
1

Jade Abraham

October 7, 2025

Aggregate Data Types

• Chapel has two kinds of aggregate data types, records and classes

• Records: represents a block of data that is present in the variable itself (i.e., on the stack)

• Classes: represents a block of data that is pointed to by the variable (i.e., on the heap)

Aggregate Data Types in Chapel

2

record point {

 var x: int;

 var y: int;

}

var p = new point(1, 2);

class Point {

 var x: int;

 var y: int;

}

var p = new Point(1, 2);

• Represents a block of data that is present in the variable itself

• i.e., on the stack

• Can have member variables and methods

• Can be generic

• Cannot use inheritance

• Can use interfaces (will not be discussed today)

• By convention, use camelCase to name them

What is a record?

3

record point {

 var x: int;

 var y: int;

}

var p = new point(1, 2);

var p = new point();

var x: int

var y: int

• Represents represents a block of data that is pointed to by the variable

• i.e., on the heap

• Can have member variables and methods

• Can be generic

• Can use inheritance

• Can use interfaces (will not be discussed today)

• By convention, use PascalCase to name them

What is a class?

4

class Point {

 var x: int;

 var y: int;

}

var p = new Point(1, 2);

var p = new Point();

var x: int

var y: int

• I need to group my data in a named structure

• Use a record

• I need an is -a- relationship. e.g., I want a parent Animal with multiple children like ‘Dog’ and Cat

• Use a class

• I need a has -a- relationship. e.g., I want a Car that has four Wheels

• Use a record

• I need to represent a tree -like structure. e.g. a linked list or a graph

• Use a class

When should I use a class or a record?

5

Defining methods

6

record point {

 var x: int;

 var y: int;

 proc getX() {

 return x;

 }

 proc ref setY(y: int) {

 this.y = y;

 }

}

proc point.printMe() {

 writeln(this);

}

var p = new point();

writeln(p.getX());

p.setY(10);

p.printMe();

Define the method ‘ getX ()’

Define the method ‘ setY ()’, making ‘this’ mutable

Define the secondary method ‘ printMe ()’

’this’ is implicit

’this’ is explicitly use, since there are 2 ‘y’ variables

Defining operators

7

record point {

 var x: int;

 var y: int;

}

operator +(lhs: point, rhs: point) {

 var p: point;

 p.x = lhs.x + rhs.x;

 p.y = lhs.y + rhs.y;

 return p;

}

var p1 = new point(2, 3);

var p2 = new point(4, 5);

var p3 = p1 + p2;

writeln(p3);

A special method that defines what ‘+’ means

Calls our special method

Defining constructors

8

record point {

 var x: int;

 var y: int;

 proc init(c: int) {

 this.x = c;

 this.y = c;

 }

 proc init() {

 this.x = 0;

 this.y = 0;

 }

}

var p1 = new point();

writeln(p1); // x = 0, y = 0

var p2 = new point(17);

writeln(p2); // x = 17, y = 17

Define a constructor for ‘point’

Define the previously compiler -
generated constructor

Using generics

9

record point {

 var x;

 var y: x.type;

}

var p1 = new point(1, 2);

writeln(p1); // x = 1, y = 2

var p2 = new point(3.1, 9.7);

writeln(p2); //x = 3.1, y = 9.7

’x’ is generic, can be any* type

’y’ is generic, must be the same
type as ‘x’

Using generics

10

record point {

 type T;

 var x: T;

 var y: T;

 proc init(type T) {

 this.T = T;

 }

 proc init(x: ?T, y: T) {

 this.T = T;

 this.x = x;

 this.y = y;

 }

}

var p1 = new point(int);

writeln(p1); // x = 0, y = 0

var p2 = new point(3.1, 9.7);

writeln(p2); //x = 3.1, y = 9.7

‘point’ is generic over the type ‘T’

‘x’ and ‘y’ both have type `T`

I can define various constructors
for initializing my type

Composition

11

record point {

 var x;

 var y: x.type;

}

record line {

 var p1: point(?);

 var p2: p1.type;

}

var l1 = new line(new point(1, 2), new point(3, 4));

writeln(l1);

var l2 = new line(new point(1.0, 2.2), new point(1.8, 9.9));

writeln(l2);

’p1’ is constrained to ‘point’

Inheritance

12

import Math;

class Shape {

 proc area(): real { return 0.0; }

}

class Circle: Shape {

 var radius: real;

 override proc area(): real {

 return Math.pi * radius ** 2;

 }

 proc diameter() {

 return 2.0 * radius;

 }

}

var s: Shape = new Circle(5.0);

writeln(s.area());

var c = s.borrow(): Circle;

writeln(c.area(), " ", c.diameter());

All child classes will
have an ‘area()’ method

Only Circles can use this method

Circles have a special ‘area()’
formula

‘s’ is a Shape and can
only call Shape methods

We can recover the Circle
and call Circle methods

What’s borrow ?

