
Confidential | Authorized HPE Partner Use Only 1

Michael Ferguson, HPE Labs
2025.10.10

Distributed-Memory Sorting in
the Chapel Standard Library

Chapel’s standard library ‘sort’ can now sort a Block-distributed array
• since Chapel 2.5

This standard distributed sort works with all supported comparators

The core implementation is an MSD radix sort

It uses a new method of tracking subproblems that is efficient in distributed memory

It’s fast, too!

Overview

2

Background: Radix Sort

Confidential | Authorized HPE Partner Use Only 3

Chapel’s standard library sort allows flexible specification of how to order elements:

• Provide a ‘.key’ method to sort with a known type (e.g., sort a tuple of integers by element 2)

• Provide a ’.compare’ method if you only know how to compare elements

• Provide a ‘.keyPart’ method provide part of a key to sort by (e.g., the ith letter in a string)

Standard library sorts in many languages provide something akin to ‘.key’ and ‘.compare’

• Typically, using `.key` that returns an integer will result in a radix sort

• Other patterns use comparison sort

Chapel is unique in providing a ‘.keyPart’ method which provides a generalized interface for radix sorting!

Terminology: I will use the term key to mean what we are sorting by

An Interface for Radix Sort

4

https://chapel-lang.org/docs/modules/standard/Sort.html

Sorting is often described as having complexity Ω (n log n)
• That is, it can’t be done in a way that scales better, aside from constant factors

That complexity bound only applies to comparison sort!

Radix sorting is an O(n) sorting method
• More specifically, for a key length k, it is O(k n)

Radix sorting is a natural algorithm when the number of possible keys is small
For example, to sort a deck of cards by suit (♤, ♡, ♢, ♧):
1. Get a bucket for each suit (4 buckets for the 4 possible keys)
2. Go through the deck once, putting each card into the bucket according to its suit
3. Combine the cards from the buckets in your preferred suit order

What is Radix Sorting?

5

Counting Sort is a strategy to bring that buckets-and-cards algorithm to arrays

In simplest form, this algorithm uses 3 arrays:

A: Input Array (n elements)
B: Output Array (n elements)
C: Counts Array (1 count per possible key; e.g., an integer for each of ♤, ♡, ♢, ♧)

The algorithm proceeds like this:
1. For each element in the input array, increment the counts array accordingly: C[A[i]]++
2. Compute the starting indices in the output array B from the counts (a prefix sum) & store these in C
3. For each element in the input array, store and increment the count: k=A[i]; B[C[k]] = A[i]; C[k]++

This algorithm can be done in parallel and is stable (preserves order of equal elements)
Terminology: I’ll call this algorithm partition and the regions it produces buckets

A Building Block: Counting Sort

6

Index Key Value
0 ♤ A
1 ♧ B
2 ♡ C
3 ♡ D
4 ♧ E
5 ♡ F
6 ♧ G
7 ♤ H
8 ♢ I
9 ♡ J

Partition / Counting Sort Example

7

Key Count
♤ 2
♡ 4
♢ 1
♧ 2

Key Start
♤ 0
♡ 2
♢ 6
♧ 7

Index Key Value
0 ♤ A
1 ♤ H
2 ♡ C
3 ♡ D
4 ♡ F
5 ♡ J
6 ♢ I
7 ♧ B
8 ♧ E
9 ♧ G

Count

Prefix Sum /
exclusive
scan

Input

Output

Parallel version similar,
computes a start offset for

each key for each task (see [1])

Assuming we are working with k-digit numbers, we can sort integers using this recipe:

Arrays A, B, C as before (A and B store n elements, C stores an integer for each possible digit)

For each digit position i, starting from the least significant:
1. Partition from A to B according to the digits at position i
2. Swap A and B

Observations:

• The partition operation has to be stable (preserve the order of elements with the same digit value)

• LSD sort is parallel if the partition operation is parallel

• LSD sort assumes that the array elements all have the same number of digits
• This makes it unsuitable for sorting strings of arbitrary length
• We can imagine padding out strings to match the longest length, but that would make it much less efficient

Simple Least-Significant-Digit-First Radix Sort

8

Let’s sort 0123 0323 2130 0001 2120 3120 0002 3323 2323 0000

Partition by digit 3 (the least-significant digit):

 2130 2120 3120 0000 | 0001 | 0002 | 0123 0323 3323 2323

Partition by digit 2:

 0000 0001 0002 | | 2120 3120 0123 0323 3323 2323

Partition by digit 1:

 0000 0001 0002 | 2120 3120 0123 | | 0323 3323 2323

Partition by digit 0:

 0000 0001 0002 0123 0323 | | 2120 2323 | 3120 3323

Sorted!

