
1

Jade Abraham and Lydia Duncan

October 10, 2025

If it walks like Python and quacks like
Python, it must be….Chapel?

• For a long time you could call Chapel from Python

• Compile Chapel to a shared library, load it from Python

• Python is the “driver”

• Can we put Chapel in the driver seat?

• Yes!

• Outline

• Motivating Example

• Integrated Example

• Internals

• Next Steps

What are we talking about?

2

• Dynamic execution!

• Change your program without recompiling

• Embed a fully fledged interpreter in your application

• Do funky dynamic execution not possible in Chapel

• Massive ecosystem of easy -to-use libraries

• pytorch

• tensorflow

• scikit -learn

• your -favorite -ai -library

Python isn’t a high -performance language, why?

3

Example Time!

4

Motivating Example

5

proc square(x: int): int do return x * x;

use BlockDist;

config const n = 16;

var myArr = blockDist.createArray(1..n, int);

myArr = myArr.domain;

writeln("myArr before: ", myArr);

forall x in myArr do

 myArr[x] = square(x);

writeln("myArr after: ", myArr);

A Chapel function to
“apply” to an array

Create a block -distributed array
named ‘ myArray ’

For each element in the array,
call ’square()’

The computation is both
distributed and parallel

How do we make this dynamic?

Dynamic Execution Part 1

6

const square = """

 def square(x):

 return x * x

""".dedent();

import Python;

record funcPerLocale {

 var i = new Python.Interpreter();

 forwarding var func = i.createModule(square).get("square");

}

// ...

coforall l in myArr.targetLocales() do on l {

 var f = new funcPerLocale();

 for i in myArr.localSubdomain() do

 myArr[i] = f(myArr[i]): int;

}

The Python equivalent function,
embedded as a Chapel string in the source code

A Chapel widget that handles
the book -keeping needed to
load and call Python

Create a new Python module
and get ’square()’ as a handle
to a Python Value

Explicitly distributes execution
like ‘ forall ’, creating a function
‘f()’ for each locale

The computation is distributed,
not parallelCalls ‘f()’ like any normal

Chapel function!

The result is a generic Value,
the explicit cast extracts the
integer value

Dynamic Execution Part 2

7

config const modName = "func";

config const funcName = "func";

import Python;

record funcPerLocale {

 var i = new Python.Interpreter();

 forwarding var func = i.importModule(modName).get(funcName);

}

// ...

coforall l in myArr.targetLocales() do on l {

 var f = new funcPerLocale();

 for i in myArr.localSubdomain() do

 myArr[i] = f(myArr[i]): int;

}

def func(x):

 return x

def square(x):

 return x * x

def cube(x):

 return square(x) * x

$./example –nl4

$./example –nl4 --funcName=cube

$./example –nl4 --modName=numpy --funcName=negative

func.py

Instead of embedding the
Python code in the program,
extract it out to a file

The behavior is now fully
editable at runtime

Integrated Example

8

• We started by showing you calling out to a Python file

• This next example is going to show you how to intermingle Python calls with your Chapel code using Parquet

• It will show a variety of features available in the Python module:

• Importing modules

• Calling functions

• Accessing fields on Python types

• Using both generic and specific Python types

• Including Python/NumPy arrays

• Casting to supported Chapel types

• Iterating over Python types

• Interoperating with NumPy arrays through Parquet

• We’re not going to focus on the details of reading a Parquet file

Integrated Example

9

• To start, we’ll want to import the Parquet module:

var pa = interp.importModule("pyarrow");

var pq = interp.importModule("pyarrow.parquet");

• We’ll open a Parquet file…

var parquet_file = pq.call("ParquetFile", filename);

• We can get the columns in that file using field accesses via the ‘get()’ call

• We then can cast the Python -type result to a Chapel list of strings

var columns = parquet_file.get("schema").get("names"): list(string);

Integrated Example

10

• We will then iterate over the file and store its contents into an array of Chapel lists of ambiguous
Python types

var data_chunks: [0..<columns.size] list(owned Value?);

for batch in parquet_file.call("iter_batches", kwargs=["batch_size" => 300]) {

 for (col, idx) in zip(columns, 0..) {

 data_chunks[idx].pushBack(batch.call("__getitem__", col));

