
Brad Chamberlain
October 10, 2025

ChapelCon ‘25:
State of the Chapel Project

1

Outline

Closing Thoughts

Chapel and HPSF

Community Updates and News

Summary of Technical Progress since ChapelCon ‘24

2

Chapel 2.0
(1 ½ years later)

3

— March 2024’s Chapel 2.0 release was a milestone releasing, stabilizing core language and library features
— Since then, releases have continued on our quarterly cadence:

• Chapel 2.1: June 2024
• Chapel 2.2: Sept 2024
• Chapel 2.3: Dec 2024
• Chapel 2.4: Mar 2024
• Chapel 2.5: June 2025
• Chapel 2.6: Sept 2025

— And happily, stability has been maintained!
• many bugs have been fixed, and new features added
• we’ve also added a way to try breaking changes:

— Chapel editions:
• a way to opt into new features that alter behavior
• e.g. ‘—edition=preview’ enables:

• updating array ‘reshape()’ to support aliasing
• improving the printing of ‘complex’ w/ NaNs
• removing domain ‘.sorted()’ iterators

Chapel 2.0 (1½ Years Later)

4

Slide from ChapelCon ‘24:

https://chapel-lang.org/blog/posts/announcing-chapel-2.1/
https://chapel-lang.org/blog/posts/announcing-chapel-2.1/
https://chapel-lang.org/blog/posts/announcing-chapel-2.2/
https://chapel-lang.org/blog/posts/announcing-chapel-2.2/
https://chapel-lang.org/blog/posts/announcing-chapel-2.3/
https://chapel-lang.org/blog/posts/announcing-chapel-2.3/
https://chapel-lang.org/blog/posts/announcing-chapel-2.4/
https://chapel-lang.org/blog/posts/announcing-chapel-2.4/
https://chapel-lang.org/blog/posts/announcing-chapel-2.5/
https://chapel-lang.org/blog/posts/announcing-chapel-2.5/
https://chapel-lang.org/blog/posts/announcing-chapel-2.6/
https://chapel-lang.org/blog/posts/announcing-chapel-2.6/
https://chapel-lang.org/blog/posts/announcing-chapel-2.5/

Language / Library
Highlights Since 2.0

5

Language:
• Remote variable declarations

on remoteLocale var x: int; // allocates ‘x’ on the remote locale but without introducing a new lexical scope
• Multidimensional array literals (designed with significant community input and involvement)

[1, 2, 3;

 4, 5, 6] // this is a 2x3 array over the indices {0..1, 0..2}

• GPUs: performance, flexibility, quality-of-life, and portability improvements
• Improved sparse capabilities: new queries, capabilities, optimizations (but more work remains)

Library Modules:
• Sort:

• stabilized the module and promoted it to a standard module
• added a fast new scalable distributed ‘sort()’ routine

• Python: for calling from Chapel to Python
• DynamicLoading: for calling from Chapel to dynamic C/C-like libraries
• Image: for reading / writing image files from Chapel

New post-2.0 Features

6

Tools

7

— VSCode: task providers for compiling, running, debugging Chapel programs
— chplcheck (linter): added and doc’d rules; improved ability to add new ones
— chpldoc (code-based documentation generator):
— chpl-language-server (editor intelligence):
— chapel-py (Python bindings to compiler front-end):
— mason (package manager):
— Dyno (front-end compiler rework and library): can now resolve and lower much more of the language

• and often more correctly…
• powers most of the tools above

Coding Tools

8

continual improvements based
on use and experience

— in general: improved debug codegen
— address sanitizers: improved support for Chapel programs
— documentation: captured best practices

Also…

Debugging Tools

9

Chapel 2.5: Chapel 2.6:

Debugging: New LLDB pretty-printers for Chapel types

10

Debugging: Integrated VSCode Support

11

Debugging: Prototype ‘chpl-parallel-dbg’ for multi-locale

12

custom ‘on’ command supports
switching between locales by ID

Packaging / Portability

13

— A new Chapel Spack package
• Also a pair of new packages for the Arkouda server and client

— Several new Linux package releases and configs:
• AlmaLinux 10
• Amazon Linux 2023
• Debian 12
• Debian 13
• Fedora 41
• Fedora 42
• RHEL 10
• RockyLinux 10
• Ubuntu 22.04
• Ubuntu 24.04

— Many improvements to the Homebrew release
— Improved AWS / EFA support
— Improved access to the HPE Cray EX RPM via GitHub and My HPE Software Center

Packaging / Portability Improvements

14

https://packages.spack.io/package.html?name=chapel
https://packages.spack.io/package.html?name=arkouda
https://packages.spack.io/package.html?name=py-arkouda

Community Highlights

15

We launched our new website on Jan 8!
• And the website’s repo is now public!

