Automatic
differentiation in

Chapel

LUCA FERRANTI
AALTO UNIVERSITY, .FINLAND

Agenda

« Brief motivation to automatic differentiation
« ForwardModeAD

« Chapel-Enzyme integration

How do we compute derivatives on a computer?

/ T
fi@) = fm, h

error

10" F

107

fle)=a4+2° —z+3

10

Enter automatic differentiation

- Automatically differentiation: compute derivative of code
o "Compile code to its derivative"

o No numerical error (other than normal floating point operations)

-« Opposed to symbolic differentiation, dealing only with mathematical expressions

Types of automatic differentiation: 1st axis

backward

dy Oy Owz dw,

wp = h(:z:) Ox N aw‘z 8w1 xT

W — Q(’w1) -

forward

Types of
automatic
differentiation:
Z2nd axis

Operator overloading: Overload
mathematical functions on custom
types modeling derivatives

Source transformation:

Automatically generate source code
for derivative

ForwardModeAL

Chapel library for forward-mode automatic
differentiation based on operator overloading

Design principles:
o Easyto use

o Compose with other functions and code

Supports derivatives, gradients, jacobians,
directional derivatives, JVP

Inspired by ForwardDiff |l

Mathematics behind it

F+G=(f+g)+ ([+7)e
F-G=fg+(f'g+fg)e
Ff J""s':,v—J‘”g"’(€

G g ¢

a + be, e? =0

fla+ad'e) = f(a) + f'(a)d’e

Implementation in chapel: define dual type

record dual {

/* primal part of the dual number */
var primalPart : real,

/* dual part of the dual number */
var dualPart : real;

}

Implementation in Chapel

operator +(a, b) where iskEitherDualType(a.type, b.type) {
var T = primalPart{a) + primalPart(b),
var df = dualPart(a) + dualPart(b);
return todual(f, df);

¥
proc sin{a) where isDualType(a.type) {
var f = sin{primalPartia)),
df = cos(primalPart({a)) * dualPart{a),
return todual(f, df),

Example usage: Newton method

use ForwardModeAD;

proc f(x) {
return exp(-x) * sin(x) - log(x);

var tol = 1e-6, /¢ tolerance to find the root
cnt = @, // to count number of iterations
X0 = ipitdual(®@.5), // initial guess
valder = f(x@),; // initial function value and derivative

while abs({value(wvalder)) = tol {

¥0 -= value(valder) / derivative(valder);

valder = T(xB);

cnt += 1;

writeln("Iteration ", cnt, " x =", value(x®), " residual = ", value(valder));

Limitations, future work

- Dual numbers should be parametric types
o e.g. work with MPFR wrappers

o Custom number types, like double-double arithmetic

- Better support for lambda functions

- Interface not fixed, if you don't like the syntax, open an issue!

Enzyme

- Library for automatic differentiation at LLVM level
- Supports both forward and backward mode

- Designed for high-performance automatic differentiation

Why is LLVM the right abstraction level?

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in 0(n*2)
void norm(double[] , double[]) {

for (int i=0; i<n; i++) {
[i] = in[i] / mag(in);
3
3

Picture taken from
- https://indico.cern.ch/event/1145124/contributions/4994088/attachments/2508821/4311554/enzyme-mode.pdf

Why is LLVM the right abstraction level?

CHA=gdC
julia 780> julia
® =) ®
3 > 3

Early experiments: Chapel - Enzyme integration

AD the
generated LLVM

with Enzyme

Resume
compilation

Compile Chapel
to LLVM

Chapel - Enzyme working example

use CTypes,
extern {
double _ enzyme_autodiff{woid®, ...);
Iy
proc square(x: real) {
return x ¥ x;

proc dsquare(x: real): real {

return __enzyme_autodiff(c_ptrTo(square): c_ptr({void), x),

for 1 im 1..4 {
Wwriteln({"x =", 1, " f(x)}) = ", square(i), " T'(x) = ", dsquare(i});

h

Status and future work

« Works with scalar functions in forward and backward mode

o Backward though is dummy, because it works computing one input at the time

Relies on C - Chapel interoperability

Future work

Support arrays, structs and more advanced language features
Benchmarks

What is a good interface?

Thank youl

« ForwardModeAD: https://github.com/lucaferranti/ForwardModeAD
« Chapel - Enzyme integration: https://github.com/lucaferranti/chapel-enzyme

« Me on linkedin: https://www.linkedin.com/in/luca-ferranti/

https://github.com/lucaferranti/ForwardModeAD
https://github.com/lucaferranti/chapel-enzyme
https://github.com/lucaferranti/chapel-enzyme
https://github.com/lucaferranti/chapel-enzyme
https://www.linkedin.com/in/luca-ferranti/
https://www.linkedin.com/in/luca-ferranti/
https://www.linkedin.com/in/luca-ferranti/

	Slide 1: Automatic differentiation in Chapel
	Slide 2: Agenda
	Slide 3: How do we compute derivatives on a computer?
	Slide 4
	Slide 5: Enter automatic differentiation
	Slide 6: Types of automatic differentiation: 1st axis
	Slide 7: Types of automatic differentiation: 2nd axis
	Slide 8: ForwardModeAD
	Slide 9: Mathematics behind it
	Slide 10: Implementation in chapel: define dual type
	Slide 11: Implementation in Chapel
	Slide 12: Example usage: Newton method
	Slide 13: Limitations, future work
	Slide 14: Enzyme
	Slide 15: Why is LLVM the right abstraction level?
	Slide 16: Why is LLVM the right abstraction level?
	Slide 17: Early experiments: Chapel – Enzyme integration
	Slide 18: Chapel – Enzyme working example
	Slide 19: Status and future work 
	Slide 20: Future work
	Slide 21: Thank you!

