HiPerMotif: Novel Parallel Subgraph Isomorphism
in Large-Scale Property Graphs

Mohammad Dindoost, Oliver Alvarado Rodriguez, Bartosz Bryg, loannis Koutis, and David A. Bader

ChapelCon ‘25
October 9, 2025

~HAaPRPRPEL

NJ I

New Jersey Institute
of Technology

Problem Statement

Pattern
(Motif)

Oe— g O g NJI

New Jersey Institute
of Technology

Motivation

e Subgraph Isomorphism Challenge

|dentifying small pattern graphs within larger graphs is a complex and computationally heavy problem in
graph theory.(NP-Complete)

o Applications Across Domains

Subgraph isomorphism impacts neuroscience, biology, social networks, cybersecurity, and fraud
detection.

o Scalability Issues

Traditional algorithms struggle with large graphs due to exhaustive search causing slow runtimes and
memory failures.

e HiPerMotif Solution

HiPerMotif introduces a hybrid parallel algorithm improving initialization and scaling for large graph

analysis. (Chapel-Arachne) N J I

New Jersey Institute
of Technology

Research Background

r * Parallel and Scalable New Algorithm
I VF2 I VF2-PS HiPerMotif
; | J

[Luigi P. Cordella, et al.]

e Ullmann’s algorithm, LAD (Labeled Distance), Rl / RI-Plus / RI-DS, TurbolSO,
Glasgow Subgraph Solver, VF2, ...

NetworkX, DotMotif, iGraph, ...

VF2 is widely used.

Great potential to be parallel.
In neuroscience there are some tools already adapted it. N J I
New Jersey Institute
4 of Technology

A Bird’s-Eye View of Arachne

‘lives-with

34 69
:person :person

name Dan

name Ann

born brand model born 05-29-1990 born 12-05-1975
“lives-with
B read_matrix_market_file() N - ‘
srcid dst id relationship since bought dites zdiives
since 01-10-2011 since 01-10-2011
29 34 69 lives-with NULL NULL add edges from()
69 34 lives-with NULL NULL = =
89 - bought 01-10-2011
34 89 drives 2011 NULL rmat() "owns
69 89 drives 2011 NULL :va?\?cle
69 | 8o owns NULL 2011 gnp() el foeRiall BB L
89 89 drives NULL NULL
Convert dataframes to graphs or . Perform analysis or filter for
Load in large CSVs, HDF5s, Parquets, matrix market . Work with your data as a graph. .
& ’ fil ! ; q ! generate your own synthetic graphs. NetworkX, iGraph, or graph-tool.
iles, etc.

imp@l‘% al‘I\o’udg as ak
impor aracnne d Chapel Server

User edits a Python 0 . .

script or a Jupyter graph = ar.PropGraph() Overarching Dispatcher

Notebook. [

" graph.load_edge_attributes (relationships_df : ! i

. gragh.load:no e:attributesglabelidff -0 Code Modules +

X returned_nodes = graph.node_attributes[“column® 1

. returned_edges = graph.edge_attributes[“column” [Distributed A":ay

. subgraph_src = ak.inld(returned_edges[@], Distributed] T i
Petﬁr‘ngd:nodes) ¢ ~edgesle] Object St | Distributed SegGraph

. subgraph_dst = ak.inld(returned_edges[1], ject Store
returned_nodes)]

) kept_edges = subgraph_src & subgraph_dst

. Platform MPP, SMP, Cluster, Laptop, etc.

. subgraph_src = subgraphfsrc{keptfedges]

: subgraph_dst = subgraph_dst[kept_edges Original image source: https://chapel-lang.org/CHIUW/2020/Reus.pdf was modified for this presentation

NN RWNE

IC

Indexing
Arithmet
Generation

subgraph = ar‘.Gl‘aphp X
subgraph.add_edges_from(subgraph_src, subgraph_dst) Runs on any hardware, data stays in the back-end,

user calls API through Python: powerful and
productive. (Image credit: [Reus 2020])

Easily usable through NetworkX-like API.

