HPE

Unlocking Portable and Performant Vector
Programming with chpl Vector Library

Jade Abraham
October 10, 2025

Vector?

W siMD

Instruction pool

o
=

Data pool

-
=

Vector unit

-

o
=

td: :vector

Vector Programming

« Vector programming is using SIMD execution units to process data in parallel within a single thread
« This is instruction level parallelism
Why? More parallelism = more speed!

« For many applications, you don’t have to explicitly use it or even know about it
« Compilers are awesome!
* Yay free performance!

« So we can end the talk here?

Vector Programming

« Vector programming is making using SIMD execution units to process data in parallel within a single
thread

« This is instruction level parallelism
« Why? More parallelism = more speed!

« For many applications, you don’t have to explicitly use it or even know about it
« Compilers are awesome!
* Yay free performance!

s Sowe cancnathetallchere?

« What happens when the compiler can’t do it for us?
« The compiler may not know its safe or know how to make it safe (floating point error is a pain)
« Did we write our code in an easy-to-read way for humans, but bad for SIMD?

e ...etcetera...
—1

Vector Programming - Chapel’s missing piece

« Chapel’s multiresolution philosophy
« Both high- and low-level features
« The high-level features are implemented in terms of the low-level features

« This works great for multi-core/distributed parallelism

forall a in Arr { — coforall 1 in Arr.targetLocales() do on 1 do

// ...something interesting coforall t in 0..#here.maxTaskPar {
} const mySlice: range(?) =
for i in mySlice {
ref a = Arr[i];
// ...something interesting

PS!

‘ 404 PAGE NOT FOUND

« What about instruction-level parallelism?

foreach a in Arr { —

// ...something interesting
}

What's my goal?

« | want to write explicit vector code...
« ..without calling C/assembly
« ..thatis portable across architectures
« ..that works orthogonally with existing Chapel features
« ..thatis fast

« | would like my code...
« ..to not be a maintenance nightmare
« ..tolook nice

INntroducin

CVL - chpl Vector Library

Provides a new portable ‘vector’ type which matches a hardware vector register
« Supports 128-bit and 256-bit vectors with ‘int(?w)” and ‘real(?w)’
« Currently supports x86 SSE/AVX and Arm Neon

Supports many common vector operations

« Basic math, bit manipulation, and comparisons

« Memory operations (load/store, limited support for ‘gather” and load/store masks)
« Shuffles/permutations/blends

« Trigonometry (via Sleef - https://github.com/shibatch/sleef)

Integrates seamlessly with Chapel
« Works with many Chapel container types (arrays, c_ptr, tuples, and bytes)
« Works with parallel and distributed code
« Everything is written in pure-ish Chapel

Open source: https://qithub.com/jabraham17/cvl
—1

Fxamples,

The “Hello World” of HPC/Vector programming

proc stream(a: real, x: [?D] real, y: x.type, ref z: x.type) {

forall i1 in D {
z[1] = a * x[1] + yl[i];
}
}
use CVL;
proc streamWithCVL (a: real, x: [?D]

real, y: x.type, ref z: x.type) {

£ _ t 1, 4 : . .
ype vec vector (rea) \ Specify the size of the vector,

const av = a: vec;
forall 1 in D by vec.numElts {

Create a vector from ‘a’
const xv = vec.load(x, 1):;
const yv = vec.load(y, 1); Adjust the iteration to be

const zv = av * xv + yv;
zv.store(z, 1);

It must match a hardware type!

every 4th index

~| Load/store the memory

N

The “Hello World” of HPC/Vector programming

use

CVL;

proc streamWithCVL (a: real, x: [?D]

£ _ t 1, 4 : . .
ype vec vector (rea) \ Specify the size of the vector,

forall 1 in D by vec.numElts {

Create a vector from ‘a’
const xv = vec.load(x, 1):;
const yv = vec.load(y, 1); Adjust the iteration to be

const zv = av * xv + yv;
zv.store(z, 1); €

real, y: x.type, ref z: x.type) {

It must match a hardware type!

every 4t index

*{ Load/store the memory

« Explicit vector operations that are distributed and parallel!

« Butitis overly verbose, hiding the actual computation

« We can do better

—1

12

The “Hello World” of HPC/Vector programming

use CVL;

proc streamWithCVL (a: real, x: [?D] real, y: x.type, ref z: x.type) {
type vec = vector (real, 4);

forall (zv, xv, yv) 1in zip(vec.vectorsRef (z),

vec.vectors (x), vec.vectors(y)) {
Zv = a * xXv + yv;
) 4 ,
) The scalar is automatically made into a vector The iterators handle all the
load/store logic for us
proc stream(a: real, x: [?D] real, y: x.type, ref z: x.type) {
forall i in D {
z[1] = a * x[1] + y[i];

13

The “Hello World” of HPC/Vector programming

« |sthe CVL version faster/better than the plain Chapel version?
« Default Rectangular arrays: identical performance
« Block distributed: CVL is ~2x slower
« Block Cyclic distributed: CVL is A LOT slower

