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Quick background

N
=
Chapel

e HPC language developed at HPE Cray

e Parallel and distributed

e For-free parallelism

e Performant operations on large distributed

arra¥s

O PyTorch

e Suite of machine learning tools
e Industry standard
e Python based
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Introduction

e Applying Chapel to machine learning
» Chapel does not have an existing machine learning library
 Utilize Chapels array programming features

e Can Chapel be used for machine learning? (2023 Internship)
* Yes, but best if it’s done using a library.

e Can we make a ML library in Chapel? (2024 internship)

3



Goals for a Chapel ML library

e Familiar syntax, names, and operations
» PyTorch-like interface

e Easy to reproduce ML code

e Existing model loading

e GPU enabled

Use Cases
e A data scientist...

e trains or downloads (off the shelf!) a model via PyTorch,
* loads the model using Chapel,

e then runs inference on a massive dataset leveraging distributed parallelism.
e A team with an application in Chapel wants to integrate an existing ML model.
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What did | do? (ChAI 1.0)

e Developed a collection of ML tools to support...

e Low-level ML programming (user defined tensor operations, layer types, and optimizers),
» High-level utilities (pre-defined layer types and common data operations),

e Defining and loading models,

e Distributed inference (running the model across many compute nodes)

« Utilities for PyTorch compatibility and interplay with Chapel

e Packaged into a library called ChAl (short for Chapel Al)
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Architecture
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Integration with PyTorch backend (libtorch)

Why PyTorch?

e one of the most popular ML libraries

e vast collection of very efficient tensor operations

e exists an implementation for anything you might need
e faster low-level tensor operations

What you get
e Easily wrap any low-level tensor computation

e Load any pretrained PyTorch model into Chapel as a black box function
» Supports .pth, .pt, and custom weight file format
e Access to any PyTorch function, don’t need to implement it in Chapel

E—
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Philosophy with ChAIl with PyTorch
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Different ways to use ChAI

e Operations can rely on either a Chapel kernel or a low level PyTorch implementation

e |If you don’t want to implement an operation in Chapel, then you can just call the PyTorch one instead
e Intended to be a high-level library that can be a wrapper for low-level Chapel or PyTorch

 High level control of efficient low-level operations

Mix &
Match
—

Less time More time

Load in PyTorch model Use existing operations Build your model
as a black box and layers, some of which completely in Chapel
may be backed by PyTorch using existing operations and layers

(which themselves may be backed by PyTorch)
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e Resnet (general image classification)

Cool examples

e Style Transfer

e Sobel convolution (edge detection)




State of ChAI

e Supports PyTorch (libtorch) backend for low level tensor operations
e A sufficiently broad set of fundamental tensor operations (reshape,squeeze,shrink,dilate,pad,...)
e Multiple user entry points to interface
e User may choose their level of control and type restriction
e Supports arbitrary model loading from .pt, .pth, and custom format
e Many neural network layer types

 Several basic layer types implemented in Chapel
 Ability to use any PyTorch layer type

e Many examples in repository
e CMake build system (tricky to get right)
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Continued work...

ChAI

e Discussing eligibility to become a supported Chapel
module

e Further develop functionality
e Improve documentation and build system

Brandon

Contact Info
lain Moncrief

moncrief@oregonstate.edu _ _
) o Michelle Engin
github.com/iainmon/ChAl
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