
HiPerMotif: Novel Parallel Subgraph Isomorphism
in Large-Scale Property Graphs

Mohammad Dindoost, Oliver Alvarado Rodriguez, Bartosz Bryg, Ioannis Koutis, and David A. Bader

ChapelCon ‘25
October 9, 2025

Problem Statement

2

Graph
(Target)

Pattern
(Motif)

Motivation
● Subgraph Isomorphism Challenge

Identifying small pattern graphs within larger graphs is a complex and computationally heavy problem in
graph theory. (NP-Complete)

● Applications Across Domains

Subgraph isomorphism impacts neuroscience, biology, social networks, cybersecurity, and fraud
detection.

● Scalability Issues

Traditional algorithms struggle with large graphs due to exhaustive search causing slow runtimes and
memory failures.

● HiPerMotif Solution

HiPerMotif introduces a hybrid parallel algorithm improving initialization and scaling for large graph
analysis. (Chapel-Arachne)

3

Research Background

4

VF2 VF2-PS HiPerMotif

Parallel and Scalable New Algorithm

● Ullmann’s algorithm, LAD (Labeled Distance), RI / RI-Plus / RI-DS, TurboISO,
Glasgow Subgraph Solver, VF2, …

● NetworkX, DotMotif, iGraph, …
● VF2 is widely used.
● Great potential to be parallel.
● In neuroscience there are some tools already adapted it.

[Luigi P. Cordella, et al.]

OPEN SOURCE: https://github.com/Bears-R-Us/arkouda-njit & https://github.com/Bears-R-Us/arkouda
PAPERS & TALKS AT: IEEE HPEC, IEEE HiPC, IEEE IPDPS, ACM PPoPP, SIAM PP, Nature, & MDPI Algorithms

A Bird’s-Eye View of Arachne

read_matrix_market_file()

add_edges_from()

rmat()

gnp()

Load in large CSVs, HDF5s, Parquets, matrix market
files, etc.

Work with your data as a graph.Convert dataframes to graphs or
generate your own synthetic graphs.

bfs_layers()

subgraph_isomorphism()

triangle_counting()

subgraph_view()

Perform analysis or filter for
NetworkX, iGraph, or graph-tool.

1. import arkouda as ak
2. import arachne as ar
3.
4. ## Get src and dst from input file.
5.
6. graph = ar.PropGraph()
7.
8. ## Generate label_df and relationships_df from input

file.
9.

10. graph.load_edge_attributes(relationships_df)
11. graph.load_node_attributes(label_df)
12.
13. ## User generates labels_to_find and

relationships_to_find.
14. returned_nodes = graph.node_attributes[“column”] == 1
15. returned_edges = graph.edge_attributes[“column”] == 2
16.
17. subgraph_src = ak.in1d(returned_edges[0],

returned_nodes)
18. subgraph_dst = ak.in1d(returned_edges[1],

returned_nodes)
19.
20. kept_edges = subgraph_src & subgraph_dst
21.
22. subgraph_src = subgraph_src[kept_edges]
23. subgraph_dst = subgraph_dst[kept_edges]
24.
25. subgraph = ar.Graph()
26. subgraph.add_edges_from(subgraph_src, subgraph_dst)
27. ## Run some other operations on subgraph!

Easily usable through NetworkX-like API.

Runs on any hardware, data stays in the back-end,
user calls API through Python: powerful and

productive. (Image credit: [Reus 2020])

ZMQ

User

User edits a Python
script or a Jupyter

Notebook.

5

https://github.com/Bears-R-Us/arkouda-njit

HiPerMotif

6

● Edge-Centric Initialization

HiPerMotif begins by identifying and validating all first-edge mappings, skipping empty initial mappings.

● Pattern Graph Reordering

Structural reordering prioritizes vertices with high connectivity to optimize the matching process.

● Parallel Edge Validation

Each edge mapping is validated independently, enabling natural parallelization for efficiency.

● Framework Implementation

Implemented within Arkouda/Arachne, HiPerMotif scales efficiently for massive dataset analysis.

HiPerMotif

Allows us to reduce
the search space by

starting off with
vertices that are

structurally
significant by

number of
out-neighbors.

Allows us to reduce
the search space

further by allowing
the algorithm to
dynamically pick

initial vertices and
edges that are
semantically

valuable.

We force subgraph
searching to “time

travel” and skip
unneeded states

generated by
vertices 0 and 1 of
the subgraph and

rather start at depth
2.

Match the full
subgraphs.

7

Performance (Synthetic and Real-World Graphs)

● Evaluation on Synthetic Graphs

HiPerMotif was tested on Erdős-Rényi, Barabási-Albert, and Watts-Strogatz graph models with
varied densities and sizes.

● Testing on Real-World Datasets

Datasets included neuroscience connectomes, communication and social networks, plus a massive
human cortex graph.

● Superior Performance Metrics

HiPerMotif achieved up to 66× speedup and processed large graphs where baselines failed due to
memory limits.

● Impact of Structural Reordering

Structural reordering strategy alone contributed up to 5× speedup, enhancing HiPerMotif's
efficiency.

8

Neuroscience (Hemibrain Dataset)

9

- All Motifs created randomly from 3 to 20 nodes
- Up to 66X speedups
- McCreesh et al, The Glasgow subgraph solver: using constraint programming to tackle hard subgraph isomorphism problem

variants
- Carletti et al, A parallel algorithm for subgraph isomorphism

H01 Dataset (Large-Scale Network)

10

50K vertices and 150 Millions edges
representing
a cubic millimeter of human cortex.

Parallel speedup

11

MOMO: Use Case Our Collaboration with Harvard

12

using
Arachne-HiPerMotif

vs NetworkX VF2:
Up to 2,000 X

faster!

Dataset: 13,000 neurons with over
500,000 synaptic connections

M. Shewarega, J. Troidl, et al. / ToMo

Thank you all for your attention.

HiPerMotif is open-source and available on GitHub, so feel free to explore the code, try it out, and
reach out with any feedback.

I’d be happy to take any questions you have.

13

VF Family (VF, VF2, VF2+, VF2++, VF3P)

[V. Carletti, P. Foggia, M. Vento, A. Juttner, P. Madarasi, A. Saggese, C. Sansone, at al]

14

Core_1 |G1|

Core_2 |G2|

T_in_1
T_out_1

|G1|
|G1|

T_in_2
T_out_2

|G2|
|G2|

Structural Reordering(Helps us to prune faster)

15

Challenges in Traditional Algorithms
● Inefficient Candidate Generation

Traditional algorithms generate large search spaces due to inefficient candidate selection, increasing
computation.

● Rigid Vertex-Ordering Heuristics

Fixed vertex-ordering heuristics fail to adapt dynamically to varying graph structures and patterns.

● High Memory Overhead

Tracking numerous partial states leads to significant memory consumption in traditional approaches.

● Limited Parallelization

Early search stages lack effective parallelization, reducing algorithm scalability on large graphs.

16

Twitter

17

VF2-PS

The optimal point to spawn the tasks
is immediately after generating
candidates

we leverage the highly efficient and
dynamic parallelization capabilities of
Chapel, which automatically generates
parallel tasks and assigns them to
available threads based on the current
system load

Changes:
- States
- Fast start
- Early Termination
- getCandidatePairs
- getUnmappedNodes
- Support of Properties
- ONLY count
- ONLY time

18

Algorithms

19

Algorithms

20