OPEN SOURCE: https://github.com/Bears-R-Us/arkouda-njit & https://github.com/Bears-R-Us/arkouda N I
User PAPERS & TALKS AT: IEEE HPEC, IEEE HiPC, IEEE IPDPS, ACM PPoPP, SIAM PP, Nature, & MDPI Algorithms

New Jersey Institute
5 of Technology

https://github.com/Bears-R-Us/arkouda-njit

HiPerMotif

e Edge-Centric Initialization
HiPerMotif begins by identifying and validating all first-edge mappings, skipping empty initial mappings.
e Pattern Graph Reordering
Structural reordering prioritizes vertices with high connectivity to optimize the matching process.
e Parallel Edge Validation
Each edge mapping is validated independently, enabling natural parallelization for efficiency.
e Framework Implementation

Implemented within Arkouda/Arachne, HiPerMotif scales efficiently for massive dataset analysis.

NJ I

New Jersey Institute
of Technology

HiPerMotif

(Subgraph Reordering

", Y
ez,

\

J

Allows us to reduce
the search space by
starting off with
vertices that are
structurally
significant by
number of
out-neighbors.

Validation

Allows us to reduce
the search space
further by allowing
the algorithm to
dynamically pick
initial vertices and
edges that are
semantically
valuable.

d State Injection) [Subgraph Matching\
b -)6
e e) Wil s
We force subgraph Match the full
searching to “time subgraphs.

travel” and skip
unneeded states
generated by
vertices 0 and 1 of
the subgraph and
rather start at depth
2.

NJ I

New Jersey Institute
of Technology

Performance (synthetic and Real-World Graphs)

o Evaluation on Synthetic Graphs

HiPerMotif was tested on Erdds-Rényi, Barabasi-Albert, and Watts-Strogatz graph models with
varied densities and sizes.

o Testing on Real-World Datasets

Datasets included neuroscience connectomes, communication and social networks, plus a massive
human cortex graph.

e Superior Performance Metrics

HiPerMotif achieved up to 66x speedup and processed large graphs where baselines failed due to
memory limits.

o Impact of Structural Reordering

Structural reordering strategy alone contributed up to 5% speedup, enhancing HiPerMotif's
efficiency.

New Jersey Institute
of Technology

N e U rOSC I e n Ce (Hemibrain Dataset)

Performance Analysis on Hemibrain

I HiPerMotif
VF2-PS
=3 Glasgow
== VF3P

25000 -

20000 -

15000 -

10000 A

Execution Time (seconds)

5000 -

Subgraph 3 Subgraph 5

Subgraph ID
- All Motifs created randomly from 3 to 20 nodes
- Up to 66X speedups N I
- McCreesh et al, The Glasgow subgraph solver: using constraint programming to tackle hard subgraph isomorphism problem
variants
- Carletti et al, A parallel algorithm for subgraph isomorphism New Jersey Institute

9 of Technology

HO1 Dataset (Large-Scale Network)

50K vertices and 150 Millions edges
representing
a cubic millimeter of human cortex.

Motif HO1 (seconds)

9,
% 571.94
0.0
P 1011.62
:: ? 21.23

e

:g? 363.54
ivas’e 1200.82

L X N J

10

NJ I

New Jersey Institute
of Technology

Parallel speedup

R N e Y Y Y - R

a) 0.05 b) 0.005
100 (a) - 100 (b) 100
ll
1
]
1
80 ! 80 80
'l
o
2 60 60 60
T
@
2
o 40 40 40
20 20 20
0 0 0

21 23 25 2 7
Number of Threads

(c) 0.0005

11

Ideal

New Jersey Institute
of Technology

MOMO: Use Case

o
© o—e—>0 2 o— ¢
o
__>. o
PN o
v
o

Number
10 Q_ SEARCH

[Results

Motif Instance 0 A

Neuron ID: 720575940619861883

Neuron ID: 720575940629377551

Neuron ID: 720575940650482041

M. Shewarega, J. Troidl, et al. / ToMo

Our Collaboration with Harvard

Subgraphs | Arachne (s) | NetworkX (s)

: 2.48 336.45

I 3.62 173.75

[2.88 5,980.54

i l 339.46 16,436.85
LT 1.56 435.07
l 78.77 810.23
e 4.10 1,018.23
l 38.06 >12,000

Dataset: 13,000 neurons with over
500,000 synaptic connections

NJ I

New Jersey Institute
12 of Technology

Thank you all for your attention.

