HPE=

Aggregate Data Types

Jade Abraham
October 7, 2025

Aggregate Data Types in Chapel

« Chapel has two kinds of aggregate data types, records and classes

« Records: represents a block of data that is present in the variable itself (i.e., on the stack)

record point {
var x: int;
var y: int;
}

var p = new point(l, 2);

« Classes: represents a block of data that is pointed to by the variable (i.e., on the heap)

class Point {
var x: int;
var y: int;
}

var p = new Point (1, 2);

What is a record?

« Represents a block of data that is present in the variable itself
* j.e.,on the stack
record point {

var x: int;
var y: int; var x: int

var p = new point();

}

var p = new point(l, 2);

var y: int

« Can have member variables and methods

« Can be generic

« Cannot use inheritance

« Canuse interfaces (will not be discussed today)

« By convention, use camelCase to name them

What is a class?

« Represents represents a block of data that is pointed to by the variable
* j.e.,on the heap

class Point {
var x: int;
var y: int;

}

var p = new Point();

var p = new Point (1, 2); var x: int

var y: int

« Can have member variables and methods

« Can be generic

« Canuse inheritance

« Canuse interfaces (will not be discussed today)

« By convention, use PascalCase to name them

When should | use a class or a record?

| need to group my data in a named structure
Use a record

| need an is-a- relationship. e.g., | want a parent Animal with multiple children like ‘Dog’ and Cat
Use a class

| need a has-a- relationship. e.g., | want a Car that has four Wheels
Use a record

| need to represent a tree-like structure. e.g. a linked list or a graph
« Useaclass

Defining methods

record point { Define the method ‘getX()’ |
var x: int;
var y: int; AI'this' is implicit ‘
proc getX () |

return x; €~

} AI Define the method ‘setY()’, making ‘this” mutable ‘
proc ref setY(y: int) { €=

this.y = vy; bt e . . ., .
\ o <\l this’ is explicitly use, since there are 2 'y’ variables |

}

proc point.printMe () { 4—-____________4 . . ,
writeln (this) ; Define the secondary method ‘printMe() |

}

var p = new point ();
writeln (p.getX());
p.setY (10);
p.printMe () ;

—1 6

Defining operators

record point {
var x: int;
var y: int;

}

var p: point;

p.x = lhs.x + rhs.x;
p.y = lhs.y + rhs.y;
return p;

}

var pl = new point (2, 3);
var pZ2 = new point (4, 5);

operator +(lhs: point, rhs: point) { <—|Aspecialmethodthat defines what ‘+' means

—-I Calls our special method

var p3 = pl + p2; <
writeln (p3);

Defining constructors

record point { Define a constructor for ‘point’

var x: int;

var y: int;

proc init(c: int) {
this.x = ¢c;

this.y = c; _ _ _
} Define the previously compiler-
generated constructor

proc init() { <€

this.x = 0;
this.y = 0;
}

}
var pl = new polnt (),
writeln(pl); // x =0, v = 0
var p2 = new point (17);
writeln(p2); // x = 17, yv = 17

—1

Using generics

record poiw ‘X’ is generic, can be any* type
var X,

var y: x.type; 'y’ is generic, must be the same
} type as ‘x’

var pl = new p01nt(1 2);
writeln(pl); // x =1, y = 2
var p2 = new point (3.1, 9.7);
writeln(p2); //x = 3.1, y = 9.7

Using generics

record poinw ‘point’ is generic over the type ‘T’ ‘
type T;

}

: I i ' N,
e w x"and ‘y’ both have type 'T ‘
var y: T;

proc init (type T) {qu.

this.T = T; . .
| | can define various constructors
proc init(x: 2T, y: T) { for initializing my type

this.T = T;
this.x = x;
this.y = vy;

var pl = new point (int);
writeln(pl); // x = 0, v = 0
var pZ = new p01nt(.1, 9.7);
writeln(p2); //x = 3.1, y = 9.7

—1

10

Composition

record point { ‘p1” is constrained to ‘point’

var x;
var y: X.type;

}

record line {
var pl: point (?);
var pZ2: pl.type;

}

var 11 = new line(new point (1, 2), new point (3, 4));
writeln (11);

var 12 = new line(new point (1.0, 2.2), new point (1.8, 9.9));
writeln (12);

