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Vector Programming

« Vector programming is using SIMD execution units to process data in parallel within a single thread
« This is instruction level parallelism
Why? More parallelism = more speed!

« For many applications, you don’t have to explicitly use it or even know about it
« Compilers are awesome!
* Yay free performance!

« So we can end the talk here?






Vector Programming

« Vector programming is making using SIMD execution units to process data in parallel within a single
thread

« This is instruction level parallelism
«  Why? More parallelism = more speed!

« For many applications, you don’t have to explicitly use it or even know about it
« Compilers are awesome!
* Yay free performance!

s Sowe cancnathetallchere?

« What happens when the compiler can’t do it for us?
« The compiler may not know its safe or know how to make it safe (floating point error is a pain)
« Did we write our code in an easy-to-read way for humans, but bad for SIMD?

e ...etcetera...
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Vector Programming - Chapel’s missing piece

« Chapel’s multiresolution philosophy
« Both high- and low-level features
« The high-level features are implemented in terms of the low-level features

« This works great for multi-core/distributed parallelism

forall a in Arr { — coforall 1 in Arr.targetLocales() do on 1 do

// ...something interesting coforall t in 0..#here.maxTaskPar {
} const mySlice: range(?) =
for i in mySlice {
ref a = Arr[i];
// ...something interesting

PS!

‘ 404 PAGE NOT FOUND

« What about instruction-level parallelism?

foreach a in Arr { —

// ...something interesting
}




What's my goal?

« | want to write explicit vector code...
« ..without calling C/assembly
« ..thatis portable across architectures
« ..that works orthogonally with existing Chapel features
« ..thatis fast

« | would like my code...
« ..to not be a maintenance nightmare
« ..tolook nice
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CVL - chpl Vector Library

Provides a new portable ‘vector’ type which matches a hardware vector register
« Supports 128-bit and 256-bit vectors with ‘int(?w)” and ‘real(?w)’
« Currently supports x86 SSE/AVX and Arm Neon

Supports many common vector operations

« Basic math, bit manipulation, and comparisons

« Memory operations (load/store, limited support for ‘gather” and load/store masks)
« Shuffles/permutations/blends

« Trigonometry (via Sleef - https://github.com/shibatch/sleef)

Integrates seamlessly with Chapel
« Works with many Chapel container types (arrays, c_ptr, tuples, and bytes)
« Works with parallel and distributed code
« Everything is written in pure-ish Chapel

Open source: https://qithub.com/jabraham17/cvl
—1
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The “Hello World” of HPC/Vector programming

proc stream(a: real, x: [?D] real, y: x.type, ref z: x.type) {

forall i1 in D {
z[1] = a * x[1] + yl[i];
}
}
use CVL;
proc streamWithCVL (a: real, x: [?D]

real, y: x.type, ref z: x.type) {

£ _ t 1, 4 : . .
ype vec vector (rea ) \ Specify the size of the vector,

const av = a: vec;
forall 1 in D by vec.numElts {

Create a vector from ‘a’
const xv = vec.load(x, 1):;
const yv = vec.load(y, 1); Adjust the iteration to be

const zv = av * xv + yv;
zv.store(z, 1);

It must match a hardware type!

every 4th index

~| Load/store the memory

N




The “Hello World” of HPC/Vector programming

use

CVL;

proc streamWithCVL (a: real, x: [?D]

£ _ t 1, 4 : . .
ype vec vector (rea ) \ Specify the size of the vector,

forall 1 in D by vec.numElts {

Create a vector from ‘a’
const xv = vec.load(x, 1):;
const yv = vec.load(y, 1); Adjust the iteration to be

const zv = av * xv + yv;
zv.store(z, 1); €

real, y: x.type, ref z: x.type) {

It must match a hardware type!

every 4t index

*{ Load/store the memory

« Explicit vector operations that are distributed and parallel!

« Butitis overly verbose, hiding the actual computation

« We can do better

—1
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The “Hello World” of HPC/Vector programming

use CVL;

proc streamWithCVL (a: real, x: [?D] real, y: x.type, ref z: x.type) {
type vec = vector (real, 4);

forall (zv, xv, yv) 1in zip(vec.vectorsRef (z),

vec.vectors (x), vec.vectors(y)) {
Zv = a * xXv + yv;
) 4 ,
) The scalar is automatically made into a vector The iterators handle all the
load/store logic for us
proc stream(a: real, x: [?D] real, y: x.type, ref z: x.type) {
forall i in D {
z[1] = a * x[1] + y[i];
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The “Hello World” of HPC/Vector programming

« |sthe CVL version faster/better than the plain Chapel version?
« Default Rectangular arrays: identical performance
« Block distributed: CVL is ~2x slower
« Block Cyclic distributed: CVL is A LOT slower

