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Aircraft Emissions : aiming for net zero carbon

Multiple Levers of Improvement
® Sustainable Aviation Fuel (SAFs)
® Operational Improvements (Air traffic and flight planning optimization)

® Novel aircraft & propulsion technologies (Engines, Aerodynamics)

e

Jet fuel }r1ixed with SAF Blended wing body concept
Source: Airbus
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The key role of Aerodynamics
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Lift to Drag ratio (Source : NASA)
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i ; ; ind fur;nel testin
Computational Fluid Dynamics (CFD) L
Cost ~ 100 - 1000$ /hour (Source: CHAMPS) Cost ~ 1000 - 100008 /hour (Source: ETW)

CRJ7000 Flight Test
Cost ~ 100 000$/hour (Source: Bombardier)
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Ice accretion on the wing leading edge Wing bending
(Source: Flight Safety Foundation) (Source: Aviation Stack Exchange)

Contrail formation
(Source: Spartan College)
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The Fidelity Spectrum in CFD

Increasing
Fidelity

No
modelling Months

Turbulence Days

modelling

Inviscid Hours

Irrotational .
Minutes
Seconds
Decreasing

- Available in CHAMPS
G Work in progress

Classification of turbulence models

Computational Cost
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Parallel CFD for HPC M
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Solving Strategy

® Volumetric Meshing around complex
geometries
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® High-Performance Computing (HPC):
Leveraged to significantly reduce computation

time
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® Problem Decomposition: The problem is Q\ Q\\\\\\\‘ \\I‘I‘I‘I‘Illﬂlllll"lmnﬁll;llllllkllll :
partitioned into smaller sub-problems b \\\3}&““ o i ll];ﬁ"::,",:é,’;’,,’%/z"lgw
interconnected via interfaces s iy i ""“",,I‘,,,,,,,l,',l;,:féh,’,,,f':é
i
® Task Parallelization: Each sub-problem runs i "'/"

independently on dedicated tasks

® Communication Optimization: Minimizing
communication overhead to maximize overall
efficiency
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CHAMPS: Advanced 2D-3D CFD Solver

CHAMPS (CHapel MultiPhysics Software)

® 2D-3D Unstructured Reynolds Average Navier Stokes Solver

® Second order finite volume

® Convective Fluxes : Roe, AUSM

® SA, k-w SST-V and Langtry-Menter transitional turbulence models

® Explicit solver (Runge-Kutta) and implicit solvers (SGS, GMRES)

® Linked to external libraries: MKL, CGNS, METIS and PETSC

® Multi-Fidelity Solvers: Potential, Non Linear Vortex Lattice, Euler, RANS, URANS, LES, DNS

® Multi-Physics: Icing (Deterministic, Stochastic), Fluid-Structure Interactions, Contrails

v

CHAMPS Software : 150,000 lines of code !

® Pre-Processor ~ 17K lines

® Post Processor ~ 2K lines

® Flow Solver =~ 15K lines

® Turbulence Solver ~ 13K lines

® Droplet Solver (Eulerian + Lagrangian) ~ 24K lines

® Fluid-Structure Interaction Solver (Coupling + FEM) & 15K lines
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Full Potential
via Immersed Boundary (IBM)
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. . . )

Coarse Cell Classification w/ Cartesian Mesh Wall Point identification procedure

Full Potential flow via Immersed Boundary

® Using a cartesian mesh instead of a body-fitted mesh significantly expands the solver’s practicality by
significantly reducing meshing time and simplifying geometry handling, benefits that are particularly
valuable in preliminary design phases.

® |ts applicability is also enhanced as it facilitates multi-disciplinary simulations involving moving
boundaries, such as icing and aeroelasticity.
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Full Potential via Immersed Boundary
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High-Fidelity models

RANS, LES, DNS "

Polytechnique Montréa
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Reynolds-Averaged Navier Stokes (RANS)

Left: Surface pressure coefficient for the Common Research Model in transonic regime.
Right: Skin friction coefficient of the Common Research Model in High-Lift conditions.
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Hybrid RANS/LES

criterion identifying vortex regions.

Isosurfaces of the Q

Left: NACA0021 at 60° aoa.
Right: slat cove of a 30P30N airfoil;
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t/tc = 12 t/tc = 16 t/tc =20

Isosurfaces of the Q-criterion identifying vortex regions, colored by the non-dimensional velocity magnitude
Direct numerical simulation model

Polytechnique Montréa



Strongly Coupled Fluid-Structure Interaction

Nonlinear large displacements
Fluid-Structure Interaction
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Strongly Coupled Fluid-Structure Interaction (FSI)

External Structural
Mesh Loads displacements

[, e ) s i s | . [ 5| _.?—» e ot —p

Partitioned Strongly Coupled FSI algorithm

Large displacements FEM for Fluid-Structure Interaction simulations

® FEM solver: Geometrically and materially nonlinear FEM, Generalized-« time integration.
® Element types: Euler-Bernoulli beam & Kirchhoff-Love plate models.

® CFD solver : Unsteady RANS/Euler .

® Displacement and load transfers using Radial Basis Functions.

® |terative coupling between CFD and FEM solvers.
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Multiphysics

Large displacement FSI

Tip vertical displacement

Iy_max| = 0.0167

0 1 2
093 Time (s)

091 Tip Y displacement

t = 0, with undeformed mesh

t=T/4 t=23T/4
Box cantilever FSI validation case

Non linear large displacements Fluid-Structure Interaction simulations

Geometrically and materially nonlinear FEM, Euler-Bernoulli model, Generalized-« time integration.

URANS.
Displacement and load transfer using Radial Basis Functions.