« The gap is likely Chapel specific optimizations that explicit SIMD thwarts

« Just because you can, doesn’t mean you should

14

Somethin

Kmeans Clustering

for cIdx in centroids.D {
const cX = centroids.x[cIdx], cY = centroids.y[cIdx];

forall pIdx in points.D with (ref points) {
const dist = distance (points, pIdx, centroids, cIdx); 4—| Compute the distance |

if dist < points.minDist[pIdx] {

points.minDist [pIdx] = dist; . o
points.clusterId[pldx] = cIdx; <—l Conditionally update the minimum |

for cIdx in centroids.D {
const cIdxVec = new VT IDX(cIdx):;
const cVecX = new VT (centroids.x[cIdx]), cVecY = new VT (centroids.y[cIdx]);
forall pIdx in VT.indices (points.D) with (ref points) {

const dist = distance (VT, points, pIdx, cVecX, cVecY); 4—' Compute the distance |
const minDist = VT.load(points.minDist, pIdx);

const oldClusterId = VT IDX.load(points.clusterId, pldx);

const mask = dist < minDist;: AI Determine which value to use |

var newMinDist = bitSelect (mask, dist, minDist); ==
var newClusterId = bitSelect (mask.transmute (VT IDX), cIdxVec, oldClusterId);

newMinDist.store (points.minDist, pIdx); | |/\| d t th .. |
newClusterId.store (points.clusterlId, pldx); ways update € minimum

—1

16

Kmeans Clustering

« |sthe CVL version faster/better than the plain Chapel version?
« At small problem sizes they are the same

1 million | 10 million | 100 million
points points points

« At big problem sizes CVL beats plain Chapel o 413s 8.723s 78.106s
0.3463 3.004s 64.306s
« What's the catch?
record pointsList { record pointsList {
type T; type T;
const D: domain(1l) ; const D: domain (1) ;
var x: [D] T; var xy: [D] point(T);
var y: [D] T; var clusterId: [D] int;
var clusterId: [D] int; var minDist: [D] T;
var minDist: [D] T; }
} record point {
type T;
« |If | use the wrong data structure var x: T;
var y: T;
« The plain Chapel code is slower)

 |tis much harder to hand vectorize

—1 17

How does

A brief dive into the implementation

—1

The top-level 'vector’ type is implemented by multiple layers of type abstractions

‘vector(eltType, numeElts)’ constructs an ‘implType(eltType, numeElts)’
‘implType’ is implemented for each architecture/bit-width as a type-only type

Each ‘implType’ has a set of operations and behaviors it must conform to

If the underlying hardware has a different behavior, shuffle the vector to match (e.g. pairwise adds)
Arbitrary shuffles/permutations/blends are not permitted

At the lowest level, each operation on ‘implType’ is either

directly calling a compiler intrinsic
calling a C wrapper around a compiler intrinsic

‘implType’ is a fantastic example of Chapel metaprogramming

Compile-time dispatch greatly reduces boilerplate
Everything is done at compile-time, all you are left with in the generated code are the vector operations

19

How does

Who does vectorization the best?

 Nbody (50,000,000 iterations) from the Computer Language Benchmark Game

M1Arm |Intel Xeon E5-2690 v3
(8 cores) | (24 cores) (128 cores)

2.731s
1.626s 2.621s 2.434s

1.511s 2.437s | 2.378s |
_ 2.730s 5.940s 4.150s

N/A |1.911s |2.648s |

2.444 4.02 930
S 025s 3 S Handcoded C is fast,

_ 1.449s 3.333s 3.268s but not portably fast

« Chapel! (kinda)

—1

Is vector code faster?

« RGB -> Grayscale using integers (problem size scaled per platform)

M1Arm |Intel Xeon E5-2690v3 | AMD EPYC 7662
(8 cores) | (24 cores) (128 cores)

1 009 6.505 1.524

Chapel J "y 0.247 0.847 0.349

« RGB -> Grayscale using floating point (problem size scaled per platform)

‘ 4x-8x improvements!

M1Arm |Intel Xeon E5-2690v3 | AMD EPYC 7662
(8 cores) | (24 cores) (128 cores)

1 024 8.760 1.700

Chapel AN 0.242 0.845 0.337

e Yes!

—1

‘ 4x-10x improvements!

22

Conclusion

CVL lets programmers fill a missing gap in Chapel’s parallel story
« Portable, performant, and pretty vector code

CVL is ready for use!
« https://github.com/jabraham17/cvl

CVL is not a silver bullet for performance in Chapel, but it is another tool in the toolbox

What's next?
 Expanded ‘vectorsRef()’ support

« Find a nice ergonomic story for tail loops
« Leverage the Chapel compiler for more flexible shuffles

« Even tighter integration with Chapel arrays
* Close the distributed array performance gap
* Support 2D arrays without ‘reshape()’

—1

23

