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« Chapel-Enzyme integration




How do we compute derivatives on a computer?
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Enter automatic differentiation

- Automatically differentiation: compute derivative of code
o "Compile code to its derivative"

o No numerical error (other than normal floating point operations)

-« Opposed to symbolic differentiation, dealing only with mathematical expressions



Types of automatic differentiation: 1st axis
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Types of
automatic
differentiation:
Z2nd axis

Operator overloading: Overload
mathematical functions on custom
types modeling derivatives

Source transformation:

Automatically generate source code
for derivative




ForwardModeAL

Chapel library for forward-mode automatic
differentiation based on operator overloading

Design principles:
o Easyto use

o Compose with other functions and code

Supports derivatives, gradients, jacobians,
directional derivatives, JVP

Inspired by ForwardDiff |l



Mathematics behind it
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Implementation in chapel: define dual type

record dual {

/* primal part of the dual number */
var primalPart : real,

/* dual part of the dual number */
var dualPart : real;

}



Implementation in Chapel

operator +(a, b) where iskEitherDualType(a.type, b.type) {
var T = primalPart{a) + primalPart(b),
var df = dualPart(a) + dualPart(b);
return todual(f, df);

¥
proc sin{a) where isDualType(a.type) {
var f = sin{primalPartia)),
df = cos(primalPart({a)) * dualPart{a),
return todual(f, df),



Example usage: Newton method

use ForwardModeAD;

proc f(x) {
return exp(-x) * sin(x) - log(x);

var tol = 1e-6, /¢ tolerance to find the root
cnt = @, // to count number of iterations
X0 = ipitdual(®@.5), // initial guess
valder = f(x@),; // initial function value and derivative

while abs({value(wvalder)) = tol {

¥0 -= value(valder) / derivative(valder);

valder = T(xB);

cnt += 1;

writeln("Iteration ", cnt, " x =", value(x®), " residual = ", value(valder));



Limitations, future work

- Dual numbers should be parametric types
o e.g. work with MPFR wrappers

o Custom number types, like double-double arithmetic

- Better support for lambda functions

- Interface not fixed, if you don't like the syntax, open an issue!



Enzyme

- Library for automatic differentiation at LLVM level
- Supports both forward and backward mode

- Designed for high-performance automatic differentiation



Why is LLVM the right abstraction level?

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in 0(n*2)
void norm(double[] , double[] ) {

for (int i=0; i<n; i++) {
[i] = in[i] / mag(in);
3
3

Picture taken from
- https://indico.cern.ch/event/1145124/contributions/4994088/attachments/2508821/4311554/enzyme-mode.pdf



Why is LLVM the right abstraction level?
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Early experiments: Chapel - Enzyme integration

AD the
generated LLVM

with Enzyme

Resume
compilation

Compile Chapel
to LLVM




Chapel - Enzyme working example

use CTypes,
extern {
double _ enzyme_autodiff{woid®, ...);
Iy
proc square(x: real) {
return x ¥ x;

proc dsquare(x: real): real {

return __enzyme_autodiff(c_ptrTo(square): c_ptr({void), x),

for 1 im 1..4 {
Wwriteln({"x =", 1, " f(x)}) = ", square(i), " T'(x) = ", dsquare(i});

h



Status and future work

« Works with scalar functions in forward and backward mode

o Backward though is dummy, because it works computing one input at the time

Relies on C - Chapel interoperability



Future work

Support arrays, structs and more advanced language features
Benchmarks

What is a good interface?



Thank youl

« ForwardModeAD: https://github.com/lucaferranti/ForwardModeAD
« Chapel - Enzyme integration: https://github.com/lucaferranti/chapel-enzyme

« Me on linkedin: https://www.linkedin.com/in/luca-ferranti/
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