« The gap is likely Chapel specific optimizations that explicit SIMD thwarts

« Just because you can, doesn’t mean you should

14
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Kmeans Clustering

for cIdx in centroids.D {
const cX = centroids.x[cIdx], cY = centroids.y[cIdx];

forall pIdx in points.D with (ref points) {
const dist = distance (points, pIdx, centroids, cIdx); 4—| Compute the distance |

if dist < points.minDist[pIdx] {

points.minDist [pIdx] = dist; . o
points.clusterId[pldx] = cIdx; <—l Conditionally update the minimum |

for cIdx in centroids.D {
const cIdxVec = new VT IDX(cIdx):;
const cVecX = new VT (centroids.x[cIdx]), cVecY = new VT (centroids.y[cIdx]);
forall pIdx in VT.indices (points.D) with (ref points) {

const dist = distance (VT, points, pIdx, cVecX, cVecY); 4—' Compute the distance |
const minDist = VT.load(points.minDist, pIdx);

const oldClusterId = VT IDX.load(points.clusterId, pldx);

const mask = dist < minDist;: AI Determine which value to use |

var newMinDist = bitSelect (mask, dist, minDist); ==
var newClusterId = bitSelect (mask.transmute (VT IDX), cIdxVec, oldClusterId);

newMinDist.store (points.minDist, pIdx); | |/\| d t th .. |
newClusterId.store (points.clusterlId, pldx); ways update € minimum

—1
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Kmeans Clustering

« |sthe CVL version faster/better than the plain Chapel version?
« At small problem sizes they are the same

1 million | 10 million | 100 million
points points points

« At big problem sizes CVL beats plain Chapel o 413s 8.723s 78.106s
0.3463 3.004s  64.306s
« What's the catch?
record pointsList { record pointsList {
type T; type T;
const D: domain(1l) ; const D: domain (1) ;
var x: [D] T; var xy: [D] point(T);
var y: [D] T; var clusterId: [D] int;
var clusterId: [D] int; var minDist: [D] T;
var minDist: [D] T; }
} record point {
type T;
« |If | use the wrong data structure var x: T;
var y: T;
« The plain Chapel code is slower )

 |tis much harder to hand vectorize

—1 17
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A brief dive into the implementation

—1

The top-level 'vector’ type is implemented by multiple layers of type abstractions

‘vector(eltType, numeElts)’ constructs an ‘implType(eltType, numeElts)’
‘implType’ is implemented for each architecture/bit-width as a type-only type

Each ‘implType’ has a set of operations and behaviors it must conform to

If the underlying hardware has a different behavior, shuffle the vector to match (e.g. pairwise adds)
Arbitrary shuffles/permutations/blends are not permitted

At the lowest level, each operation on ‘implType’ is either

directly calling a compiler intrinsic
calling a C wrapper around a compiler intrinsic

‘implType’ is a fantastic example of Chapel metaprogramming

Compile-time dispatch greatly reduces boilerplate
Everything is done at compile-time, all you are left with in the generated code are the vector operations
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Who does vectorization the best?

 Nbody (50,000,000 iterations) from the Computer Language Benchmark Game

M1Arm |Intel Xeon E5-2690 v3
(8 cores) | (24 cores) (128 cores)

2.731s
1.626s  2.621s 2.434s

1.511s 2.437s | 2.378s |
_ 2.730s  5.940s 4.150s

N/A |1.911s |2.648s |

2.444 4.02 930
S 025s 3 S Handcoded C is fast,

_ 1.449s 3.333s 3.268s but not portably fast

« Chapel! (kinda)

—1



Is vector code faster?

« RGB -> Grayscale using integers (problem size scaled per platform)

M1Arm |Intel Xeon E5-2690v3 | AMD EPYC 7662
(8 cores) | (24 cores) (128 cores)

1 009 6.505 1.524

Chapel J "y 0.247 0.847 0.349

« RGB -> Grayscale using floating point (problem size scaled per platform)

‘ 4x-8x improvements!

M1Arm |Intel Xeon E5-2690v3 | AMD EPYC 7662
(8 cores) | (24 cores) (128 cores)

1 024 8.760 1.700

Chapel AN 0.242 0.845 0.337

e Yes!

—1

‘ 4x-10x improvements!
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Conclusion

CVL lets programmers fill a missing gap in Chapel’s parallel story
« Portable, performant, and pretty vector code

CVL is ready for use!
« https://github.com/jabraham17/cvl

CVL is not a silver bullet for performance in Chapel, but it is another tool in the toolbox

What's next?
 Expanded ‘vectorsRef( )’ support

« Find a nice ergonomic story for tail loops
« Leverage the Chapel compiler for more flexible shuffles

« Even tighter integration with Chapel arrays
* Close the distributed array performance gap
*  Support 2D arrays without ‘reshape( )’

—1
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