
1

Lydia Duncan

October 7, 2025

I/O Demo Session

• The Basics

• The IO Library

• Opening A File

• Reading and Writing

• Formatted I/O

• I/O Transactions

• Sir Not -Appearing -In-This -Presentation

Outline

2

The Basics

3

• Can print to console without a ‘use’ or ‘import’ statement
writeln("Hello, world!");

• Can also print partial lines using ‘write’
write("The first 5 primes are: ");

for prime in getPrimes(numPrimes=5) {

 write(prime, “ “);

}

writeln();

// Prints “The first 5 primes are: 2 3 5 7 11 ” on a single line

• And print formatted output using ‘ writef ’
writef("%i in octal is %oi\n", 16, 16); // Prints “16 in octal is 20”

Basic I/O

4

• Basic Chapel types are easily written

• No string cast necessary!

writeln("Hello, world!"); // E.g., strings …

writeln(1..5); // ranges …

writeln(3.14); // reals …

writeln([1, 2, 4, 8]); // arrays, etc.

• Classes and records default to printing out their fields
class Foo {

 var x: int;

 var y: bool;

}

var f = new Foo(3, false);

writeln(f); // prints “{x = 3, y = false}”. A record would use () instead of { }

Basic I/O: Types

5

See Ben’s demo
tomorrow on how to
control the way types
are printed!

• For a lot of programs, this is enough

• When you want something more, then it’s time to turn to the IO libraries!
use IO;

• The ‘IO’ library provides more extensive operations

• File operations

• Specialized reading and writing

• It also defines a submodule, ‘ FormattedIO ’, for more format string operations

• Formatted reading/writing to files

• Format methods on the ‘string’ and ‘bytes’ types

• And some regex operations

• There’s also the ‘ ParallelIO ’ module, which is currently unstable

• Won’t cover today, but worth knowing about and exploring

Basic I/O: The Libraries

6

• Take a couple of minutes to create a short Chapel program that writes an array to the console

• Now adjust that program to print the index before each value

Quick Exercise 1

7

The IO Library

8

• The IO library is mainly focused around three types:

• ‘file’

• ‘fileReader ’

• ‘fileWriter ’

• The ‘file’ type represents a file in the operating system
var f = open(“myFile.txt”, ioMode.rw);

• The ‘ fileReader ’ and ‘ fileWriter ’ types allow reading and writing from an associated file
var r = f.reader();

var w = f.writer();

The IO Library

9

• Why separate types?

• Better supports parallel operations

• One ‘file’ instance can have multiple ‘ fileReader ’/’fileWriter’s associated with it

• If file regions covered don’t overlap, this is parallel safe!

• If don’t need multiple for a file, can open directly

var r = openReader(“myFile.txt”);

var w = openWriter(“myOtherFile.txt”);

• A ‘file’ will still be created, but it’ll only be owned by the ‘ fileReader ’/’fileWriter ’

‘file’ vs. ‘ fileReader ’/’fileWriter ’

10

• Our previous examples were writing to ‘ stdout ’ (standard output)

• Chapel also provides ‘stdin’ (standard input) and ‘stderr’ (standard error)

• Represent the normal programming concepts

• ‘stderr’ can be written to by calling its various ‘write*’ methods

• And ‘stdin’ can be read from by calling its ‘read*’ methods or the free standing ‘read’ functions in the ‘IO’ library

• These are instances of the ‘ fileWriter ’ and ‘ fileReader ’ types, provided by the ‘IO’ library

stdout /stdin/stderr

11

Opening a File

12

var f = open(“myFile.txt”, ioMode.rw);

• ‘open()’ also can take an ‘ioHintSet’ argument

• Used to specify optimization hints to the file system

• ‘ioHintSet’s can be combined using ‘|’ and ‘&’

• And compared using ‘==‘ or ‘!=‘

• If one isn’t provided, defaults to ‘empty’

