
Automatic
differentiation in
Chapel

L U CA F E R R A N T I

A A L T O U N I V E R S I T Y, F I NL A N D

Agenda

• Brief motivation to automatic differentiation

• ForwardModeAD

• Chapel-Enzyme integration

How do we compute derivatives on a computer?

Enter automatic differentiation

• Automatically differentiation: compute derivative of code

o "Compile code to its derivative"

o No numerical error (other than normal floating point operations)

• Opposed to symbolic differentiation, dealing only with mathematical expressions

Types of automatic differentiation: 1st axis

backward

forward

Types of
automatic
differentiation:
2nd axis

Operator overloading: Overload
mathematical functions on custom
types modeling derivatives

Source transformation:
Automatically generate source code
for derivative

ForwardModeAD

• Chapel library for forward-mode automatic

differentiation based on operator overloading

• Design principles:

o Easy to use

o Compose with other functions and code

• Supports derivatives, gradients, jacobians,

directional derivatives, JVP

• Inspired by ForwardDiff.jl

Mathematics behind it

Implementation in chapel: define dual type

Implementation in Chapel

Example usage: Newton method

Limitations, future work

- Dual numbers should be parametric types

o e.g. work with MPFR wrappers

o Custom number types, like double-double arithmetic

- Better support for lambda functions

- Interface not fixed, if you don't like the syntax, open an issue!

Enzyme

- Library for automatic differentiation at LLVM level

- Supports both forward and backward mode

- Designed for high-performance automatic differentiation

Why is LLVM the right abstraction level?

Picture taken from
: https://indico.cern.ch/event/1145124/contributions/4994088/attachments/2508821/4311554/enzyme-mode.pdf

Why is LLVM the right abstraction level?

Early experiments: Chapel – Enzyme integration

Compile Chapel
to LLVM

AD the
generated LLVM

with Enzyme

Resume
compilation

Chapel – Enzyme working example

Status and future work

• Works with scalar functions in forward and backward mode

o Backward though is dummy, because it works computing one input at the time

• Relies on C – Chapel interoperability

Future work

- Support arrays, structs and more advanced language features

- Benchmarks

- What is a good interface?

Thank you!

• ForwardModeAD: https://github.com/lucaferranti/ForwardModeAD

• Chapel – Enzyme integration: https://github.com/lucaferranti/chapel-enzyme

• Me on linkedin: https://www.linkedin.com/in/luca-ferranti/

https://github.com/lucaferranti/ForwardModeAD
https://github.com/lucaferranti/chapel-enzyme
https://github.com/lucaferranti/chapel-enzyme
https://github.com/lucaferranti/chapel-enzyme
https://www.linkedin.com/in/luca-ferranti/
https://www.linkedin.com/in/luca-ferranti/
https://www.linkedin.com/in/luca-ferranti/

	Slide 1: Automatic differentiation in Chapel
	Slide 2: Agenda
	Slide 3: How do we compute derivatives on a computer?
	Slide 4
	Slide 5: Enter automatic differentiation
	Slide 6: Types of automatic differentiation: 1st axis
	Slide 7: Types of automatic differentiation: 2nd axis
	Slide 8: ForwardModeAD
	Slide 9: Mathematics behind it
	Slide 10: Implementation in chapel: define dual type
	Slide 11: Implementation in Chapel
	Slide 12: Example usage: Newton method
	Slide 13: Limitations, future work
	Slide 14: Enzyme
	Slide 15: Why is LLVM the right abstraction level?
	Slide 16: Why is LLVM the right abstraction level?
	Slide 17: Early experiments: Chapel – Enzyme integration
	Slide 18: Chapel – Enzyme working example
	Slide 19: Status and future work 
	Slide 20: Future work
	Slide 21: Thank you!