Memory management
and ownership

13

• Recall that a class refers to data/memory somewhere else

• That memory must be managed

• When the memory is no longer needed, it needs to be freed

• How do we know when memory is no longer needed?

• What about unallocated memory?

• We need space for some memory, but aren’t quite ready to allocate it yet

Classes and memory

14

• By default, all classes in Chapel are ’owned’

• The compiler handles the memory

• Only one variable “owns” the memory at a time, when it goes out of scope the memory is deleted

• Ownership

• Who owns the memory?

• It can be transferred

• It can be “borrowed” so the data can be accessed in multiple places without transferring ownership

• Note: this behavior differs for module -scope vs local -scope variables

• The compiler protects you from making a mistake

‘owned’ and ‘borrowed’

15

‘owned’ and ‘borrowed’

16

class MyClass { var x: int; }

proc main() {

 var c: owned MyClass = new /*owned*/ MyClass(1);

 var c2 = c;

 writeln(c2);

 // writeln(c);

} ‘owned’ is the default, but
we could be explicit

Now ‘c2’ owns the memory
and trying to use ‘c’ is a
compiler error

‘owned’ and ‘borrowed’

17

class MyClass { var x: int; }

proc main() {

 var c: owned MyClass = new MyClass(1);

 var b: borrowed MyClass = c.borrow();

 writeln(c);

 writeln(b);

}

Now ‘b’ is an alias to the memory

Both ‘c’ and ‘b’ may be used

‘owned’ and ‘borrowed’

18

class MyClass { var x: int; }

proc main() {

 var c: owned MyClass = new MyClass(1);

 {

 var b: borrowed MyClass = c.borrow();

 b.x = 2;

 }

 var c2 = c;

 writeln(c2);

}

‘b’ is a temporary alias to ‘c’,
but its changes are permanent

The changes made to ‘b’ are still
reflected in ‘c2’

If this block was not here, the
code would not compile.
‘b’ cannot outlive ‘c’

• A variable of a class type must have a value

• No invalid pointers like NULL in other languages

• Sometimes we need to represent the lack of a value

• We can make a class nilable to allow it to be nil

• To get at the value, we need to unwrap it

• With `!`, this will halt if the value is nil (with --checks)

• With `: nonNilableType `, this will throw if the value is nil

nilable vs non -nilable

19

class MyClass { var x: int; }

proc main() {

 var c: owned MyClass? = new MyClass(1);

 var c2 = c;

 writeln(c2);

 writeln(c);

}

‘c’ is nilable , so when ownership
changes it is still usable, but its
value is ‘nil’

proc getXUnsafe(c: borrowed?) {

 return c!.x;

}

proc getX(c: borrowed?) throws {

 return (c: borrowed).x

}

nilable vs non -nilable

20

proc getXUnsafe(c: borrowed MyClass?) {

 return c!.x;

}

proc getX(c: borrowed MyClass?) throws {

 return (c: borrowed MyClass).x

}

‘c’ is nilable , so to get ‘x’ we have
to unwrap it

If ‘c’ is ‘nil’, this will halt or crash

By using a cast, if ’c’ is ‘nil’ we get
a thrown ’Error’ instead

We can also write the above generically

• Like owned, but can have multiple owners of the data

• The memory is only deleted when all instances go out of scope

• The memory can still be borrowed without affecting ownership

• shared can have higher runtime overheads

‘shared’

21

class MyClass { var x: int; }

proc main() {

 var c1: shared MyClass = new shared MyClass(1);

 {

 var c2: shared MyClass = c1;

 writeln(c2);

 }

 writeln(c1);

}

At this point, there is 1
owner of the data

‘c2’ also owns the data
and can use it freely

There are 2 owners‘c1’ can still be used

There is only 1 owner

class MyClass { var x: int; }

proc main() {

 var c1: unmanaged MyClass = new unmanaged MyClass(1);

 var c2 = c1;

 writeln(c1);

 writeln(c2);

 delete c1;