Least-Significant-Digit-First Radix Sort: Example

9

Arrays A, B, C as before (A and B store n elements, C stores an integer for each possible digit)

A queue Q containing elements like {start: int, end: int, digit: int}

Add {start=0, end=n-1, pos=0} to Q

While the queue is not empty:
1. w = pop(Q)
2. Partition from A[w.start .. w.end] to B[w.start .. w.end] according to the digit position w.pos
3. For each bucket b that the partition created:

• If it has no more digits, continue
• If it has a small number of elements, sort it with a comparison sort
• Otherwise, push {b.start, b.end, w.pos+1} to Q

4. B[w.start .. w.end] = A[w.start .. w.end]

Most-Significant-Digit-First Radix Sort

10

Note: This slide
uses non-optimal
data movement
between arrays

• MSD Radix sort can directly handle keys with varying length
• Partition can make a region dedicated to elements that have no more digits
• With ‘.keyPart’, users can specify how to retrieve the ith digit & possibly indicate no more digits

• The number of work items in the queue grows while their size shrinks
• As a result, a parallel partition helps primarily with the initial partition

• It’s difficult to work with a queue like this for a parallel and distributed version

Most-Significant-Digit-First Radix Sort: Observations

11

Let’s sort 0123 033 2130 00 221 3120 02 3323 3 0000
When we partition, elements with no more digits go into a first region indicated by []

Partition by digit 0 (the most significant digit):
 0123 033 00 02 0000 | | 2130 221 | 3120 3323 3

Partition within each multi-element region by digit 1:
 00 0000 | 0123 | 02 | 033 | 2130 221 | [3] | 3120 | 3323

Partition within each multi-element region by digit 2:
 [00] | 0000 | 0123 | 02 | 033 | 221 2130 | [3] | 3120 | 3323
Partition within each multi-element region by digit 3:

 [00] | 0000 | 0123 | 02 | 033 | [221] | 2130 | [3] | 3120 | 3323

Sorted!

Most-Significant-Digit-First Radix Sort: Example

12

We can create a sample sort based on an MSD Radix Sort

Instead of partitioning a bucket based on a digit position, partition based on splitters

• randomly sample elements in the bucket and sort them and keep every kth one to create splitters

• compute the bucket for each element with binary search on the splitters

With this strategy, we also have a distributed sample sort in the Chapel standard library as of 2.5!

What About Comparison Sorting?

13

The New Radix Sort

Confidential | Authorized HPE Partner Use Only 14

Previously, we had a good distributed LSD Radix sort implemented in Chapel (Arkouda’s sort)

• Problem: LSD sort doesn’t support ‘.keyPart’, so Arkouda’s LSD sort is not ideal for the standard library

Can we make a good distributed MSD Radix Sort?

• I attempted this in 2019 (see my CHIUW 2019 talk) but it wasn’t scaling as well as Arkouda’s sort

• This effort was available as the undocumented ‘twoArrayDistributedRadixSort’

I revisited the question in December 2024.

New idea: instead of tracking subproblems with a queue, track bucket boundaries with an additional array

• I came across this strategy in the RadixSA implementation [2]

With this new idea, I was able to make something that performs better than Arkouda’s LSD sort at scale!