M

Inheritance

All child classes will

import Math; have an ‘area()’ method

class Shape {
proc area(): real { return 0.0; }

}

class Circle: Shape {
var radius: real; : :)
override proc area(): real ({ 4_—_% Circles have a special ‘area()
return Math.pi * radius ** 2; formula
} . .
proc diameter () { 4_/_'| Only Circles can use this method

return 2.0 * radius; _
) ‘s’ is a Shape and can
) only call Shape methods

var s: Shape = new Circle(5.0);
writeln(s.area()); AI We can recover the Circle

and call Circle methods

var ¢ = s.borrow(): Circle; g
writeln(c.area() ,®" ", c.diameter());

— What's borrow? 12

Memor
and owne

Classes and memory

« Recall that a class refers to data/memory somewhere else

« That memory must be managed

« When the memory is no longer needed, it needs to be freed
« How do we know when memory is no longer needed?

« What about unallocated memory?

« We need space for some memory, but aren’t quite ready to allocate it yet

14

‘owned’ and ‘borrowed’

« By default, all classes in Chapel are ‘'owned’
« The compiler handles the memory
« Only one variable “owns” the memory at a time, when it goes out of scope the memory is deleted

« Ownership
« Who owns the memory?
« |t can be transferred

« |t can be “borrowed” so the data can be accessed in multiple places without transferring ownership
« Note: this behavior differs for module-scope vs local-scope variables

The compiler protects you from making a mistake

15

‘owned’ and ‘borrowed’

class MyClass { var x: int; }

proc main () {
var c: owned MyClass = new /*owned*/ MyClass(1l);
var c2 = C;

writeln (c2);
// writeln (c);

‘owned’ is the default, but
we could be explicit

Now ‘c2’ owns the memory
and trying to use ‘c’is a
compiler error

16

‘owned’ and ‘borrowed’

class MyClass { var x: int; }

proc main () {
var c: owned MyClass = new MyClass (
var b: borrowed MyClass = c.borrow

writeln (c) ;
writeln (b) ;

1
)

) ;

14

Now ‘b’ is an alias to the memory |

‘1 Both ‘c” and ‘b’ may be used |

17

‘owned’ and ‘borrowed’

class MyClass { var x: int; }
proc main () {
var c: owned MyClass = new MyClass(1l);

{

var b: borrowed MyClass = c.borrow() ;
b.X = 2; s . ‘1
b’ is a temporary alias to ‘c’,
} :
but its changes are permanent
var c2 = c;
writeln (c2); If this block was not here, the
} code would not compile.

‘b’ cannot outlive ‘c’

The changes made to ‘b’ are still
reflected in ‘c2’

18

nilable vs non-nilable

« A variable of a class type must have a value

* Noinvalid pointers like NULL in other languages

« Sometimes we need to represent the lack of a value
« We can make a class nilable to allow it to be nil

« To get at the value, we need to unwrap it
« With '!I', this will halt if the value is nil (with --checks)
« With ": nonNilableType’, this will throw if the value is nil

class MyClass { var x: int; }
proc main () {

var c: owned MyClass? = new MyClass(1l);

var c2 = C;

writeln(c2);

writeln (c) ;

‘c’is nilable, so when ownership
— changes it is still usable, but its
value is 'nil’

19

nilable vs non-nilable

proc getXUnsafe (c: borrowed MyCl
return c! .x;

ass?) {

‘c’is nilable, so to get ‘x” we have

| \ to unwrap it

proc getX(c: borrowed MyClass?)

return (c: borrowed M2Class).x
}

throws {

If ‘c’ is ‘nil’, this will halt or crash

proc getXUnsafe (c: borrowed?) {
return c!.x;

}

proc getX(c: borrowed?) throws ({

|

By using a cast, if ‘¢’ is ‘nil’ we get
a thrown "Error’ instead

return (c: borrowed) .x <4

}

We can also write the above generically

20

‘shared’

« Like owned, but can have multiple owners of the data

« The memory is only deleted when all instances go out of scope
« The memory can still be borrowed without affecting ownership

« shared can have higher runtime overheads

class MyClass { wvar x: int; }

proc main() {
var cl: shared MyClass = new shared MyClass (1) ;

{

var c2: shared MyClass = cl;
writeln(c2),;, o
}

writeln (cl);

—

At this point, there is 1
owner of the data

‘c1’ can still be used

There is only 1owner

B |

‘c2’ also owns the data
and can use it freely

There are 2 owners

21

‘unmanaged’

Unlike ‘owned’/'shared’/'borrowed’, the compiler will do nothing special with this memory

The memory will never be deleted unless it is deleted explicitly
Similar to raw pointers in C/C++

class MyClass { wvar x: int; }

proc main ()

var cl: unmanaged MyClass = new unmanaged MyClass(1l);

var c?

