—1

Hewlett Packard
Enterprise

Chapel Con 2025

lain Moncrief
August 15, 2024



Quick background

N
=
Chapel

e HPC language developed at HPE Cray

e Parallel and distributed

e For-free parallelism

e Performant operations on large distributed

arra¥s

O PyTorch

e Suite of machine learning tools
e Industry standard
e Python based

2



Introduction

e Applying Chapel to machine learning
» Chapel does not have an existing machine learning library
 Utilize Chapels array programming features

e Can Chapel be used for machine learning? (2023 Internship)
* Yes, but best if it’s done using a library.

e Can we make a ML library in Chapel? (2024 internship)

3



Goals for a Chapel ML library

e Familiar syntax, names, and operations
» PyTorch-like interface

e Easy to reproduce ML code

e Existing model loading

e GPU enabled

Use Cases
e A data scientist...

e trains or downloads (off the shelf!) a model via PyTorch,
* loads the model using Chapel,

e then runs inference on a massive dataset leveraging distributed parallelism.
e A team with an application in Chapel wants to integrate an existing ML model.

4



What did | do? (ChAI 1.0)

e Developed a collection of ML tools to support...

e Low-level ML programming (user defined tensor operations, layer types, and optimizers),
» High-level utilities (pre-defined layer types and common data operations),

e Defining and loading models,

e Distributed inference (running the model across many compute nodes)

« Utilities for PyTorch compatibility and interplay with Chapel

e Packaged into a library called ChAl (short for Chapel Al)

5



Architecture

Common neural
network layer
implementations

Allows for direct array
manipulation

Record of past
operations applied to
tensor

Smallest, most
efficient tensor type

E—

]

PyTorchesque Support ‘ ')

NN Module System

Model Loading via
PyTorch

Static (ranked) Dynamic (unranked)
Tensor Tensor

Autograd System

GPU Interface

Record Wrapped Array

— —

Removes param rank
constraint for operations
(Pythonic data loading)

Interface layer for
external locales (GPUs)



Integration with PyTorch backend (libtorch)

Why PyTorch?

e one of the most popular ML libraries

e vast collection of very efficient tensor operations

e exists an implementation for anything you might need
e faster low-level tensor operations

What you get
e Easily wrap any low-level tensor computation

e Load any pretrained PyTorch model into Chapel as a black box function
» Supports .pth, .pt, and custom weight file format
e Access to any PyTorch function, don’t need to implement it in Chapel

E—

7



Philosophy with ChAIl with PyTorch

8



Different ways to use ChAI

e Operations can rely on either a Chapel kernel or a low level PyTorch implementation

e |If you don’t want to implement an operation in Chapel, then you can just call the PyTorch one instead
e Intended to be a high-level library that can be a wrapper for low-level Chapel or PyTorch

 High level control of efficient low-level operations

Mix &
Match
—

Less time More time

Load in PyTorch model Use existing operations Build your model
as a black box and layers, some of which completely in Chapel
may be backed by PyTorch using existing operations and layers

(which themselves may be backed by PyTorch)

9



=
0
o+
(O
o
=
(%]
(%))
0
(@)
x
.20
S
)
®)
@)
S
T
2
=z
=
=
()
-
i
()
-
v
&=
@)
]

e Resnet (general image classification)

Cool examples

e Style Transfer

e Sobel convolution (edge detection)




State of ChAI

e Supports PyTorch (libtorch) backend for low level tensor operations
e A sufficiently broad set of fundamental tensor operations (reshape,squeeze,shrink,dilate,pad,...)
e Multiple user entry points to interface
e User may choose their level of control and type restriction
e Supports arbitrary model loading from .pt, .pth, and custom format
e Many neural network layer types

 Several basic layer types implemented in Chapel
 Ability to use any PyTorch layer type

e Many examples in repository
e CMake build system (tricky to get right)

| 11



Continued work...

ChAI

e Discussing eligibility to become a supported Chapel
module

e Further develop functionality
e Improve documentation and build system

Brandon

Contact Info
lain Moncrief

moncrief@oregonstate.edu _ _
) o Michelle Engin
github.com/iainmon/ChAl

E—




	Presentation
	Slide 1: Chapel Con 2025
	Slide 2: Quick background
	Slide 3: Introduction
	Slide 4: Goals for a Chapel ML library
	Slide 5: What did I do? (ChAI 1.0)
	Slide 6: Architecture
	Slide 7: Integration with PyTorch backend (libtorch)
	Slide 8: Philosophy with ChAI with PyTorch
	Slide 9: Different ways to use ChAI
	Slide 10: Cool examples
	Slide 11: State of ChAI
	Slide 21: Continued work…