HiPerMotif is open-source and available on GitHub, so feel free to explore the code, try it out, and
reach out with any feedback.

I'd be happy to take any questions you have.

NJ I

New Jersey Institute
of Technology

13

VF Family (VF, VF2, VF2+, VF2++, VF3P)

[V. Carletti, P. Foggia, M. Vento, A. Juttner, P. Madarasi, A. Saggese, C. Sansone, at al]

Algorithm 1 A high level description of V F2
1: procedure VF2(Mapping m, ProblemType PT)

2: if m covers V| then

3: Output(m)

4: else

5: Compute the set Py, of the candidate pairs for extending m
6: for all p € P, do

-1

if Conspr(p.m) A =Cutpr(p, m) then
8: call VF2(extend(m, p), PT)

PROCEDURE Match (s)
INPUT: an intermediate state s; the initial state sy, has M(sg)=0
OUTPUT: the mappings between the two graphs

IF M(s) covers all the nodes of G, THEN

OUTPUT M(s)
ELSE
Compute the set P(s) of the pairs candidate for inclusion in M(s) <

FOREACH p in P(s)
IF the feasibility rules succeed for the inclusion of p in M(s) THEN
Compute the state s” obtained by adding p to M(s)
CALL Match(s')
END IF
END FOREACH
Restore data structures <
END IF
END PROCEDURE Match

Two vectors, core_1 and core_2, whose dimensions
correspond to the number of nodes in G; and G,
respectively, containing the current mapping; in particular,
core_1[n] contains the index of the node paired with n, if
n is in M,;(s), and the distinguished value NULL_NODE
otherwise. The same encoding is used for core_2.

Four vectors, in_1, out_1, in_2, out_2, whose dimen-
sions are equal to the number of nodes in the correspond-
ing graphs, describing the membership of the terminal
sets. In particular, in_1[n] is nonzero if n is either in M;(s)
or in Ti"(s); similar definitions hold for the other three
vectors. The actual value stored in the vectors is the depth
in the SSR tree of the state in which the node entered the
corresponding set.

Core_1 |G1]|
Core_2 |G2|
T in_ 1 |G1|
T out_1 |G1]|
T in_2 |G2|
T out_2 |G2|

NJ I

New Jersey Institute
14 of Technology

Structural Reo rdering(HeIps us to prune faster)

MVE Speedup

Speedup (DEFAULT Time / MVE Time)
w

1

® === Speedup (1x)
o ® Average Speedup: 1.74x
e
®
®
o
o
® e
o o
. . Y
o . .)
o e
o
e © @ ®
o ® w®
-_a.._.g..o._ﬂ_., ______ ._____.__.l._o_;..,__“__;._.’_‘___e _____ R A S | M S O s - ——®
0.0005 0.0200 0.0400 0.0600 0.0800 0.1000
Graph Density
15

NJ I

New Jersey Institute
of Technology

Challenges in Traditional Algorithms

e Inefficient Candidate Generation

Traditional algorithms generate large search spaces due to inefficient candidate selection, increasing
computation.

e Rigid Vertex-Ordering Heuristics

Fixed vertex-ordering heuristics fail to adapt dynamically to varying graph structures and patterns.
e High Memory Overhead

Tracking numerous partial states leads to significant memory consumption in traditional approaches.
e Limited Parallelization

Early search stages lack effective parallelization, reducing algorithm scalability on large graphs.

NJ I

New Jersey Institute
of Technology

Twitter

Performance Analysis on Twitter

— E=m HiPerMotif
Ezz3 VF2-PS
=9 Glasgow
=== VF3P

5000 -

4000 -

3000

2000

Execution Time (seconds)

1000

Subgraph 3 Subgraph 4 Subgraph 5
Subgraph ID

Subgraph 1 Subgraph 2

NJ I

New Jersey Institute
of Technology

17

VF2-PS

Q

The optimal point to spawn the tasks
is immediately after generating

candidates —_—

we leverage the highly efficient and
dynamic parallelization capabilities of
Chapel, which automatically generates
parallel tasks and assigns them to
available threads based on the current
system load

Algorithm 2 Parallel VF2-PS algorithm that generates the
mappings of vertices u from the host graph that are mapped
to vertices v from the subgraph.