 }

}

Integrated Example

11

Create the array of lists

Iterate over the Python
Parquet file type

Store the Python Value into
the relevant Chapel list

• Next, we’ll iterate over the columns and determine the sum

var num_rows = parquet_file.get("metadata").get("num_rows"): int;

var schema_arrow = parquet_file.get("schema_arrow");

for (col, idx) in zip(columns, 0..) {

 var rowType = schema_arrow.call("field", col).get("type");

 if pa.call("int64") == rowType {

 var arr = getArray(int(64), data_chunks[idx], num_rows);

 writeln("Column: ", col, " Sum: ", + reduce arr);

 } else if pa.call("float64") == rowType {

 var arr = getArray(real(64), data_chunks[idx], num_rows);

 writeln("Column: ", col, " Sum: ", + reduce arr);

 }

}

Integrated Example

12

Get a string
description of the
Python type stored

Calls to a Chapel
function that will use
numpy

Iterate over the Chapel
list type

If statement because
Python’s type is dynamic

• Finally, let’s dive into ‘ getArray ()’

proc getArray(type eltType, ref data_chunks: list(owned Value?), num_rows: int) {

 var arr: [0..<num_rows] eltType;

 var i = 0;

 for chunk in data_chunks {

 var chunk_arr = chunk!.call(owned PyArray(eltType, 1), "to_numpy",

 kwargs=["zero_copy_only" => false,

 "writable" => true]);

 arr[i..#chunk_arr.size] = chunk_arr.array();

 i += chunk_arr.size;

 }

 return arr;

}

Integrated Example

13

Traverse the Chapel
list of Python Values

Call a Python method,
returning a handle to a
NumPy array

‘.array()’ returns a
reference, but storing into
the Chapel array is a copy

Internals

14

• The Python interpreter is embedded into the Chapel application

• Manages the GIL, when present

• Increments and decrements references to Python objects, ensuring they stay alive and get cleaned up

• Library itself actively converts between Chapel and Python types

• Arguments to library calls can be of either type, library need to convert to the appropriate type

• Can register custom types, enabling their use

• Python objects are referenced rather than copied, including arrays

• Vast majority of implementation is Chapel module code

• Relies on C interoperability to access Python’s C API

• Some additional Chapel -specific C functions and macros were necessary

• But otherwise Chapel language features were sufficient

• Could potentially be used as a blueprint for interoperability with other interpreted languages?

Internals

15

What’s Next?

16

• New features in both Chapel and Python can enable better multi -threaded performance

• GIL -less Python – Python is inherently single threaded because of the GIL, removing it is “free” performance

• Chapel function pointer support can enable tight integration with Python JIT libraries like ‘ numba ’

• GPU’s

• Using Chapel’s GPU support, we can call Python GPU functions, like kernels from ‘ cupy ’

• Shave off the sharp edges

• Multiple libraries could all try to start Python interop, this will fall over

• Interoperability with some Python libraries can fall over

• This is due to internal Python C API incompatibilities

• We may never be able to make this better

• Investigate ways to improve the syntax for interoperating with Python

What’s Next?

17

© 2025 Hewlett Packard Enterprise Development LP

Thank You

	Slide 1: If it walks like Python and quacks like Python, it must be….Chapel?
	Slide 2: What are we talking about?
	Slide 3: Python isn’t a high-performance language, why?
	Slide 4: Example Time!
	Slide 5: Motivating Example
	Slide 6: Dynamic Execution Part 1
	Slide 7: Dynamic Execution Part 2
	Slide 8: Integrated Example
	Slide 9: Integrated Example
	Slide 10: Integrated Example
	Slide 11: Integrated Example
	Slide 12: Integrated Example
	Slide 13: Integrated Example
	Slide 14: Internals
	Slide 15: Internals
	Slide 16: What’s Next?
	Slide 17: What’s Next?
	Slide 18: Thank You

