
Efficient Multi-GPU 
Communication with 

NVSHMEM in Chapel
Sosuke Hosokawa, Kenjiro Taura

The University of Tokyo



Limitation in inter-GPU Communication in Current 
Chapel
• In current Chapel, a GPU cannot access directly to the memory on 

another GPU.

1

on Locales[0] do on here.gpus[0] {
// On GPU A
var arrOnGpuA: [0..N] real;

on Locales[1] do on here.gpus[0] {
// On GPU B
var arrOnGpuB: [0..N] real;

// forall converted to a GPU kernel
forall i in 0..N {
arrOnGpuA[i] = i * i;

}
}

}

In current Chapel, this is NOT allowed 
operation:
• A GPU kernel can only access the 

memory on the device it runs on.



Limitation in inter-GPU Communication in Current 
Chapel

2

on Locales[0] do on here.gpus[0] {
// On GPU A
var arrOnGpuA: [0..N] real;

on Locales[1] do on here.gpus[0] {
// On GPU B
var arrOnGpuB: [0..N] real;

// Copy from arrOnGpuA to arrOnGpuB
arrOnGpuB = arrOnGpuA;

// forall converted to a GPU kernel
forall i in 0..N do
arrOnGpuB[i] = i;

arrOnGpuA = arrOnGpuB;
}

}

The only way to access the memory of 
another GPU in Chapel is array-wise 
copy.
This operation triggers a data transfer
handled by DMA (intra-node) or 
GASNet via CPU (inter-node, without
GPUDirect RDMA)

Disadvantages of this approach:
• High latency for small data transfer
• Poor inter-node bandwidth due to the 

lack of GPUDirect support.



NVSHMEM: PGAS-style communication for GPUs
NVSHMEM is a library for efficient PGAS-style inter-GPU communication.
Major features of NVSHMEM are:
• Device-initiated remote memory accesses (RMA).
• Reduces RMA overhead by leveraging some sophisticated technologies, 

such as GPUDirect RDMA.
• SHMEM-like symmetric memory style PGAS API.

3
Example kernel using NVSHMEM

__global__ void simple_shitf(int *mem) {
int mype = nvshmem_my_pe();
int npes = nvshmem_n_pes();
int nextpe = (mype + 1) % npes;

// Memory access to another GPU
nvshmem_int_p(mem, mype, nextpe);

} nvshmem_int_p is inter-GPU 
memory put operation inside kernel.

https://docs.nvidia.com/nvshmem/api/using.html



Idea: Integrate NVSHMEM into Chapel
• In this work, we are trying to build more efficient inter-GPU 

communication library for Chapel than Chapel’s runtime on top of 
NVSHMEM.

• There are a lot of challenges both in its implementation and 
designing its API.

4

coforall loc in Locales do on loc {
var pe = nvshmem_my_pe();
var next = (pe + 1) % n_gpus;

// Shift data to the next GPU
forall i in 0..<1 {

// Inside a GPU kernel
nvshmem_int_p(sym_ptr, pe, next);

}
}

What if we can use NVSHMEM with Chapel…?



Challenges in implementing NVSHMEM integration
There are some challenges in implementing NVSHMEM as a Chapel 
library binding.
The main challenges are:
• Build pipeline of FFI CUDA library for Chapel
• Runtime initialization of NVSHMEM

5



CUDA device function FFI for Chapel
• Currently, Chapel does not support CUDA‘s device function FFI.
• But, of course, NVSHMEM’s device-side API is implemented as 

device function of CUDA.
• We overcome this issue by modifying CUDA code build pipeline 

inside Chapel compiler.
• Specifically, added GPU code linking step into compile pipeline.

6

__device__
int cuda_dev_func(int arg) {
...

}

Device-callable function 
implemented in CUDA.

extern proc
dev_func(arg: c_int): c_int

extern function 
in Chapel.



Runtime Initiatialization of NVSHMEM
• NVSHMEM requires extra step for initialization when it is called from 

outside of CUDA.
• We modified Chapel‘s GPU runtime initialization step to use 

NVSHMEM.

7

CUDA runtime setup
• Load compiled binary 

of CUDA.
• Get CUDA runtime’s 

handle pointer.

nvshmem_comodule_init()
Setups NVSHMEM’s internal 
handles using loaded CUDA 
runtime handle

Chapel runtime’s GPU initialization step with NVSHMEM

Steps from normal GPU initialization

Steps added for NVSHMEM initialization

nvshmem_init()
Main NVSHMEM setup.
This step includes RDMA
transport setup.



API of NVSHMEM bindings
• In our current implementation of NVSHMEM bindings for Chapel, we only 

exposes low-level NVSHMEM API.
• However, this API is not user-friendly for Chapel programmers as it 

directly follows SHMEM’s symmetric-memory style PGAS.
• We plan to improve this in the future, but for now, we leave it as future 

work.

8

on Locales[0] do on here.gpus[0] {
// On GPU A
var arrOnGpuA: [0..N] real;

on Locales[1] do on here.gpus[0] {
// On GPU B
var arrOnGpuB: [0..N] real;

// forall converted to a GPU kernel
forall i in 0..N {

arrOnGpuA[i] = i* i; // Inter-GPU access
}}}

A GPU-ready, Chapel-style PGAS 
model like this is ideal,
but it is challenging to implement on top 
of a symmetric-memory-based PGAS.



Evaluation: Environment
• We evaluated our NVSHMEM bindings on Utokyo’s miyabi-g 

supercomputer.

Miyabi-g node spec:
• NVIDIA Grace CPU (72 cores/CPU, memory 72 GB)
• NVIDIA Hopper H100 GPU x1
• GPU memory: 96 GB
• Interconnect: Infiniband NDR (200 Gbps)

9



Evaluation: Bandwidth

• The memory access bandwidth of our 
runtime is better than original Chapel 
runtime copy

• Both in small and large data size.
• In small data size: ~ 100x
• In large data size: ~ 3x

• Achieve theoretical bandwidth (25 GB/s = 
200 Gbps) in large communication size.

10

forall i in 0..<1 {
for iteration in 0..<numIters {

nvshmem_int64_put(
dstPtr, srcPtr, dataSize, dstPe);

}}

forall i in 0..<1 {
for iteration in 0..<numIters {

nvshmem_int64_get(
dstPtr, srcPtr, dataSize, dstPe);

}}



Evaluation: latency

11

cobegin {
on Locales[0] {
var me = nvshmem_my_pe(); var peer = 1 - me;
on here.gpus[0] {
forall i in 0..<1 {
for i in 0..<numIters {
nvshmem_int_atomic_inc(sym_ptr, peer);
nvshmem_int_wait_until(sym_ptr, CMP_EQ, i+1);

}}}}

on Locales[1] {
var me = nvshmem_my_pe(); var peer = 1 - me;
on here.gpus[0] {
forall i in 0..<1 {
for i in 0..<numIters {
nvshmem_int_wait_until(sym_ptr, CMP_EQ, i+1);
nvshmem_int_atomic_inc(sym_ptr, peer);

}}}}}

Results:
NVSHMEM on Chapel: 6.744 us
NVSHMEM on CUDA: 6.653 us
CPU OpenSHMEM: 2.140 us

• NVSHMEM on Chapel (ours) 
result is as good as NVSHMEM 
on CUDA.

• CPU OpenSHMEM ping-pong is 
faster.



Conclusion
• In this work, we explored the integration of NVSHMEM with Chapel.
• Our implementation achieves good performance in 

microbenchmarks, but its API still needs improvement.
• We plan to further enhance our implementation to make Chapel’s 

multi-GPU support more efficient and user-friendly.

12