Input: A state S, ,ent With the current mapping information
for a given recursive depth d.

Output: Mappings M of all host graph and subgraph pairs
that induce a monomorphism.

1: M = list(int) > Parallel-safe list.
2: if d == n, then > 1y is the size of the subgraph.
3 for v € Scyrrent-core do

- M.pushBack(v)

5 end for

6: return M/

7: end if

8: candidates = getCandidate Pairs(Sqyrrent)

9: for all (u,v) € candidates do

10: if i.sFeasible(u, v, Seyrrent) then

11 Sclone = Scurrent-clone()

12: addT oTinTout(u, v, Sclone)

13: Mupew = VF2(Sclone,d + 1)

14: for m € Myew do

15: M.pushBack(m)

16: end for

17: end if

18: end for all
19: return \/

Changes:

18

States

Fast start

Early Termination
getCandidatePairs
getUnmappedNodes
Support of Properties
ONLY count

ONLY time

NJ I

New Jersey Institute
of Technology

Algorithms

Algorithm 1 Structural Reordering Algorithm 2 Vertex Validator
I: procedure STRUCTURALREQRDER(sSrC, dst) I: procedure VV(G1.G2)
= Cornpule deg(v) forallv € V 2: vertexFlag = [(11 n)
. % TY« [N (0)], TS, + ING(0)
£ oreiargicatit) 4 forall v € V(Gs) do
5 SWAP(v™, (1)) 5: Ty « |N&, (v)], T, + |NE ()|
6: R+ RU{v"} 6: if checkAttributes(v,0)ATE > T2 A 12>
7 while |R|< [‘l do 7’3" then
8 u — 7(|R]) 7: vertexFlag(v] + true
9: Update indeg. outdeg. totaldeg 3: end if
10: N*u) +~{w g R | (u— w) € E} 9. éd tor
o i N"(u) # O then) 10: return vertexFlag
12: w* <« argmaxo(w :
wEN*+(x) 11: end procedure
13: else
14: w* — argmazo(w)
weV\R
15: end if
16: SWAP(w™, 7(|R|+1))
17: R+ RU{w"}
18: end while
19: return (src,dst,m)

2 i NI

New Jersey Institute
of Technology

19

Algorithms

Algorithm 3 Edge Validator

I: procedure EV(u v, s)

2 :rl:i/(:ul A3E \((u,v); T:(l:ltllul = \’ (0 1)

3: if —match(v.1) then return false

4: end if

5: €1 + getEdgeId(u,v); e] + getEdgeId(v,u)

6: €y +— getEdgeId(0,1); €5+ getEdgeId(1,0)

7: if -match(e;.es) V(€5 # =1 Ae] = —1) then

8: return false

9: end if

10: if e] # —1Ae5 # —1A-checkAttributes(e],e5)
then

11: return false

12: end if

13: lfl ml/ ITIIVI)ull e | oull then re‘urn ralse

14: end if

15: Nyov T,: L) LIRS UT

16: No1+T2UTS U T1 UTE

17: if [N, N N,|< |NgN \1| then return false

18: end if

19:]-: ;ul mloul U Tn/uul \ {“ “}

20: S- Tm/uul mluulL T‘ult/oul {0 1}

21: s.depth < s.depth + 2

22: s.core|0] + u; s.core[l] «— v

23: return true

24: end procedure

Algorithm 4 HiPerMotif Algorithm

10:
11:

13:

1
2
3
4:
)]
6
7
8
9

: procedure HIPERMOTIF(G'1. G2)

M + new list(int)
for all ¢ € E5 do
u + src(e), v + dst(e)
if vertexFlaglu| A u # v then
s + new State(|V5], |V;])
if EV(u.v.s) then
Moy + VF2-PS(s,2)
M «— M U My
end if
end if
end for
return \/

14: end procedure

> Parallel over edges

20

NJ I

New Jersey Institute
of Technology

