
August 15, 2024
Iain Moncrief

Chapel Con 2025

• Suite of machine learning tools

• Industry standard

• Python based

• HPC language developed at HPE Cray

• Parallel and distributed

• For-free parallelism

• Performant operations on large distributed
arrays

Quick background

2

Chapel

3

• Applying Chapel to machine learning
• Chapel does not have an existing machine learning library

• Utilize Chapels array programming features

• Can Chapel be used for machine learning? (2023 Internship)
• Yes, but best if it’s done using a library.

• Can we make a ML library in Chapel? (2024 internship)

Introduction

4

• Familiar syntax, names, and operations
• PyTorch-like interface

• Easy to reproduce ML code

• Existing model loading

• GPU enabled

Use Cases

• A data scientist…
• trains or downloads (off the shelf!) a model via PyTorch,

• loads the model using Chapel,

• then runs inference on a massive dataset leveraging distributed parallelism.

• A team with an application in Chapel wants to integrate an existing ML model.

Goals for a Chapel ML library

• Developed a collection of ML tools to support…
• Low-level ML programming (user defined tensor operations, layer types, and optimizers),

• High-level utilities (pre-defined layer types and common data operations),

• Defining and loading models,

• Distributed inference (running the model across many compute nodes)

• Utilities for PyTorch compatibility and interplay with Chapel

• Packaged into a library called ChAI (short for Chapel AI)

What did I do? (ChAI 1.0)

5

6

Architecture

Smallest, most
efficient tensor type

Record of past
operations applied to

tensor Interface layer for
external locales (GPUs)

Common neural
network layer

implementations

Allows for direct array
manipulation Removes param rank

constraint for operations
(Pythonic data loading)

7

Why PyTorch?

• one of the most popular ML libraries

• vast collection of very efficient tensor operations

• exists an implementation for anything you might need

• faster low-level tensor operations

What you get

• Easily wrap any low-level tensor computation

• Load any pretrained PyTorch model into Chapel as a black box function
• Supports .pth, .pt, and custom weight file format

• Access to any PyTorch function, don’t need to implement it in Chapel

Integration with PyTorch backend (libtorch)

8

Philosophy with ChAI with PyTorch

9

Different ways to use ChAI

Build your model
completely in Chapel

Load in PyTorch model
as a black box

Use existing operations
and layers, some of which
may be backed by PyTorch

Less time More time

• Operations can rely on either a Chapel kernel or a low level PyTorch implementation
• If you don’t want to implement an operation in Chapel, then you can just call the PyTorch one instead

• Intended to be a high-level library that can be a wrapper for low-level Chapel or PyTorch
• High level control of efficient low-level operations

Mix &
Match

using existing operations and layers

(which themselves may be backed by PyTorch)

10

Cool examples

• Off-the-shelf MNIST model (digit classification)

• Resnet (general image classification)

• Style Transfer

• Sobel convolution (edge detection)

11

• Supports PyTorch (libtorch) backend for low level tensor operations

• A sufficiently broad set of fundamental tensor operations (reshape,squeeze,shrink,dilate,pad,…)

• Multiple user entry points to interface
• User may choose their level of control and type restriction

• Supports arbitrary model loading from .pt, .pth, and custom format

• Many neural network layer types
• Several basic layer types implemented in Chapel

• Ability to use any PyTorch layer type

• Many examples in repository

• CMake build system (tricky to get right)

State of ChAI

ChAI
• Discussing eligibility to become a supported Chapel

module

• Further develop functionality

• Improve documentation and build system

Continued work…

21

Contact Info

Iain Moncrief

moncrief@oregonstate.edu

github.com/iainmon/ChAI

Jade Daniel Brandon

Michelle Engin

	Presentation
	Slide 1: Chapel Con 2025
	Slide 2: Quick background
	Slide 3: Introduction
	Slide 4: Goals for a Chapel ML library
	Slide 5: What did I do? (ChAI 1.0)
	Slide 6: Architecture
	Slide 7: Integration with PyTorch backend (libtorch)
	Slide 8: Philosophy with ChAI with PyTorch
	Slide 9: Different ways to use ChAI
	Slide 10: Cool examples
	Slide 11: State of ChAI
	Slide 21: Continued work…