Distributed MSD Radix Sort: The Journey

15

Use an array R of size n that stores 1 byte per element
• Indicates if a bucket boundary, and if so, bucket type (sorted? Unsorted? Equal elements?) and in A or B

For a small bucket, we can easily scan to find the end of the bucket, and don’t care about digit

For a large bucket, we have space to store additional info in R, including digit position and bucket end

Now all progress towards sorting is recorded in R

• R can be distributed just like A and B

• We can scan forward in R to find the start of the next unsorted bucket within a particular region

sortStep is a building block:

• Given a bucket start position, make progress sorting it

• If small, comparison sort; otherwise partition and update the information in R

Distributed MSD Radix Sort: Building Blocks

Confidential | Authorized HPE Partner Use Only 16

Arrays A, B, C as before (A and B store n elements, C stores an integer for each possible digit)
R is an array containing n uint(8) elements (storing bucket boundaries & other bucket information)

1. Initial partition
Do a parallel, distributed partition of the data in A, storing into B with 216 buckets.

2. Each Locale sorts buckets it owns that have elements in multiple Locales
Further sort any buckets that cross locale boundaries. Each locale is responsible for sorting any buckets that start in the
region of the array owned by that locale. Each locale does a parallel sortStep to further sort such buckets, until no such
bucket exists.

3. Each task sorts buckets it owns that have elements in multiple tasks
Further sort any buckets that cross task boundaries. We think of each task as responsible for a contiguous block of elements
within the elements on its locale. Each task does a serial, local sortStep to further sort buckets that start in the region it is
responsible for until no such buckets exist.

4. Each task sorts all remaining buckets
Each task does a serial, local sortStep to partially sort the first unsorted bucket in the region it is responsible for. It repeats
this process until there are no unsorted buckets in the region it is responsible for.

Distributed MSD Radix Sort: Algorithm

17

https://github.com/chapel-lang/chapel/blob/75c9635e6a85a557758397b2cf60d62443032270/modules/standard/Sort/Partitioning.chpl
https://github.com/chapel-lang/chapel/blob/75c9635e6a85a557758397b2cf60d62443032270/modules/standard/Sort/Partitioning.chpl
https://github.com/chapel-lang/chapel/blob/75c9635e6a85a557758397b2cf60d62443032270/modules/standard/Sort/Partitioning.chpl
https://github.com/chapel-lang/chapel/blob/75c9635e6a85a557758397b2cf60d62443032270/modules/standard/Sort/Partitioning.chpl
https://github.com/chapel-lang/chapel/blob/75c9635e6a85a557758397b2cf60d62443032270/modules/standard/Sort/Partitioning.chpl
https://github.com/chapel-lang/chapel/blob/75c9635e6a85a557758397b2cf60d62443032270/modules/standard/Sort/Partitioning.chpl
https://github.com/chapel-lang/chapel/blob/75c9635e6a85a557758397b2cf60d62443032270/modules/standard/Sort/Partitioning.chpl
https://github.com/chapel-lang/chapel/blob/75c9635e6a85a557758397b2cf60d62443032270/modules/standard/Sort/Partitioning.chpl

Partition (and sortStep) need to work at 3 different levels of parallelism:
• Initial partition is distributed & parallel on all Locales

• sortStep for buckets spanning Locale boundaries creates many tasks but usually only on 2 locales
• sortStep for buckets spanning task boundaries creates many tasks but all local
• sortStep for buckets within a task’s region is serial (already within a parallel loop)

Handling each of these in the same code was a bit awkward
• Let to 2 partition implementations: parallel and serial
• Parallel version needs to handle being distributed or not (depending on provided arrays)
• Lots of ‘local’ with a condition

I went to some length to avoid operations that unnecessarily do work on each Locale

• I was particularly concerned about this for the part sorting buckets spanning Locale boundaries
• At present, unclear to me how much my efforts here mattered, maybe not so much in practice

Distributed MSD Radix Sort: Tricky Pieces

Confidential | Authorized HPE Partner Use Only 18

https://github.com/chapel-lang/chapel/blob/75c9635e6a85a557758397b2cf60d62443032270/modules/standard/Sort/Partitioning.chpl
https://github.com/chapel-lang/chapel/blob/75c9635e6a85a557758397b2cf60d62443032270/modules/standard/Sort/Partitioning.chpl