• This function can throw errors

Opening a File

13

The path to the file The permissions to
open the file with

ioMode
option

What it means

r read

cw
create and

write

rw read and write

cwr
create, read

and write

a* append

* append is currently unstable

https://chapel-lang.org/docs/modules/standard/IO.html#IO.ioHintSet

• The file ‘reader()’ and ‘writer()’ methods don’t need arguments

• But there are some optional ones to provide

var r = f.reader(locking, region, hints, deserializer);

var w = f.writer(locking, region, hints, serializer);

• ‘openReader ’/’openWriter ’ also can take these arguments

• But since there’s no associated file, they require the path

• These functions can also throw errors

Opening fileReaders /fileWriters

14

Whether it
should lock

The part of the
file to read/write

Optimization
hints

How to read/write
the file’s contents

Again, see Ben’s demo
tomorrow on
serializers/ deserializers !

• When you’re done with all these types, you can close them
r.close();

f.close();

• But all fileReaders and fileWriters must be closed before their files are closed

• All these types will close themselves automatically when they go out of scope

proc someFunc() {

 var f = open(“myFile.txt”, ioMode.rw);

 …

 return somethingUnrelated;

}

Cleaning Up

15

‘f’ will be closed
after this return

• Make a new Chapel program that opens a file to “ oldMcDonald.txt ” for reading

• This file is defined in ‘https:// github.com /chapel -lang/chapelcon25 -demos/IO/’

• Now open a ‘ fileReader ’ on that file

• Can you write an ‘ openReader ’ call that does the same thing?

Quick Exercise 2

16

ioMode
option

What it means

r read

cw
create and

write

rw read and write

cwr
create, read

and write

a* append

Reading and Writing

17

• ‘fileReader ’ provides many methods for reading from a file

• We’ll focus on ‘read’ and ‘ readLine ’

• ‘read’ can take in one or more arguments to fill

var w: int;

r.read(w); // returns ‘false’ if nothing was read

• Or it can take one or more type arguments:

var x = r.read(int);

var (a, b, c) = r.read(int, bool, bool);

• ‘readLine ’ will read through a newline and place the result in either the ‘string’, ‘bytes’, or array of ‘bytes’ argument

var s: string;

r.readLine(s);

• Alternatively, can request the type to return (must be either ‘string’ or ‘bytes’)

var s = r.readLine(string);

Reading From A File

18

Can also specify the length and whether the
newline character itself should be included

Ditto

• ‘fileReader ’ also provides a ‘lines’ iterator

• This allows you to traverse the entirety of the file

for line in r.lines() {

 …

}

• It defaults to requiring no arguments, but can also specify:

• Whether the newline characters should be removed from the line

for line in r.lines(stripNewline = true) { … }

• Whether the line should be a ‘string’ or ‘bytes’

for line in r.lines(t = bytes) { … }

Reading From A File, cont.

19

• ‘fileWriter ’ provides several methods for writing to a file

• We’ll focus on ‘write’ and ‘ writeln ’

• These are the same as the standalone versions from earlier

• Just instead defined as methods

w.write("Hello, ”);

var s = "world!";

w.writeln(s);

Writing To A File

20

• Grab your program that opened “ oldMcDonald.txt ” for reading

• Let’s extend it to read the contents of the file and print it to the console

• Did you accidentally print a newline in between each line of the file? ☺

Quick Exercise 3

21

Formatted I/O

22

• In many cases, the ability to comma -separate intended output will be sufficient
writeln(“Here I am interspersing an int, ”, 5, “, with some text”);

• But sometimes you want more extensive control of how your output looks

• Or what parts of the output you want to read in

• Our focus here will be ‘ readf ()’/‘ fileReader.readf ()’, ‘ fileWriter.writef ()’, and the ‘format’ methods

• But the library also contains ‘ fileReader ’ methods for using regex

Formatted I/O: Motivation

23

• ‘readf ’/’fileReader.readf ’ take the pattern, followed by the arguments to read
var month: string;

var day: int;

var year: int;

r.readf("Today is %s %i, %i\n", month, day, year);