= C
writeln (cl
(c2

writeln (c

delete cl;

{

1;
)
)

14

14

The compiler will do
nothing special

|

| can do whatever | want
with this variable

The programmer is
responsible for cleaning up

22

Calling functions

« Calling function can make dealing with ownership difficult

proc takesOwnership (in x: owned) { }
proc kindaBorrows (/*ref*/ x: owned) { }

proc actuallyBorrows (x: borrowed) { }

23

Exampl
Linked Lis

The ‘Node’ class

class Node { ‘Node i :
type T; O e. IS afgegerlc
var data: T; container 1or data

var next: owned Node (T

proc init(data: ?T)

this.T = T;
this.data =
next = nil;

data;

{

‘next’ is a nilable owned ‘Node(?)’

25

The ‘linkedList’ record and ‘printList’ method

record linkedList {
type T;
var head: owned Node (T) ?;
proc init(type T) {
this.T = T;

head = nil;
) We don’t want ownership of ‘head’,
) we ‘borrow()’ it instead
proc linkedList.printList () {
var current = head.borrow() ;
var sep = "";
while current != nil { Since current is nilable, we need to
write (sep, current!.data);4-'-'______-___-unmnapit
current = current!.next.borrow() ;
sep = " -> ";
}
writeln () ;

}
—1

26

The 'append’ method

proc ref linkedList.append(data: T) {
if head == nil {
head = new Node (data); <

} else ({ 4‘/IUsethe ‘appendHelper’ function ‘
appendHelper (head!, data);

AI The base case, just set ‘head’ ‘

.
} 4/| Since ‘node’ is ‘borrowed’,
} we get an implicit borrow
proc appendHelper (node: borrowed, data: node.T) {
if node.next == nil {
node.next = new Node (data);
} else {

appendHelper (node.next!, data);

) Recursively call ‘appendHelper’

Exercis
Expressior

Problem

« Make this program work!

proc main() {
var syms = new symbols();
syms.add ("x", 10);
syms.add ("y", 5);

var expr = new BinExpr ("+",
new BinExpr ("*",
new Variable ("x"),
new Number (2)),
new BinExpr ("-",
new Variable ("
new Number (3))

14

yn) ,
)

printExpr (expr) ;
printVal (expr, syms);

Example output

Expression: ((x * 2) +(y - 3))
Value: 22

29

Starter code

use Map;
record symbols {

var table: map(string, int);

proc ref add(name: string,
table [name] = wvalue;

}

value:

proc get (name: string): int {

return table|[name];

}

class Expr {
proc eval (syms: symbols):
halt ("Not implemented");
}
proc stringify(): string {
halt ("Not implemented");

int {

int)

{

30

Thank you

: © 2025 Hewlett Packard Enterprise Development LP

	Slide 1: Aggregate Data Types
	Slide 2: Aggregate Data Types in Chapel
	Slide 3: What is a record?
	Slide 4: What is a class?
	Slide 5: When should I use a class or a record?
	Slide 6: Defining methods
	Slide 7: Defining operators
	Slide 8: Defining constructors
	Slide 9: Using generics
	Slide 10: Using generics
	Slide 11: Composition
	Slide 12: Inheritance
	Slide 13: Memory management and ownership
	Slide 14: Classes and memory
	Slide 15: ‘owned’ and ‘borrowed’
	Slide 16: ‘owned’ and ‘borrowed’
	Slide 17: ‘owned’ and ‘borrowed’
	Slide 18: ‘owned’ and ‘borrowed’
	Slide 19: nilable vs non-nilable
	Slide 20: nilable vs non-nilable
	Slide 21: ‘shared’
	Slide 22: ‘unmanaged’
	Slide 23: Calling functions
	Slide 24: Example: Linked List
	Slide 25: The ‘Node’ class
	Slide 26: The ‘linkedList’ record and ‘printList’ method
	Slide 27: The ’append’ method
	Slide 28: Exercise: Expression Evaluator
	Slide 29: Problem
	Slide 30: Starter code
	Slide 31: Thank you