Distributed MSD Radix Sort: Example

19

Locale 0 Locale 1
Task 00 Task 01 Task 10 Task 11

Input

012 011 000 123 111 231 201 211
Initial Partition
(by first digit for this slide)

012 011 000 111 123 231 201 211
Sort Buckets Spanning
Locales

000 012 011 111 123 201 211 231Sort Buckets Spanning
Tasks

000 011 012 111 123 201 211 231Each Task Sorts Buckets

012 231 201 123 011 111 211 000

Each Locale/task owns
buckets starting in that
Locale/task

Locale 0 owns this bucket

Task 00 owns this bucket

All 3 show pretty good
weak scaling on XC

New sort is significantly
faster at 32 nodes:

2.5x faster than previous
MSD sort

1.6x faster than Arkouda
LSD sort

When sorting 231 integers per node (16 GiB per node)
Weak Scaling on an HPE Cray Supercomputing XC

20

0

100

200

300

400

500

600

0 16 32

M
iB

/s
 p

er
 n

od
e

Nodes

New MSD Radix Sort

Arkouda LSD Radix Sort

twoArrayDistributedRadixSort

All 3 show pretty good
weak scaling on EX

New sort is significantly
faster at 128 nodes:

2x faster than Arkouda

5x faster than previous
MSD sort

When sorting 231 integers per node (16 GiB per node)
Weak Scaling on HPE Cray Supercomputing EX

21

0

500

1,000

1,500

2,000

2,500

0 64 128

M
iB

/s
 p

er
 n

od
e

Nodes

New MSD Radix Sort

Arkouda LSD Radix Sort

twoArrayDistributedRadixSort

Here, the new sort is

1.5x faster

than the Arkouda LSD Sort

The new sort is also

competitive with an MPI sort

developed as part of a doctoral
thesis

Aggregate performance when sorting 237 (int,int) elements total
Performance on 128 nodes of HPE Cray Supercomputing EX

22

0 10,000 20,000 30,000

MPI KaDiS AMS Sort

Arkouda LSD Radix Sort

New MSD Radix Sort

MiB/s per node

M elements sorted/s

On 32 nodes on an
InfiniBand system, the
new sort is

2.8x faster

than Arkouda LSD Sort

Aggregate performance when sorting 234 (int,int) elements total
Performance on 32 nodes of an InfiniBand cluster

23

0 1,000 2,000 3,000

Arkouda LSD Radix Sort

New MSD Radix Sort

MiB/s per node

M elements sorted/s

Since Chapel 2.5, the standard library ‘sort’ has been able to sort a Block-distributed array!

A different way of managing sub-tasks enabled better distributed performance vs previous distributed
MSD sorts in Chapel

• 5x faster than previous (undocumented) MSD distributed sort in the standard library

New implementation is flexible and fast

• Supports sorting with ‘.key’, ’.keyPart’, or ‘.compare’

• Competitive with a well-known MPI sort implementation

Next Steps

• Improve Chapel domains & arrays to avoid involving Locales not relevant in a distributed operation
• E.g. creating a distributed domain, array, or slice that only involves 2 locales -- examples in this gist

• Further optimize the new sort

Conclusion & Next Steps

24

https://gist.github.com/mppf/6c4c3879357e469c24d25632290c417b

[1] Arkouda’s LSD Radix Sort Implementation https://github.com/Bears-R-
Us/arkouda/blob/main/src/RadixSortLSD.chpl

[2] S. Rajasekaran and M. Nicolae, “An elegant algorithm for the construction of suffix arrays,” Journal of
Discrete Algorithms, vol. 27, pp. 21–28, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1570866714000173

References

25

https://github.com/Bears-R-Us/arkouda/blob/main/src/RadixSortLSD.chpl
https://github.com/Bears-R-Us/arkouda/blob/main/src/RadixSortLSD.chpl
https://github.com/Bears-R-Us/arkouda/blob/main/src/RadixSortLSD.chpl
https://github.com/Bears-R-Us/arkouda/blob/main/src/RadixSortLSD.chpl
https://github.com/Bears-R-Us/arkouda/blob/main/src/RadixSortLSD.chpl
https://www.sciencedirect.com/science/article/pii/S1570866714000173

