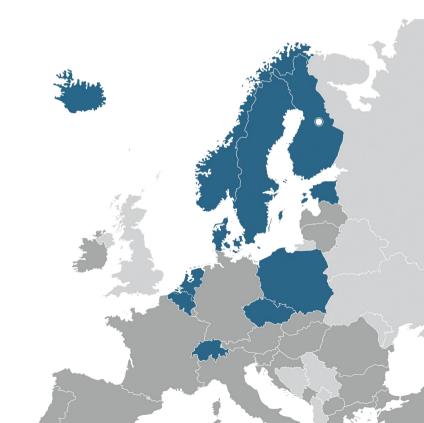
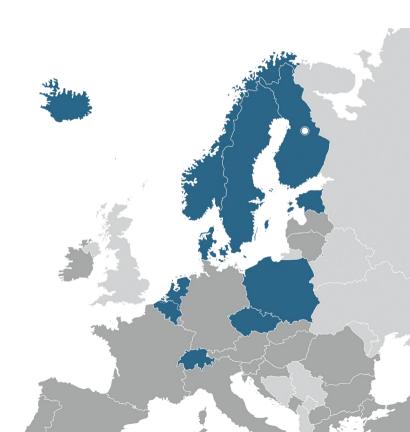


Jorik van Kemenade (SURF)



A unique collaboration between eleven LUMI consortium countries and the EU to build and operate a world-class supercomputer.

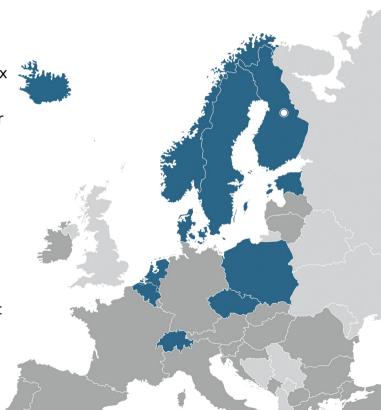
LUMI research infrastructure provides a high-quality, costefficient and environmentally sustainable HPC ecosystem based on true European collaboration.



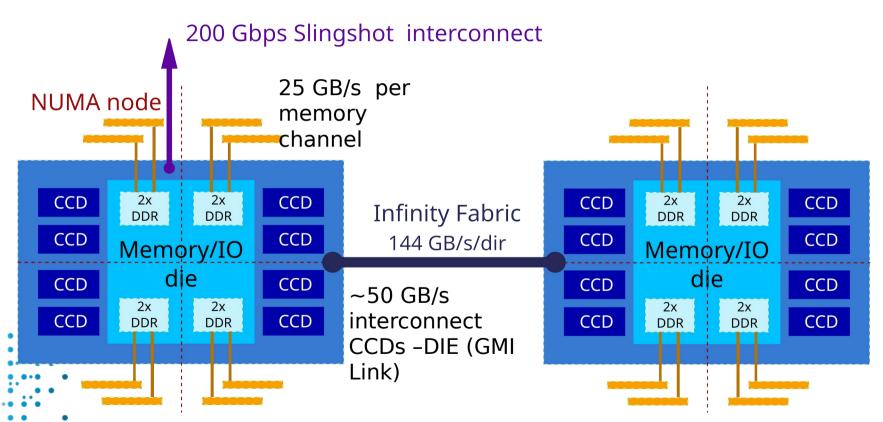
The consortium continues a solid tradition of collaboration in HPC training and education, user support and data management services.

The resources of LUMI will be allocated per the investments. The share of the EuroHPC JU (50%) will be allocated by a peer-review process and available for all European researchers.

