Efficient Multi-GPU
Communication with
NVSHMEM in Chapel

Sosuke Hosokawa, Kenjiro Taura

The University of Tokyo

Limitation in inter-GPU Communication in Current
Chapel

* In current Chapel, a GPU cannot access directly to the memory on
another GPU.

on Locales[0] do on here.gpus[0] {
// On GPU A

var arrOnGpuA: [0..N] real;

on Locales[]l] do on here.gpus[0] {
// On GPU B \
var arrOnGpuB: [0..N] real; o
In current Chapel, this is NOT allowed
// forall converted to a GPU kernel | operation:

forall i in 0..N { « A GPU kernel can only access the

arrOnGpuAfi] = i * i; memory on the device it runs on.
}

| J

}

Limitation in inter-GPU Communication in Current

Chapel

on Locales[0] do on here.gpus[0] {
// On GPU A
var arrOnGpuA: [0..N] real;

on Locales[l] do on here.gpus[0] {
// On GPU B
var arrOnGpuB: [0..N] real;

// Copy from arrOnGpuA to arrOnGpuB
arrOnGpuB = arrOnGpul;

// forall converted to a GPU kernel
forall i in 0..N do
arrOnGpuB[i] = 1i;

arrOnGpuA = arrOnGpuB;

Kl'he only way to access the memory of\
another GPU in Chapel is array-wise
copy.

This operation triggers a data transfer
handled by DMA (intra-node) or

GASNet via CPU (inter-node, without
GPUDirect RDMA) /

4 N

Disadvantages of this approach:
« High latency for small data transfer
* Poor inter-node bandwidth due to the

lack of GPUDirect support. y

NVSHMEM: PGAS-style communication for GPUs

NVSHMEM is a library for efficient PGAS-style inter-GPU communication.
Major features of NVSHMEM are:
* Device-initiated remote memory accesses (RMA).

 Reduces RMA overhead by leveraging some sophisticated technologies,
such as GPUDirect RDMA.

« SHMEM-like symmetric memory style PGAS API.

__global void simple shitf (int *mem) mype
int mype = nvshmem my pe();
int npes = nvshmem n pes();
, . destlnatlon

int nextpe = (mype + 1) % npes;

https.//docs.nV|d|a.Com/nvshmem/ap|/u3|ng.htmI

// Memory access to another GPU

nvshmem int p(mem, mype, nextpe); , o
- nvshmem_int_p is inter-GPU

_ memory put operation inside kernel.
Example kernel using NVSHMEM

ldea: Integrate NVSHMEM into Chapel

* In this work, we are trying to build more efficient inter-GPU

communication library for Chapel than Chapel’s runtime on top of
NVSHMEM.

* There are a lot of challenges both in its implementation and
designing its API.

coforall loc in Locales do on loc {
var pe = nvshmem my pe();
var next = (pe + 1) % n gpus;

// Shift data to the next GPU

forall i in O..<1 {
// Inside a GPU kernel
nvshmem int p(sym ptr, pe, next);

What if we can use NVSHMEM with Chapel...?

Challenges in implementing NVSHMEM integration

There are some challenges in implementing NVSHMEM as a Chapel
library binding.

The main challenges are:
* Build pipeline of FFI CUDA library for Chapel
« Runtime initialization of NVSHMEM

CUDA device function FFI for Chapel

* Currently, Chapel does not support CUDA's device function FFlI.
 But, of course, NVSHMEM'’s device-side APl is implemented as

device function of CUDA.

* We overcome this issue by modifying CUDA code build pipeline

inside Chapel compiler.

» Specifically, added GPU code linking step into compile pipeline.

int cuda_dev_func(int arg) {

L

Device-callable function
implemented in CUDA.

>

extern proc
dev_func(arg: c_int): c_int

extern function
in Chapel.

Runtime Initiatialization of NVSHMEM

* NVSHMEM requires extra step for initialization when it is called from
outside of CUDA.

* We modified Chapel's GPU runtime initialization step to use
NVSHMEM.

