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Aircraft Emissions : aiming for net zero carbon

Multiple Levers of Improvement

• Sustainable Aviation Fuel (SAFs)

• Operational Improvements (Air traffic and flight planning optimization)

• Novel aircraft & propulsion technologies (Engines, Aerodynamics)

Jet fuel mixed with SAF Blended wing body concept
Source: Airbus
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The key role of Aerodynamics

Lift to Drag ratio (Source : NASA)
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Available tools in Aerodynamics

Computational Fluid Dynamics (CFD)
Cost ∼ 100 - 1000$/hour (Source: CHAMPS)

Wind tunnel testing
Cost ∼ 1000 - 10000$/hour (Source: ETW)

CRJ7000 Flight Test
Cost ∼ 100 000$/hour (Source: Bombardier)
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Aerodynamics: A Multidisciplinary Challenge

Ice accretion on the wing leading edge
(Source: Flight Safety Foundation)

Wing bending
(Source: Aviation Stack Exchange)

Contrail formation
(Source: Spartan College)
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The Fidelity Spectrum in CFD

Classification of turbulence models
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Parallel CFD for HPC

Solving Strategy

• Volumetric Meshing around complex
geometries

• 2D Meshes: Ranging from 0.5 to 1.0 Million
Unknowns

• 3D Meshes: Handling up to 1 Billion Unknowns

• High-Performance Computing (HPC):
Leveraged to significantly reduce computation
time

• Problem Decomposition: The problem is
partitioned into smaller sub-problems
interconnected via interfaces

• Task Parallelization: Each sub-problem runs
independently on dedicated tasks

• Communication Optimization: Minimizing
communication overhead to maximize overall
efficiency
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CHAMPS: Advanced 2D-3D CFD Solver

CHAMPS (CHapel MultiPhysics Software)

• 2D-3D Unstructured Reynolds Average Navier Stokes Solver

• Second order finite volume

• Convective Fluxes : Roe, AUSM

• SA, k-ω SST-V and Langtry-Menter transitional turbulence models

• Explicit solver (Runge-Kutta) and implicit solvers (SGS, GMRES)

• Linked to external libraries: MKL, CGNS, METIS and PETSC

• Multi-Fidelity Solvers: Potential, Non Linear Vortex Lattice, Euler, RANS, URANS, LES, DNS

• Multi-Physics: Icing (Deterministic, Stochastic), Fluid-Structure Interactions, Contrails

CHAMPS Software : 150,000 lines of code !

• Pre-Processor ≈ 17K lines

• Post Processor ≈ 2K lines

• Flow Solver ≈ 15K lines

• Turbulence Solver ≈ 13K lines

• Droplet Solver (Eulerian + Lagrangian) ≈ 24K lines

• Fluid-Structure Interaction Solver (Coupling + FEM) ≈ 15K lines
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Medium Fidelity

Full Potential
via Immersed Boundary (IBM)
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Full Potential via Immersed Boundary

Coarse Cell Classification w/ Cartesian Mesh Wall Point identification procedure

Full Potential flow via Immersed Boundary

• Using a cartesian mesh instead of a body-fitted mesh significantly expands the solver’s practicality by
significantly reducing meshing time and simplifying geometry handling, benefits that are particularly
valuable in preliminary design phases.

• Its applicability is also enhanced as it facilitates multi-disciplinary simulations involving moving
boundaries, such as icing and aeroelasticity.

Oct 9, 2025 – Polytechnique Montréal – CHAMPS – É. Laurendeau 11/39
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Full Potential via Immersed Boundary
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High-Fidelity models

RANS, LES, DNS [1]
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Reynolds-Averaged Navier Stokes (RANS)

Left: Surface pressure coefficient for the Common Research Model in transonic regime.
Right: Skin friction coefficient of the Common Research Model in High-Lift conditions.
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Hybrid RANS/LES

Isosurfaces of the Q-criterion identifying vortex regions.
Left: NACA0021 at 60° aoa.

Right: slat cove of a 30P30N airfoil;
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Direct Numerical Simulation

t/tc = 0 t/tc = 4 t/tc = 8

t/tc = 12 t/tc = 16 t/tc = 20

Isosurfaces of the Q-criterion identifying vortex regions, colored by the non-dimensional velocity magnitude
Direct numerical simulation model

Oct 9, 2025 – Polytechnique Montréal – CHAMPS – É. Laurendeau 16/39
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Strongly Coupled Fluid-Structure Interaction

Nonlinear large displacements
Fluid-Structure Interaction
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Strongly Coupled Fluid-Structure Interaction (FSI)

Partitioned Strongly Coupled FSI algorithm

Large displacements FEM for Fluid-Structure Interaction simulations

• FEM solver: Geometrically and materially nonlinear FEM, Generalized-α time integration.

• Element types: Euler-Bernoulli beam & Kirchhoff-Love plate models.

• CFD solver : Unsteady RANS/Euler .

• Displacement and load transfers using Radial Basis Functions.

• Iterative coupling between CFD and FEM solvers.

Oct 9, 2025 – Polytechnique Montréal – CHAMPS – É. Laurendeau 18/39
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Large displacement FSI

t = 0, with undeformed mesh Tip Y displacement

t = T/4 t = 3T/4
Box cantilever FSI validation case

Non linear large displacements Fluid-Structure Interaction simulations

• Geometrically and materially nonlinear FEM, Euler-Bernoulli model, Generalized-α time integration.