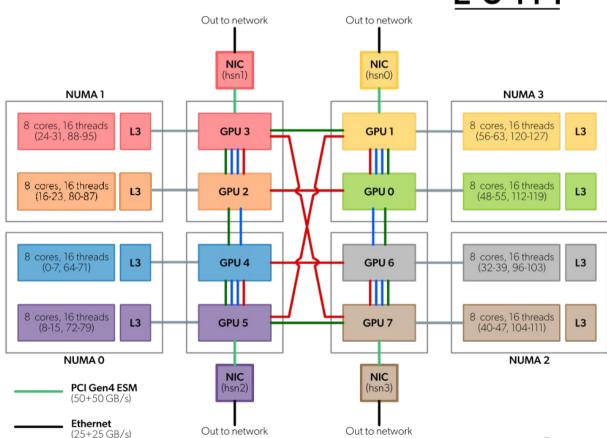
www.lumi-supercomputer.eu/get-started/



LUMI - Hardware

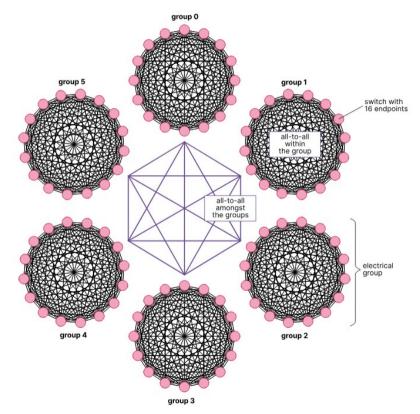


- LUMI-G: 2978 nodes with 1 AMD EPYC 7A53 CPU and 4 AMD MI250x accelerators (512 GB + 4x128 GB RAM)
- LUMI-C: 2048 nodes with 2 64-core AMD EPYC 7763 CPUs (1888x 256GB, 128x 512 GB and 32x 1TB)
- LUMI-D: 8 4TB CPU nodes and 8 nodes with 8 A40 GPUs each for visualization
- **LUMI-F**: 8 PB Lustre flash-based file storage (>2 TB/s)
- LUMI-P: 4 20 PB hard disk based Lustre file systems (4x 240 GB/s)
- **LUMI-O**: 30 PB object based file system
- **LUMI-L**: 4 user access nodes with two AMD Rome CPUs each for ssh access and some for web access via Open OnDemand
 - All linked together with a HPE Cray Slingshot 11 interconnect


LUMI C - Hardware

LUMI G - Hardware

- MI250X is built with 2 chiplets
- Chiplet memory has 64GB each, 1.6TB/s Bandwidth
- Bandwidth between chiplets is only 200GB/s


7

LUMI - Network

Dragonfly topology

- 16 switch ports connect to nodes, 48 to other switches
- 16 or 32 switches in a group with all-toall connection between the switches in a group
- Groups are then also connected in an allto-all way
- Possible to build large networks where nodes are only 3 hops between switches away on an uncongested network

LUMI User Support and a centralized help-desk by the distributed LUMI User Support Team

- The model is based on a network of dedicated LUMI experts:
 each partner provides one full-time person for the task
- User Support Team also provides end-user training, maintain the software portfolio and user documentation of the system

LUMI User Support main activities

- Help desk from Monday to Friday 9-19 EE(S)T
- <u>User documentation</u>
- Computational environment
- User training
- Benchmarking, porting, optimization consultancy

Computational environment

The LUMI software stacks contain the software that are already installed on LUMI.

- **CrayEnv** offers the Cray Programming Environment (PE)
- LUMI is an extensible software stack that is mostly managed through <u>EasyBuild</u>.
- Local software stack for local organizations to manage their own software installation

LUM

User training

- In collaboration with HPE and AMD
 - LUMI-C environment and architecture
 - LUMI-G hardware and programming environment
 - Hackathons
 - More specific trainings: Al course, Profiling and Optimization, ...

LUM

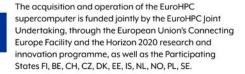
Porting & optimization

- CoE (HPE & AMD) + LUST effort
- 6 projects in 2022-2023: QuantumEspresso, Megatron-LM, SLIM, tmLQCD & PLEGMA, GPAW
- 5 projects in 2023-2024: TurboGAP, Vlasiator, Genesis, HMSC & SIESTA
- 5 projects in 2024-2025: Elmer, FLEXI/Galaexi, SOD2D, Exciting, SPH-EXA
 - Consultancy
 - Testing
 - Optimization