• ‘fileWriter.writef ’ is specified the same, but the arguments passed will be used to fill in the pattern

var month: string = “October”;

var day: int = 7;

var year: int = 2025;

w.writef("Today is %s %i, %i\n", month, day, year);

• Instead of sending the pattern in as an argument, the format methods are called on the pattern itself
var fmtStr = "Today is %s %i, %i\n";

var res = fmtStr.format(month, day, year);

Formatted I/O

24

• Using a format string starts with a base format specifier for the type

• The letter used tries to be the most natural for that type

• Though it’s not always possible – see ‘ imag ’ and ‘complex’

• If you don’t know the type, you can use:

• ‘%n’ if you know it’s a number

• ‘%?’ if you don’t know the type, or know it’s a record or class

• This will use the fileWriter /fileReader’s associated serializer/ deserializer

Format Specifiers

25

Type Format
Specifier

int %i

uint %u

real %r

imag %m

complex %z

string %s

Single
character

%c

Have I convinced you to
see Ben’s demo yet? ☺

• Many of the types can be modified for greater control

• Padding the output (e.g., ‘%17’)

• Aligning the value (see table)

• Padding with zeroes (e.g., ‘%0’)

• Converting to binary, octal, or hexadecimal (see table)

• We used ’%o’ in our ‘ writef ’ example

• Prefixing positive numbers with ‘+’ (e.g., ‘%+’)

Conversion Specifiers

26

Alignment
specifier

Meaning

<
Left justify,
e.g. “15 “

^
Center justify,

e.g. “ 15 “

>
Right justify,
e.g. “ 15”

Numeric
conversion

Meaning

b binary

o octal

x hexadecimal

d decimal

• Many of the types can be modified for greater control

• Padding the output (e.g., ‘%17’)

• Aligning the value (see previous slide)

• Padding with zeroes (e.g., ‘%0’)

• Converting to binary, octal, or hexadecimal (see previous slide)

• Prefixing positive numbers with ‘+’ (e.g., ‘%+’)

Conversion Specifiers Applicability

27

Adjustment
specifier

Applicable type
specifiers

<, ^, > i, u, r, m, z, s

b, o i, u

x, d i, u, r, m, z

+ i, u, r, m, z

0 (zero) i, u, r, m

• Grab your program that opened “ oldMcDonald.txt ” for reading again

• Instead of reading the whole file, let’s get specific parts out of the first line

• The first line says “Old McDonald had a farm”

• Make a ‘ readf ’ call to get each of these components out of the first line

• How would you use ‘ writef ’ to print with a number instead of ‘a’ for the count?

• Hint: you could use ‘% i’ to print an integer instead of a string

Quick Exercise 4

28

Adjective Person Verb ThingCount

I/O Transactions

29

• Chapel offers a way to speculatively perform operations involving a ‘ fileReader ’/’fileWriter ’

• If something goes wrong, can fall back to the earlier state

• E.g., if expected next value read to be something specific and it wasn’t

• This involves ”transactions”

• Try a sequence of actions on the ‘ fileReader ’/’fileWriter ’

• If they work, ‘commit’ and continue

• If they don’t, ‘revert’ and try something else

r.mark();

…

if success {

 r.commit();

} else {

 r.revert();

 …

}

I/O Transactions

30

• The oldMcDonald text file has a bad animal noise in it

• Use transactions to find and print the line with the bad animal noise in it

Exercise 5

31

Sir Not -Appearing -In-
This -Presentation

32

• IO library features

• Other ways to open a file: Alternate initializers , openTempFile , openMemFile

• openStringReader , openBytesReader ,

• Specific ioHintSets

• Other read methods: readLiteral , readNewline , matchLiteral , matchNewline , readThrough , readTo , readAll ,
readString , readBytes , readBits , readCodepoint , readByte , readBinary , readln

• Other write methods: writeLiteral , writeNewline , writeBits , writeCodepoint , writeByte , writeString , writeBytes ,
writeBinary

• IO transaction methods: offset , advance , advanceThrough , advanceThroughNewline , advanceTo