A New Website!

16

https://github.com/chapel-lang/chapel-www

We launched a new, quarterly newsletter in August 2024
• Browse / subscribe through Discourse:
• https://chapel.discourse.group/c/newsletters

A New Chapel Newsletter!

17

https://chapel.discourse.group/c/newsletters
https://chapel.discourse.group/c/newsletters

— Added new channels to previous (LinkedIn, X, Mastodon, Facebook):
• Reddit: Began posting regularly, Aug 2024
• Discord: Launched server, Nov 2024
• BlueSky: Launched account, Jan 2025

— Averaging 2–3 social media posts / week, on average

New Social Media / Community Forums

18

https://www.reddit.com/r/chapel/
https://www.reddit.com/r/chapel/
https://discord.gg/xu2xg45yqH
https://discord.gg/xu2xg45yqH
https://bsky.app/profile/chapellanguage.bsky.social
https://bsky.app/profile/chapellanguage.bsky.social

We launched a new 7 Questions with Chapel Users interview blog series, capturing users’ perspectives

“7 Questions with Chapel Users”

19

Your Chapel story here?
(contact us if interested)

https://chapel-lang.org/blog/series/7-questions-for-chapel-users/

— 33 new articles in the 70 weeks since ChapelCon ‘24
— New series:

• 7 Questions with Chapel Users
• 4-part Navier-Stokes in Chapel
• 10 Myths of Productive Scalable Programming Languages (Redux)

— Standout standalone articles (not the actual titles):
• Memory Safety in Chapel (relative to Rust, Python, C, C++)
• Using GenAI to write / refactor Chapel
• The 1 Billion Row Challenge in Chapel
• Using Chapel on your Windows Gaming GPU
• Chapel/Fortran Interop in an ocean model
• Hyperparameter Optimization in Chapel
• Using Chapel’s Python bindings for tooling
• Report from SC24

New Blog Articles

20

— new ~monthly Chapel Demo
• launched July 2024
• archived on YouTube

— new Teaching in Chapel monthly meetup
• launched by Michelle Strout in Aug 2024
• currently led by Alex Razoumov
• Chapel Examples and Teaching Materials GitHub repo

— monthly Office Hours
• (now folded into other weekly meetings)

Other New Community Events

21

https://www.youtube.com/playlist?list=PLuqM5RJ2KYFjYgOStSfrNshIQ0I-AibHY
https://www.youtube.com/playlist?list=PLuqM5RJ2KYFjYgOStSfrNshIQ0I-AibHY
https://github.com/chapel-lang/ChapelExamplesAndTeachingMaterials
https://github.com/chapel-lang/ChapelExamplesAndTeachingMaterials

The latest Ph.D. focusing on a Chapel-related topic!

On the Design of a Framework for Large-Scale Exploratory Graph Analytics

(advised by Professor David Bader, NJIT)
• Dissertation available online
• Now working with us at HPE on the Advanced

Programming team

Congratulations to Dr. Oliver Alvarado Rodriguez!

22

https://davidbader.net/authors/alvaradorodriguez-oliver/

A few highlights that stand out:
• Paul Sathre’s ChapelCon ’24 keynote, “A Case for Parallel Languages in a Post-Serial, Accelerated World”

• Josh Milthorpe’s HCW talk, “Performance Portability of the Chapel Language on Heterogeneous Architectures”
• Guillaume Helbecque’s IPDPS talk, “GPU-Accelerated Tree-Search in Chapel: Comparing Against CUDA and HIP on Nvidia and AMD GPUs”
• Eric Laurendeau’s PAW-ATM distinguished talk, ”A case study for using Chapel within the global aerospace industry”

• Jeremiah Corrado’s PANGEO demo, ”Arkouda as an XArray Backend for HPC”
• My HPCwire interview, “What’s New with Chapel? Nine Questions for the Development Team”

• Alex Razoumov’s webinars, like “GPU Computing with Chapel”
• Tiago Carneiro’s Euro-Par talk, “Investigating Portability in Chapel for Tree-Based Optimization on GPU-Powered Clusters”
• Michelle Strout’s CCDSC talk, “Real Applications, Real Fast in Chapel”

• Mohammad Dindoost and Garrett Gonzalez-Rivas’ talks at HPEC, “VF2-PS: Parallel and Scalable Subgraph Monomorphism in Arachne” and “A Deployment
Tool for Large Scale Graph Analytics Framework Arachne”