Strong coupling, convergence tolerance at 1/1000th of beam thickness.
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Aero-Icing

Lagrangian Particle Tracker ”
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Lagrangian Particle Tracker

Droplet Trajectories around an Aircraft.

Particle Tracking For Ice Accretion

Ray-tracing algorithms for efficient droplet—quad intersection detection
® Hybrid parallelization (MP1/OpenMP-like) in Chapel to accelerate trajectory computations
® Scalable framework capable of tracking 50M+ simultaneously

® Tracking individual droplets provides accurate estimates of water collection efficiency

® The computed water collection efficiency serves as input to the ice accretion simulation

— Polytechnique Montréal — CHAMPS — E. Laurendeau
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Lagrangian Particle Tracker
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Ice Shape Comparison CHAMPS vs. Experimental Data.

Ray-tracing algorithms for efficient droplet—quad intersection detection

Hybrid parallelization (MPI/OpenMP-like) in Chapel to accelerate trajectory computations
® Scalable framework capable of tracking 50M+ simultaneously

Tracking individual droplets provides accurate estimates of water collection efficiency

The computed water collection efficiency serves as input to the ice accretion simulation
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Lagrangian Particle Tracker
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Particle Tracking For Ice Accretion

® Benchmark was run on the Niagara cluster (Intel Skylake 2.4 GHz, 40 cores/node) with up to 32 nodes
(1280 cores), seeding 12.8M droplets for optimal load balancing.

® The benchmark used total computation time (including droplet tracking and collection efficiency)
instead of iteration time as the key performance indicator.

® The solver achieved 86% efficiency at 32 nodes (1280 cores), showing strong scalability across the
tested range.
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Aero-Icing

Stochastic Icing
via Immersed Boundary "
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Stochastic Icing via Immersed Boundary

Random initial Pt
position .-
________ -~ Droplet
° trajectory
a) Impingement location b) Generation of a new ¢) Generation of several new d) Generation of a significant
element elements ice shape

Stochastic ice accretion model using an unstructured advancing front technique

Front generation technique

® Accumulation of discrete elements with stochasticity in the accretion process.
® Droplets are emitted randomly from an initial emission plane.

® Upon impact, if the droplet freezes, a new element is generated; otherwise, the remaining mass flows
downstream.

® These steps are repeated until a predefined criterion is reached (ice mass) [4]

— Polytechnique Montré CHAMPS — E. Laurendeau
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Stochastic Icing via Immersed Boundary

0.020 0.0: 0.020
0.0151 0.015f 0.015f
0.0101 0.010 0.010
0.005F 0.005 0.005
E 0.000F £.0.000 £.0.000
> > >
-0.005F -0.005, -0.005
-0.010F -0.010 -0.010
0.015F 0.015F 0.015F
0,020l 0020 P P PO PP 0020 P P PO PP
‘0§\0Q@6“§QQ“§QEQ§\QQQ\6“§¢QQQ¢6 O 0% o (o (O (N (I (o O O o (o (O (N7 (I (o
X [m] X[m] X[m]
1 layer 2 layers 4 layers

Comparison of ice shapes for different numbers of layers for the RG-15 UAV airfoil (laminar flow)

Multilayer stochastic icing for a laminar flow

® The ice feathers are well reproduced by the stochastic model.

® Highlights the importance of a fine mesh to capture small-scale structures.
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Contrail Formation

Contrail Formation "
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Contrail Formation - Airflow results

07 0% o % en aes i 1w w6 2 m 083 100 112 124 136 148 160 172 184 196 208 100 122 144 166 188 210 232 254 276 298 320
Plp- TIT.

Mean flow contours of a) axial velocity, b) pressure, c) temperature

Flow solver conditions

® RANS solver.
® Real aircraft geometry of CFM56-5B3 (Safran).

® Freestream operating conditions at 35000 ft.
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Contrail Formation - Stochastic Trajectories

Mean flow streamtraces vs stochastic velocity trajectories

Flow solver conditions

® Stochastic model qualitatively produces expected dispersion and turbulent vortices.
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Contrail Formation - Particle Distribution

Mean Vel. - Mean comp.
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Particle spatial distribution : mean velocity & composition vs Langevin velocity & IEM temperature

Particle Distribution

® Langevin model effectively disperse particles.

® Mean composition exhibit a larger, less uniform, radii distribution.
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Contrail downstream evolution, mean radius, saturation ratios

5s with 25000 particles in domain was computed allowing mean fields convergence
® Average crystal radius increases smoothly towards a steady value.
® Particles activate between 25m and 75m (from soot to ice crystals).

Particle activation is spread out.
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CHAMPS Parallelization

Performance
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CHAMPS Parallelization Performance

Mesh Cells per Core
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Parallel Scaling Efficiency of CHAMPS

Scaling test

® Civil airlines model: Speedup results are scaled from a 2-node baseline to highlight communication
effects and are compared to the results obtained with the StarCCM+ software using the same mesh.

® Tests with and without reduction operations reveal CHAMPS' super scalability in the absence of
reductions, indicating potential performance gains when 1/O operations are performed "on-the-fly”.
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CHAMPS Parallelization Performance

Weak scaling 100K cells/cores
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Scaling Test

® Test done on 100 iterations of a 100k cell/core mesh.

® Shows optimizing inter-node communication is crucial for speedup: PEBs alone slash compute time by
half.
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Conclusion

Chapel Programming Language: Strong points & Things to work on

® | ow barrier to entry, easy to learn for students.
® Easily transferrable to industry via staff rotations or interns.

® FEasy to implement and parallelize.

Compilation time can be reduced (= 2-3 minutes).

Scalability can still be improved.
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Questions

Thanks for listening !
Any questions?
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