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Motivation  
● Subgraph Isomorphism Challenge 

Identifying small pattern graphs within larger graphs is a complex and computationally heavy problem in 
graph theory. (NP-Complete)

● Applications Across Domains 

Subgraph isomorphism impacts neuroscience, biology, social networks, cybersecurity, and fraud 
detection. 

● Scalability Issues 

Traditional algorithms struggle with large graphs due to exhaustive search causing slow runtimes and 
memory failures. 

● HiPerMotif Solution 

HiPerMotif introduces a hybrid parallel algorithm improving initialization and scaling for large graph 
analysis.  (Chapel-Arachne)

3



Research Background
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VF2 VF2-PS HiPerMotif

Parallel and Scalable New Algorithm

● Ullmann’s algorithm, LAD (Labeled Distance), RI / RI-Plus / RI-DS, TurboISO, 
Glasgow Subgraph Solver, VF2, …

● NetworkX, DotMotif, iGraph, …
● VF2 is widely used.
● Great potential to be parallel.
● In neuroscience there are some tools already adapted it.

[Luigi P. Cordella, et al.]



OPEN SOURCE: https://github.com/Bears-R-Us/arkouda-njit & https://github.com/Bears-R-Us/arkouda
PAPERS & TALKS AT: IEEE HPEC, IEEE HiPC, IEEE IPDPS, ACM PPoPP, SIAM PP, Nature, & MDPI Algorithms

A Bird’s-Eye View of Arachne

read_matrix_market_file()

add_edges_from()

rmat()

gnp()

Load in large CSVs, HDF5s, Parquets, matrix market 
files, etc.

Work with your data as a graph.Convert dataframes to graphs or 
generate your own synthetic graphs.

bfs_layers()

subgraph_isomorphism()

triangle_counting()

subgraph_view()

Perform analysis or filter for 
NetworkX, iGraph, or graph-tool.

1. import arkouda as ak
2. import arachne as ar
3.  
4. ## Get src and dst from input file.
5.  
6. graph = ar.PropGraph()
7.  
8. ## Generate label_df and relationships_df from input 

file.
9.  

10. graph.load_edge_attributes(relationships_df)
11. graph.load_node_attributes(label_df)
12.  
13. ## User generates labels_to_find and 

relationships_to_find.
14. returned_nodes = graph.node_attributes[“column”] == 1
15. returned_edges = graph.edge_attributes[“column”] == 2
16.  
17. subgraph_src = ak.in1d(returned_edges[0], 

returned_nodes)
18. subgraph_dst = ak.in1d(returned_edges[1], 

returned_nodes)
19.  
20. kept_edges = subgraph_src & subgraph_dst
21.  
22. subgraph_src = subgraph_src[kept_edges]
23. subgraph_dst = subgraph_dst[kept_edges]
24.  
25. subgraph = ar.Graph()
26. subgraph.add_edges_from(subgraph_src, subgraph_dst)
27. ## Run some other operations on subgraph!

Easily usable through NetworkX-like API.

Runs on any hardware, data stays in the back-end, 
user calls API through Python: powerful and 

productive. (Image credit: [Reus 2020])

ZMQ

User

User edits a Python 
script or a Jupyter 

Notebook.
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HiPerMotif
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● Edge-Centric Initialization 

HiPerMotif begins by identifying and validating all first-edge mappings, skipping empty initial mappings. 

● Pattern Graph Reordering 

Structural reordering prioritizes vertices with high connectivity to optimize the matching process. 

● Parallel Edge Validation 

Each edge mapping is validated independently, enabling natural parallelization for efficiency. 

● Framework Implementation 

Implemented within Arkouda/Arachne, HiPerMotif scales efficiently for massive dataset analysis. 



HiPerMotif

Allows us to reduce 
the search space by 

starting off with 
vertices that are 

structurally 
significant by 

number of 
out-neighbors.

Allows us to reduce 
the search space 

further by allowing 
the algorithm to 
dynamically pick 

initial vertices and 
edges that are 
semantically 

valuable.

We force subgraph 
searching to “time 

travel” and skip 
unneeded states 

generated by 
vertices 0 and 1 of 
the subgraph and 

rather start at depth 
2.

Match the full 
subgraphs.
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Performance (Synthetic and Real-World Graphs)

● Evaluation on Synthetic Graphs 

HiPerMotif was tested on Erdős-Rényi, Barabási-Albert, and Watts-Strogatz graph models with 
varied densities and sizes. 

● Testing on Real-World Datasets 

Datasets included neuroscience connectomes, communication and social networks, plus a massive 
human cortex graph. 

● Superior Performance Metrics 

HiPerMotif achieved up to 66× speedup and processed large graphs where baselines failed due to 
memory limits. 

● Impact of Structural Reordering 

Structural reordering strategy alone contributed up to 5× speedup, enhancing HiPerMotif's 
efficiency. 
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Neuroscience (Hemibrain Dataset)
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- All Motifs created randomly from 3 to 20 nodes
- Up to 66X speedups
- McCreesh et al, The Glasgow subgraph solver: using constraint programming to tackle hard subgraph isomorphism problem 

variants
- Carletti et al, A parallel algorithm for subgraph isomorphism



H01 Dataset (Large-Scale Network)
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50K vertices and 150 Millions edges 
representing
a cubic millimeter of human cortex. 



Parallel speedup
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MOMO: Use Case                   Our Collaboration with Harvard 
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using 
Arachne-HiPerMotif 

vs NetworkX VF2:
Up to 2,000 X 

faster!

Dataset: 13,000 neurons with over
500,000 synaptic connections

M. Shewarega, J. Troidl, et al. / ToMo



Thank you all for your attention.

HiPerMotif is open-source and available on GitHub, so feel free to explore the code, try it out, and 
reach out with any feedback.

I’d be happy to take any questions you have.
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VF Family (VF, VF2, VF2+, VF2++, VF3P)

[V. Carletti, P. Foggia, M. Vento, A. Juttner, P. Madarasi, A. Saggese, C. Sansone, at al] 
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Structural Reordering(Helps us to prune faster)
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Challenges in Traditional Algorithms 
● Inefficient Candidate Generation 

Traditional algorithms generate large search spaces due to inefficient candidate selection, increasing 
computation. 

● Rigid Vertex-Ordering Heuristics 

Fixed vertex-ordering heuristics fail to adapt dynamically to varying graph structures and patterns. 

● High Memory Overhead 

Tracking numerous partial states leads to significant memory consumption in traditional approaches. 

● Limited Parallelization 

Early search stages lack effective parallelization, reducing algorithm scalability on large graphs. 
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Twitter
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VF2-PS

The optimal point to spawn the tasks 
is immediately after generating 
candidates 

we leverage the highly efficient and 
dynamic parallelization capabilities of 
Chapel, which automatically generates 
parallel tasks and assigns them to 
available threads based on the current 
system load

Changes:
- States
- Fast start
- Early Termination
- getCandidatePairs
- getUnmappedNodes
- Support of Properties
- ONLY count
- ONLY time
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Algorithms
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Algorithms
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