• seek

• File properties: isOpen , path , size

• flush

• assertEOF

• FormattedIO library methods: extractMatch , search , matches

• ParallelIO library

Not Covered

33

https://chapel-lang.org/docs/modules/standard/IO.html#IO.file.init
https://chapel-lang.org/docs/modules/standard/IO.html#IO.openTempFile
https://chapel-lang.org/docs/modules/standard/IO.html#IO.openMemFile
https://chapel-lang.org/docs/modules/standard/IO.html#IO.openStringReader
https://chapel-lang.org/docs/modules/standard/IO.html#IO.openStringReader
https://chapel-lang.org/docs/modules/standard/IO.html#IO.openBytesReader
https://chapel-lang.org/docs/modules/standard/IO.html#IO.ioHintSet
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileReader.readLiteral
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileReader.readNewline
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileReader.matchLiteral
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileReader.matchNewline
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileReader.readThrough
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileReader.readTo
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileReader.readAll
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileReader.readString
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileReader.readBytes
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileReader.readBits
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileReader.readCodepoint
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileReader.readByte
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileReader.readBinary
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileReader.readln
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileWriter.writeLiteral
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileWriter.writeNewline
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileWriter.writeBits
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileWriter.writeCodepoint
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileWriter.writeByte
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileWriter.writeString
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileWriter.writeBytes
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileWriter.writeBinary
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileReader.offset
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileReader.advance
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileReader.advanceThrough
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileReader.advanceThroughNewline
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileReader.advanceTo
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileReader.seek
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileReader.seek
https://chapel-lang.org/docs/modules/standard/IO.html#IO.file.isOpen
https://chapel-lang.org/docs/modules/standard/IO.html#IO.file.path
https://chapel-lang.org/docs/modules/standard/IO.html#IO.file.size
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileWriter.flush
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileWriter.flush
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileReader.assertEOF
https://chapel-lang.org/docs/modules/standard/IO.html#IO.fileReader.assertEOF
https://chapel-lang.org/docs/modules/standard/IO/FormattedIO.html#FormattedIO.fileReader.extractMatch
https://chapel-lang.org/docs/modules/standard/IO/FormattedIO.html#FormattedIO.fileReader.search
https://chapel-lang.org/docs/modules/standard/IO/FormattedIO.html#FormattedIO.fileReader.matches
https://chapel-lang.org/docs/modules/packages/ParallelIO.html
https://chapel-lang.org/docs/modules/packages/ParallelIO.html

© 2025 Hewlett Packard Enterprise Development LP

Thank You

	Slide 1: I/O Demo Session
	Slide 2: Outline
	Slide 3: The Basics
	Slide 4: Basic I/O
	Slide 5: Basic I/O: Types
	Slide 6: Basic I/O: The Libraries
	Slide 7: Quick Exercise 1
	Slide 8: The IO Library
	Slide 9: The IO Library
	Slide 10: ‘file’ vs. ‘fileReader’/’fileWriter’
	Slide 11: stdout/stdin/stderr
	Slide 12: Opening a File
	Slide 13: Opening a File
	Slide 14: Opening fileReaders/fileWriters
	Slide 15: Cleaning Up
	Slide 16: Quick Exercise 2
	Slide 17: Reading and Writing
	Slide 18: Reading From A File
	Slide 19: Reading From A File, cont.
	Slide 20: Writing To A File
	Slide 21: Quick Exercise 3
	Slide 22: Formatted I/O
	Slide 23: Formatted I/O: Motivation
	Slide 24: Formatted I/O
	Slide 25: Format Specifiers
	Slide 26: Conversion Specifiers
	Slide 27: Conversion Specifiers Applicability
	Slide 28: Quick Exercise 4
	Slide 29: I/O Transactions
	Slide 30: I/O Transactions
	Slide 31: Exercise 5
	Slide 32: Sir Not-Appearing-In-This-Presentation
	Slide 33: Not Covered
	Slide 34: Thank You

