clauses

Confidential | Authorized HPE Partner Use Only 25

Functions with where clauses are also considered “more specific ” and are preferred when possible

— The following program is also unambiguous

proc bar(x) where x.type == string {} // (1)

proc bar(x) {} // (2)

bar(“hello”) // picks (1)

bar(1234) // picks (2)

where clauses

Confidential | Authorized HPE Partner Use Only 26

So far, we’ve seen that generic functions:

— Have the types of their arguments determined at compile -time

— Are instantiated (creating copies) for each possible combination of argument types

• Each instantiation can be thought of as getting subjected to substitution of generic types with the determined types

— Have their body resolved step -by -step, in a way that is sensitive to early returns and compile -time conditions*

So far, the substitutions and copies have only occurred for different types

With ‘param’s, we can generalize this to values

* also true for regular functions, but typically less important

param values

Confidential | Authorized HPE Partner Use Only 27

Consider the following function:

proc fooParam(param x, param y) param do return x + y;

Consider calls ‘ fooParam(1.0, 2)’ and ‘ fooParam(3, 2)’. This creates two instantiations:

proc fooParam(param x: real [=1.0], param y: int [=2]) param do return 1.0 + 2;

proc fooParam(param x: int [=3], param y: int [=2]) param do return 3 + 2;

Note that the values of ‘x’ and ‘y’ were replaced with their constants, like we saw with ‘.type’

Calls to functions with the ‘param’ return intent are replaced with their return value

— The return value must be a compile -time -known constant

return 1.0 + 2 /* ===> */ return 3.0;

fooParam(1.0, 2) /* ===> */ 3.0

Compile -Time Generics with params

Confidential | Authorized HPE Partner Use Only 28

The following types can become ‘params’:

— int

— uint

— real

— string

— any enum

Compile -Time Generics with params

Confidential | Authorized HPE Partner Use Only 29

— Lists, Sets, and other data structures are split into two families: ones that are safe to use in parallel, and ones not

var l: list(int, parSafe=true); // parSafe is a param argument to the type constructor, and a field

— Some compiler settings are actually ‘param’ global variables used by the standard modules

$ chpl –sdebugDataPar=true myprog.chpl # debugDataPar is a global constant for rectangular data

— Whether a range has an upper bound, a lower bound, or both is a ‘param enum ’ on the range

(1..).bounds // = boundKind.low

— Conditions are “compile -time removed” and affect resolution order precisely when their conditions are ‘param’

if returnsParamTrue() then foo(); /* ===> */ foo()

params You Might Have Seen

Confidential | Authorized HPE Partner Use Only 30

Custom parallel iterators require generics, ‘param’ enums , and ‘where’ clauses.

— From the Parallel Iterators primer, an example of a standalone parallel iterator:

iter count(param tag: iterKind, n: int, low: int = 1) where tag == iterKind.standalone

Application: Writing Parallel Iterators

Confidential | Authorized HPE Partner Use Only 31

Parallel Iterators Demo
Covers developing custom
parallel iterators

Many Chapel features use generic functions and types as part of their implementation, such as:

— Iterators

— Serializers

— Many standard data structures

Understanding this features helps write more powerful code and better understand the standard library.

Chapel’s generics:

— Are statically -typed, and stamped out by the compiler depending on the argument types

— Support compile -time simplification of ‘type’ and ‘param’ expressions to eliminate unused code

— Allow formals’ types and values to depend on the types and values of preceding formals

— Can use ‘where’ clauses to provide more specific / constrained implementations of functions

Summary

Confidential | Authorized HPE Partner Use Only 33

	Slide 1: Advanced Chapel Programming
	Slide 2: What does ‘Advanced Chapel’ Mean to You?’
	Slide 3: Not Covered Here
	Slide 4: Not Covered Here
	Slide 5: Motivation & Goals
	Slide 6: Compile-Time Generics
	Slide 7: Compile-Time Generics
	Slide 8: Compile-Time Generics
	Slide 9: Resolution Order
	Slide 10: Resolution Order
	Slide 11: Resolution Order
	Slide 12: Resolution Order
	Slide 13: Resolution Order
	Slide 14: Resolution Order
	Slide 15: Resolution Order
	Slide 16: Resolution Order
	Slide 17: Resolution Order
	Slide 18: Example Application: ForwardModeAD
	Slide 19: “Dependent” Typing
	Slide 20: “Dependent” Typing
	Slide 21: Type Queries
	Slide 22: Type Queries
	Slide 23: Applications: Standard Library
	Slide 24: Applications: Serializers
	Slide 25: where clauses
	Slide 26: where clauses
	Slide 27: param values
	Slide 28: Compile-Time Generics with params
	Slide 29: Compile-Time Generics with params
	Slide 30: params You Might Have Seen
	Slide 31: Application: Writing Parallel Iterators
	Slide 33: Summary

