
1

Jade Abraham
October 10, 2025

Unlocking Portable and Performant Vector
Programming with chpl Vector Library

Vector?

2

• Vector programming is using SIMD execution units to process data in parallel within a single thread
• This is instruction level parallelism
• Why? More parallelism = more speed!

• For many applications, you don’t have to explicitly use it or even know about it
• Compilers are awesome!
• Yay free performance!

• So we can end the talk here?

Vector Programming

3

Thank you!

4

• Vector programming is making using SIMD execution units to process data in parallel within a single
thread
• This is instruction level parallelism
• Why? More parallelism = more speed!

• For many applications, you don’t have to explicitly use it or even know about it
• Compilers are awesome!
• Yay free performance!

• So we can end the talk here?

• What happens when the compiler can’t do it for us?
• The compiler may not know its safe or know how to make it safe (floating point error is a pain)
• Did we write our code in an easy-to-read way for humans, but bad for SIMD?
• …et cetera…

Vector Programming

5

• Chapel’s multiresolution philosophy
• Both high- and low-level features
• The high-level features are implemented in terms of the low-level features

• This works great for multi-core/distributed parallelism

• What about instruction-level parallelism?

Vector Programming - Chapel’s missing piece

6

forall a in Arr {
 // ...something interesting
}

coforall l in Arr.targetLocales() do on l do
 coforall t in 0..#here.maxTaskPar {
 const mySlice: range(?) = ...
 for i in mySlice {
 ref a = Arr[i];
 // ...something interesting
 }
 }

foreach a in Arr {
 // ...something interesting
}

• I want to write explicit vector code…
• …without calling C/assembly
• …that is portable across architectures
• …that works orthogonally with existing Chapel features
• …that is fast

• I would like my code…
• …to not be a maintenance nightmare
• …to look nice

What’s my goal?

7

Introducing CVL

8

• Provides a new portable ‘vector’ type which matches a hardware vector register
• Supports 128-bit and 256-bit vectors with ‘int(?w)’ and ‘real(?w)’
• Currently supports x86 SSE/AVX and Arm Neon

• Supports many common vector operations
• Basic math, bit manipulation, and comparisons
• Memory operations (load/store, limited support for ‘gather’ and load/store masks)
• Shuffles/permutations/blends
• Trigonometry (via Sleef - https://github.com/shibatch/sleef)

• Integrates seamlessly with Chapel
• Works with many Chapel container types (arrays, c_ptr, tuples, and bytes)
• Works with parallel and distributed code
• Everything is written in pure-ish Chapel

• Open source: https://github.com/jabraham17/cvl

CVL – chpl Vector Library

9

Examples, please?

10

use CVL;

proc streamWithCVL(a: real, x: [?D] real, y: x.type, ref z: x.type) {
 type vec = vector(real, 4);

 const av = a: vec;
 forall i in D by vec.numElts {
 const xv = vec.load(x, i);
 const yv = vec.load(y, i);
 const zv = av * xv + yv;
 zv.store(z, i);
 }
}

The “Hello World” of HPC/Vector programming

11

proc stream(a: real, x: [?D] real, y: x.type, ref z: x.type) {
 forall i in D {
 z[i] = a * x[i] + y[i];
 }
}

Specify the size of the vector,
It must match a hardware type!

Create a vector from ‘a’

Adjust the iteration to be
every 4th index

Load/store the memory

use CVL;

proc streamWithCVL(a: real, x: [?D] real, y: x.type, ref z: x.type) {
 type vec = vector(real, 4);

 const av = a: vec;
 forall i in D by vec.numElts {
 const xv = vec.load(x, i);
 const yv = vec.load(y, i);
 const zv = av * xv + yv;
 zv.store(z, i);
 }
}

The “Hello World” of HPC/Vector programming

12

Specify the size of the vector,
It must match a hardware type!

Create a vector from ‘a’

Adjust the iteration to be
every 4th index

Load/store the memory

• Explicit vector operations that are distributed and parallel!

• But it is overly verbose, hiding the actual computation

• We can do better

use CVL;

proc streamWithCVL(a: real, x: [?D] real, y: x.type, ref z: x.type) {
 type vec = vector(real, 4);

 forall (zv, xv, yv) in zip(vec.vectorsRef(z),
 vec.vectors(x), vec.vectors(y)) {
 zv = a * xv + yv;
 }
}

The “Hello World” of HPC/Vector programming

13

The iterators handle all the
load/store logic for us

The scalar is automatically made into a vector

proc stream(a: real, x: [?D] real, y: x.type, ref z: x.type) {
 forall i in D {
 z[i] = a * x[i] + y[i];
 }
}

• Is the CVL version faster/better than the plain Chapel version?
• Default Rectangular arrays: identical performance
• Block distributed: CVL is ~2x slower
• Block Cyclic distributed: CVL is A LOT slower

• The gap is likely Chapel specific optimizations that explicit SIMD thwarts

• Just because you can, doesn’t mean you should

The “Hello World” of HPC/Vector programming

14

Something harder?