}

• Unlike ’owned’/’shared’/’borrowed’, the compiler will do nothing special with this memory

• The memory will never be deleted unless it is deleted explicitly

• Similar to raw pointers in C/C++

‘unmanaged’

22

The compiler will do
nothing special

I can do whatever I want
with this variable

The programmer is
responsible for cleaning up

• Calling function can make dealing with ownership difficult

Calling functions

23

proc takesOwnership(in x: owned) { }

proc kindaBorrows(/*ref*/ x: owned) { }

proc actuallyBorrows(x: borrowed) { }

Example:
Linked List

24

class Node {

 type T;

 var data: T;

 var next: owned Node(T)?;

 proc init(data: ?T) {

 this.T = T;

 this.data = data;

 next = nil;

 }

}

The ‘Node’ class

25

’Node’ is a generic
container for data

’next’ is a nilable owned ‘Node(?)’

record linkedList {

 type T;

 var head: owned Node(T)?;

 proc init(type T) {

 this.T = T;

 head = nil;

 }

}

The ‘ linkedList ’ record and ‘ printList ’ method

26

proc linkedList.printList() {

 var current = head.borrow();

 var sep = "";

 while current != nil {

 write(sep, current!.data);

 current = current!.next.borrow();

 sep = " -> ";

 }

 writeln();

}

We don’t want ownership of ‘head’,
we ‘borrow()’ it instead

Since current is nilable , we need to
unwrap it

proc ref linkedList.append(data: T) {

 if head == nil {

 head = new Node(data);

 } else {

 appendHelper(head!, data);

 }

}

proc appendHelper(node: borrowed, data: node.T) {

 if node.next == nil {

 node.next = new Node(data);

 } else {

 appendHelper(node.next!, data);

 }

}

The ’append’ method

27

The base case, just set ‘head’

Use the ’ appendHelper ’ function

Since ‘node’ is ‘borrowed’,
we get an implicit borrow

Recursively call ‘ appendHelper ’

Exercise:
Expression Evaluator

28

proc main() {

 var syms = new symbols();

 syms.add("x", 10);

 syms.add("y", 5);

 var expr = new BinExpr("+",

 new BinExpr("*",

 new Variable("x"),

 new Number(2)),

 new BinExpr("-",

 new Variable("y"),

 new Number(3)));

 printExpr(expr);

 printVal(expr, syms);

}

Problem

29

• Make this program work!

Expression: ((x * 2) + (y - 3))
Value: 22

Example output

use Map;

record symbols {

 var table: map(string, int);

 proc ref add(name: string, value: int) {

 table[name] = value;

 }

 proc get(name: string): int {

 return table[name];

 }

}

class Expr {

 proc eval(syms: symbols): int {

 halt("Not implemented");

 }

 proc stringify(): string {

 halt("Not implemented");

 }

}

Starter code

30

© 2025 Hewlett Packard Enterprise Development LP

Thank you

	Slide 1: Aggregate Data Types
	Slide 2: Aggregate Data Types in Chapel
	Slide 3: What is a record?
	Slide 4: What is a class?
	Slide 5: When should I use a class or a record?
	Slide 6: Defining methods
	Slide 7: Defining operators
	Slide 8: Defining constructors
	Slide 9: Using generics
	Slide 10: Using generics
	Slide 11: Composition
	Slide 12: Inheritance
	Slide 13: Memory management and ownership
	Slide 14: Classes and memory
	Slide 15: ‘owned’ and ‘borrowed’
	Slide 16: ‘owned’ and ‘borrowed’
	Slide 17: ‘owned’ and ‘borrowed’
	Slide 18: ‘owned’ and ‘borrowed’
	Slide 19: nilable vs non-nilable
	Slide 20: nilable vs non-nilable
	Slide 21: ‘shared’
	Slide 22: ‘unmanaged’
	Slide 23: Calling functions
	Slide 24: Example: Linked List
	Slide 25: The ‘Node’ class
	Slide 26: The ‘linkedList’ record and ‘printList’ method
	Slide 27: The ’append’ method
	Slide 28: Exercise: Expression Evaluator
	Slide 29: Problem
	Slide 30: Starter code
	Slide 31: Thank you