• URANS.

• Displacement and load transfer using Radial Basis Functions.

• Strong coupling, convergence tolerance at 1/1000th of beam thickness.
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Aero-Icing

Lagrangian Particle Tracker [2]
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Lagrangian Particle Tracker

Droplet Trajectories around an Aircraft.

Particle Tracking For Ice Accretion

• Ray-tracing algorithms for efficient droplet–quad intersection detection

• Hybrid parallelization (MPI/OpenMP-like) in Chapel to accelerate trajectory computations

• Scalable framework capable of tracking 50M+ simultaneously

• Tracking individual droplets provides accurate estimates of water collection efficiency

• The computed water collection efficiency serves as input to the ice accretion simulation
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Lagrangian Particle Tracker

Ice Shape Comparison CHAMPS vs. Experimental Data.

Particle Tracking For Ice Accretion

• Ray-tracing algorithms for efficient droplet–quad intersection detection

• Hybrid parallelization (MPI/OpenMP-like) in Chapel to accelerate trajectory computations

• Scalable framework capable of tracking 50M+ simultaneously

• Tracking individual droplets provides accurate estimates of water collection efficiency

• The computed water collection efficiency serves as input to the ice accretion simulation
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Lagrangian Particle Tracker

(a) : Solver Speed Up. (b) : Solver Efficiency
Lagrangian Solver Scalability

Particle Tracking For Ice Accretion

• Benchmark was run on the Niagara cluster (Intel Skylake 2.4 GHz, 40 cores/node) with up to 32 nodes
(1280 cores), seeding 12.8M droplets for optimal load balancing.

• The benchmark used total computation time (including droplet tracking and collection efficiency)
instead of iteration time as the key performance indicator.

• The solver achieved 86% efficiency at 32 nodes (1280 cores), showing strong scalability across the
tested range.
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Aero-Icing

Stochastic Icing
via Immersed Boundary [3]
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Stochastic Icing via Immersed Boundary

Stochastic ice accretion model using an unstructured advancing front technique

Front generation technique

• Accumulation of discrete elements with stochasticity in the accretion process.

• Droplets are emitted randomly from an initial emission plane.

• Upon impact, if the droplet freezes, a new element is generated; otherwise, the remaining mass flows
downstream.

• These steps are repeated until a predefined criterion is reached (ice mass) [4].
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Stochastic Icing via Immersed Boundary

1 layer 2 layers 4 layers

Comparison of ice shapes for different numbers of layers for the RG-15 UAV airfoil (laminar flow)

Multilayer stochastic icing for a laminar flow

• The ice feathers are well reproduced by the stochastic model.

• Highlights the importance of a fine mesh to capture small-scale structures.
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Contrail Formation

Contrail Formation [5]
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Contrail Formation - Airflow results

Mean flow contours of a) axial velocity, b) pressure, c) temperature

Flow solver conditions

• RANS solver.

• Real aircraft geometry of CFM56-5B3 (Safran).

• Freestream operating conditions at 35000 ft.
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Contrail Formation - Stochastic Trajectories

Mean flow streamtraces vs stochastic velocity trajectories

Flow solver conditions

• Stochastic model qualitatively produces expected dispersion and turbulent vortices.
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Contrail Formation - Particle Distribution

Downstream distribution, colored by crystal radius

Cross-sectional distribution at
x=220m

Particle spatial distribution : mean velocity & composition vs Langevin velocity & IEM temperature

Particle Distribution

• Langevin model effectively disperse particles.

• Mean composition exhibit a larger, less uniform, radii distribution.
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Introduction Multi-Fidelity Multiphysics HPC Conclusion References

Contrail Formation - Average evolution

Contrail downstream evolution, mean radius, saturation ratios

Flow solver conditions

• 5s with 25000 particles in domain was computed allowing mean fields convergence

• Average crystal radius increases smoothly towards a steady value.

• Particles activate between 25m and 75m (from soot to ice crystals).

• Particle activation is spread out.
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CHAMPS Parallelization Performance

CHAMPS Parallelization
Performance
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CHAMPS Parallelization Performance

Parallel Scaling Efficiency of CHAMPS

Scaling test

• Civil airlines model: Speedup results are scaled from a 2-node baseline to highlight communication
effects and are compared to the results obtained with the StarCCM+ software using the same mesh.

• Tests with and without reduction operations reveal CHAMPS’ super scalability in the absence of
reductions, indicating potential performance gains when I/O operations are performed ”on-the-fly”.
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CHAMPS Parallelization Performance

Speedup with & without using Paired Exchange Buffers

Scaling Test

• Test done on 100 iterations of a 100k cell/core mesh.

• Shows optimizing inter-node communication is crucial for speedup: PEBs alone slash compute time by
half.
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Conclusion

Chapel Programming Language: Strong points & Things to work on

• Low barrier to entry, easy to learn for students.

• Easily transferrable to industry via staff rotations or interns.

• Easy to implement and parallelize.

• Compilation time can be reduced (≈ 2-3 minutes).

• Scalability can still be improved.
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Questions

Thanks for listening !
Any questions?
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Introduction Multi-Fidelity Multiphysics HPC Conclusion References

References I

[1] Baptiste Arnould and Éric Laurendeau.
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