15

for cIdx in centroids.D {
 const cX = centroids.x[cIdx], cY = centroids.y[cIdx];
 forall pIdx in points.D with (ref points) {
 const dist = distance(points, pIdx, centroids, cIdx);
 if dist < points.minDist[pIdx] {
 points.minDist[pIdx] = dist;
 points.clusterId[pIdx] = cIdx;
 }
 }

Kmeans Clustering

16

for cIdx in centroids.D {
 const cIdxVec = new VT_IDX(cIdx);
 const cVecX = new VT(centroids.x[cIdx]), cVecY = new VT(centroids.y[cIdx]);
 forall pIdx in VT.indices(points.D) with (ref points) {
 const dist = distance(VT, points, pIdx, cVecX, cVecY);
 const minDist = VT.load(points.minDist, pIdx);
 const oldClusterId = VT_IDX.load(points.clusterId, pIdx);

 const mask = dist < minDist;
 var newMinDist = bitSelect(mask, dist, minDist);
 var newClusterId = bitSelect(mask.transmute(VT_IDX), cIdxVec, oldClusterId);

 newMinDist.store(points.minDist, pIdx);
 newClusterId.store(points.clusterId, pIdx);
 }

Compute the distance

Conditionally update the minimum

Compute the distance

Always update the minimum

Determine which value to use

• Is the CVL version faster/better than the plain Chapel version?
• At small problem sizes they are the same
• At big problem sizes CVL beats plain Chapel

• What’s the catch?

• If I use the wrong data structure
• The plain Chapel code is slower
• It is much harder to hand vectorize

Kmeans Clustering

17

record pointsList {
 type T;
 const D: domain(1);
 var x: [D] T;
 var y: [D] T;
 var clusterId: [D] int;
 var minDist: [D] T;
}

record pointsList {
 type T;
 const D: domain(1);
 var xy: [D] point(T);
 var clusterId: [D] int;
 var minDist: [D] T;
}
record point {
 type T;
 var x: T;
 var y: T;
}

1 million
points

10 million
points

100 million
points

Chapel 0.413s 8.723s 78.106s

Chapel + CVL 0.346s 3.004s 64.306s

How does it work?

18

• The top-level ’vector’ type is implemented by multiple layers of type abstractions
• ‘vector(eltType, numElts)’ constructs an ’implType(eltType, numElts)’
• ‘implType’ is implemented for each architecture/bit-width as a type-only type

• Each ‘implType’ has a set of operations and behaviors it must conform to
• If the underlying hardware has a different behavior, shuffle the vector to match (e.g. pairwise adds)
• Arbitrary shuffles/permutations/blends are not permitted

• At the lowest level, each operation on ‘implType’ is either
• directly calling a compiler intrinsic
• calling a C wrapper around a compiler intrinsic

• ‘implType’ is a fantastic example of Chapel metaprogramming
• Compile-time dispatch greatly reduces boilerplate
• Everything is done at compile-time, all you are left with in the generated code are the vector operations

A brief dive into the implementation

19

How does it compare?

20

• Nbody (50,000,000 iterations) from the Computer Language Benchmark Game

• Chapel! (kinda)

Who does vectorization the best?

21

M1 Arm
(8 cores)

Intel Xeon E5-2690 v3
(24 cores)

AMD EPYC 7662
(128 cores)

Chapel 1.330s 3.490s 2.731s

Chapel + CVL 1.626s 2.621s 2.434s

Chapel + CVL (fma) 1.511s 2.437s 2.378s

C 2.730s 5.940s 4.150s

C (x86 Intrinsics) N/A 1.911s 2.648s

Fortran 2.444s 4.025s 3.930s

Rust 1.449s 3.333s 3.268s
Handcoded C is fast,
but not portably fast

• RGB -> Grayscale using integers (problem size scaled per platform)

• RGB -> Grayscale using floating point (problem size scaled per platform)

• Yes!

Is vector code faster?

22

M1 Arm
(8 cores)

Intel Xeon E5-2690 v3
(24 cores)

AMD EPYC 7662
(128 cores)

Chapel 1.009 6.505 1.524

Chapel + CVL 0.247 0.847 0.349

M1 Arm
(8 cores)

Intel Xeon E5-2690 v3
(24 cores)

AMD EPYC 7662
(128 cores)

Chapel 1.024 8.760 1.700

Chapel + CVL 0.242 0.845 0.337

4x-8x improvements!

4x-10x improvements!

• CVL lets programmers fill a missing gap in Chapel’s parallel story
• Portable, performant, and pretty vector code

• CVL is ready for use!
• https://github.com/jabraham17/cvl

• CVL is not a silver bullet for performance in Chapel, but it is another tool in the toolbox

• What’s next?
• Expanded ‘vectorsRef()’ support
• Find a nice ergonomic story for tail loops
• Leverage the Chapel compiler for more flexible shuffles
• Even tighter integration with Chapel arrays

• Close the distributed array performance gap
• Support 2D arrays without ‘reshape()’

Conclusion

23

Thank you!

24