Follow us

X: @LUMIhpc

LinkedIn: <u>LUMI supercomputer</u>


YouTube: LUMI supercomputer

www.lumi-supercomputer.eu

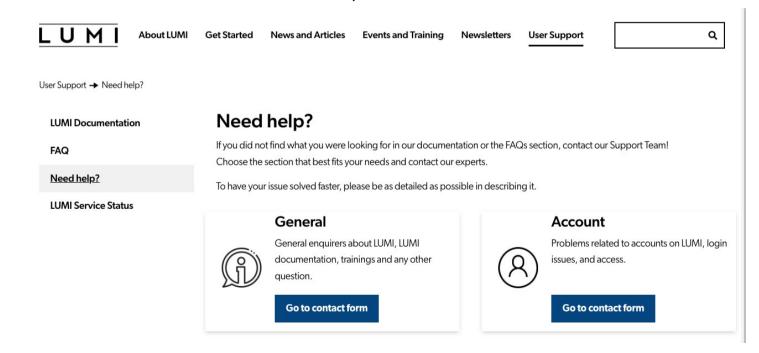
contact@lumi-supercomputer.eu

Special LUMI coffee break next week.

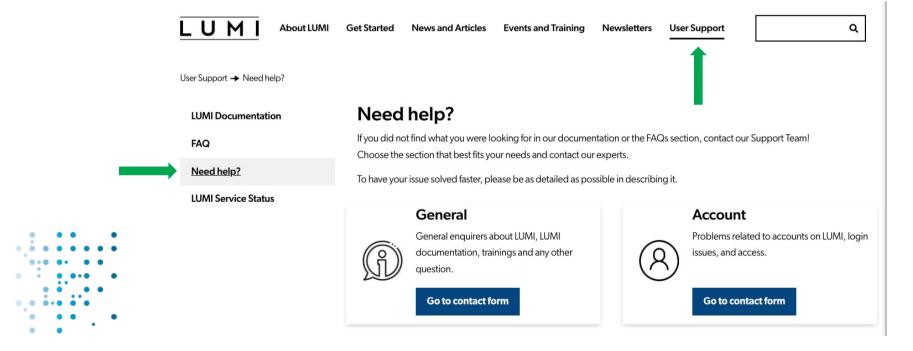
Engin Kayraklioglu (HPE) will give a presentation on Scalable Parallel Programming with Chapel: From Multicore CPUs to GPU-Powered Supercomputers.

Wednesday, 15 October 2025 at 16:00 EEST (15:00 CEST).

How to join the virtual coffee break: The Zoom link for the meeting can be found below:


https://cscfi.zoom.us/j/65727034273? pwd=VEdtY2trVUVKTEhxajZMbFhETWV2Zz09

Or you can use Meeting ID: 657 2703 4273 & Passcode: 418045


- Contact: lumi-supercomputer.eu/user-support/need-help
- Please do not use the email address to open a new ticket

- Contact: lumi-supercomputer.eu/user-support/need-help
- Please do not use the email address to open a new ticket

Q Search

LUMI

Documentation

Home First steps Hardware Run jobs Software Developing Storage Help desk

Help desk

Help desk

Training and events

Known issues

LUMI service status

Mailing list archive

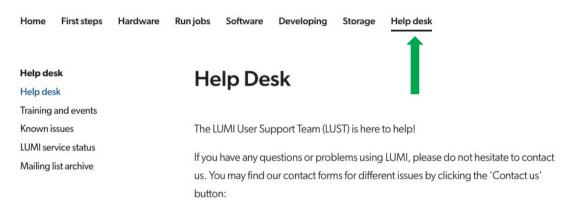
Help Desk

The LUMI User Support Team (LUST) is here to help!

If you have any questions or problems using LUMI, please do not hesitate to contact us. You may find our contact forms for different issues by clicking the 'Contact us' button:

Contact us

The LUMI helpdesk is open every weekday from Monday to Friday except during Finnish bank holidays:


	CE(S)T	EE(S)T	UTC (Summer)
Start	8:00 AM	9:00 AM	7:00 AM (6:00 AM)
End	6:00 PM	7:00 PM	5:00 PM (4:00 PM)

Q Search

L U M I Documentation

The LUMI helpdesk is open every weekday from Monday to Friday except during Finnish bank holidays:

	CE(S)T	EE(S)T	UTC (Summer)
Start	8:00 AM	9:00 AM	7:00 AM (6:00 AM)
End	6:00 PM	7:00 PM	5:00 PM (4:00 PM)