[N N\
CU&:J‘::gtrlnmﬁeze;rng nvshmem_comodule_init() nvshmem_init()
of CUDA. P Y } Setups NVSHMEM'’s internal } Main NVSHMEM setup.
. Get CUDA runtime’s hanglles using loaded CUDA This step includes RDMA
handle pointer. runtime handle transport setup.
- N J

Chapel runtime’s GPU initialization step with NVSHMEM

Steps from normal GPU initialization

Steps added for NVSHMEM initialization

API of NVSHMEM bindings

* In our current implementation of NVSHMEM bindings for Chapel, we only
exposes low-level NVSHMEM API.

* However, this APl is not user-friendly for Chapel programmers as it
directly follows SHMEM’s symmetric-memory style PGAS.

* We plan to improve this in the future, but for now, we leave it as future
work.

on Locales[0] do on here.gpus[0] {

// On GPU A a N\
var arrOnGpuA: [0..N] real; A GPU-ready, Chapel-style PGAS

! model like this is ideal,
Locales[1 here. e : .
°n//ogi ZZ([] ; do on here.gpus[U] | but it is challenging to implement on top
var arrOnGpuB: [0..N] real; of a symmetric-memory-based PGAS. D
// forall converted to a GPU kernel \\—_izz/////////,
forall i in O..N {
arrOnGpulA[i] = i* i; // Inter-GPU access

b1}

Evaluation: Environment

* We evaluated our NVSHMEM bindings on Utokyo’s miyabi-g
supercomputer.

Miyabi-g node spec:

* NVIDIA Grace CPU (72 cores/CPU, memory 72 GB)
* NVIDIA Hopper H100 GPU x1

« GPU memory: 96 GB

* Interconnect: Infiniband NDR (200 Gbps)

Evaluation: Bandwidth

Data Size | Chapel Copy | NVSHMEM Put | NVSHMEM Get
Bandwidth Bandwidth Bandwidth
4 KiB 0.0048 GB/s 0.48 GB/s 0.48 GB/s
64 KiB 0.075 GB/s 5.87 GB/s 5.87 GB/s
1 MiB 1.02 GB/s 20.12 GB/s 19.95 GB/s
16 MiB 8.97 GB/s 24.35 GB/s 24.31 GB/s

forall i in O..<1 {
for iteration in 0O..<numlIters {

I8

dstPtr, srcPtr,

(

forall i in O0..<1 {
for iteration in 0O..<numlIters {

I8

dstPtr, srcPtr,

(

dataSize,

dataSize,

dstPe) ;

dstPe) ;

 The memory access bandwidth of our
runtime is better than original Chapel
runtime copy

« Both in small and large data size.
 In small data size: ~ 100x
* In large data size: ~ 3x

» Achieve theoretical bandwidth (25 GB/s =
200 Gbps) in large communication size.

10

Evaluation: latency

Results:

NVSHMEM on Chapel: 6.744 us
NVSHMEM on CUDA: 6.653 us
CPU OpenSHMEM: 2.140 us

« NVSHMEM on Chapel (ours)
result is as good as NVSHMEM
on CUDA.

 CPU OpenSHMEM ping-pong is
faster.

cobegin {
on Locales[0] {
var me = nvshmem my pe(); var peer = 1 - me;
on here.gpus[0] {

IS

forall i in 0O0..<1 {
for i in 0. .<numlIters {
nvshmem int atomic inc(sym ptr, peer);
nvshmem int wait until (sym ptr, CMP EQ, i+1);

on Locales[1] {
var me = nvshmem my pe(); var peer = 1 - me;
on here.gpus[0] {

by

forall i in 0O0..<1 {
for i in 0. .<numlIters {
nvshmem int wait until (sym ptr, CMP EQ, i+1);
nvshmem int atomic inc(sym ptr, peer);

11

Conclusion

* In this work, we explored the integration of NVSHMEM with Chapel.

* Our implementation achieves good performance in
microbenchmarks, but its API still needs improvement.

* We plan to further enhance our implementation to make Chapel’s
multi-GPU support more efficient and user-friendly.

12