• Engin Kayraklioglu, Éric Laurendeau, and Karim Zayni’s joint talk at NASA, “High-Performance, Productive Programming using Chapel with Examples from
the CFD Solver CHAMPS”

• Ivan Tagliaferro de Oliveira Tezoto’s IPDPS poster, ”Performance and Portability in Multi-GPU Branch-and-Bound: Chapel versus CUDA and HIP for Tree-
Based Optimization”

• Bokyeong Yoon’s HIPS presentation “Exploring Communication Anomalies in Chapel”
• Luca Ferranti’s JuliaCon BoF, “Chapel ❤ Julia”

• My HIPS keynote, “Reflections on 30 years of HPC programming: So many hardware advances, so little adoption of new languages”

(See the newsletters for a far more complete list)

Plus: Sooooo many community talks, papers, and events

23

https://chapel-lang.org/ChapelCon24.html
https://chapel-lang.org/ChapelCon24.html
https://chapel-lang.org/ChapelCon24.html
https://milthorpe.org/pubs/performance-portability-of-the-chapel-language-on-heterogeneous-architectures/
https://www.computer.org/csdl/proceedings-article/ipdpsw/2024/646000a872/1YTsdRCo9DG
https://www.computer.org/csdl/proceedings-article/ipdpsw/2024/646000a872/1YTsdRCo9DG
https://www.computer.org/csdl/proceedings-article/ipdpsw/2024/646000a872/1YTsdRCo9DG
https://www.computer.org/csdl/proceedings-article/ipdpsw/2024/646000a872/1YTsdRCo9DG
https://www.computer.org/csdl/proceedings-article/ipdpsw/2024/646000a872/1YTsdRCo9DG
https://sc24.conference-program.com/presentation/?id=misc202&sess=sess734
https://discourse.pangeo.io/t/pangeo-showcase-arkouda-as-an-xarray-backend-for-hpc/4693
https://www.hpcwire.com/2024/09/04/whats-new-with-chapel-nine-questions-for-the-development-team/
https://www.youtube.com/watch?v=1gMFtJN-4_E&t=9s&ab_channel=WestDRI
https://link.springer.com/chapter/10.1007/978-3-031-69583-4_27
https://link.springer.com/chapter/10.1007/978-3-031-69583-4_27
https://link.springer.com/chapter/10.1007/978-3-031-69583-4_27
https://link.springer.com/chapter/10.1007/978-3-031-69583-4_27
https://link.springer.com/chapter/10.1007/978-3-031-69583-4_27
https://chapel-lang.org/presentations/mstrout-ccdsc.pdf
https://davidbader.net/publication/2024-drbpdb/
https://davidbader.net/publication/2024-drbpdb/
https://davidbader.net/publication/2024-drbpdb/
https://davidbader.net/publication/2024-gdb/2024-gdb.pdf
https://davidbader.net/publication/2024-gdb/2024-gdb.pdf
https://www.nas.nasa.gov/pubs/ams/2025/02-20-25.html
https://www.nas.nasa.gov/pubs/ams/2025/02-20-25.html
https://www.nas.nasa.gov/pubs/ams/2025/02-20-25.html
https://www.nas.nasa.gov/pubs/ams/2025/02-20-25.html
https://ieeexplore.ieee.org/abstract/document/11106031
https://ieeexplore.ieee.org/abstract/document/11106031
https://ieeexplore.ieee.org/abstract/document/11106031
https://ieeexplore.ieee.org/abstract/document/11106031
https://ieeexplore.ieee.org/abstract/document/11106031
https://ieeexplore.ieee.org/abstract/document/11106031
https://ieeexplore.ieee.org/abstract/document/11106031
https://ieeexplore.ieee.org/abstract/document/11106031
https://ieeexplore.ieee.org/abstract/document/11106031
https://ieeexplore.ieee.org/abstract/document/11105842
https://www.youtube.com/live/G_DLBmO1EGM?si=ztEXzYZ_IcORriTO&t=16290
https://www.youtube.com/live/G_DLBmO1EGM?si=ztEXzYZ_IcORriTO&t=16290
https://www.youtube.com/live/G_DLBmO1EGM?si=ztEXzYZ_IcORriTO&t=16290
https://chapel-lang.org/presentations/ChamberlainHIPS2025-presented.pdf
https://chapel.discourse.group/c/newsletters

Chapel and HPSF

24

Conversation with Burton Smith, ~Oct 2002 (paraphrased)
• Chief Scientist of Cray Inc., co-founder of Tera
• PI of Cray’s HPCS program, Cascade

— Me: “To improve user productivity, we should create a new language!”
— Burton: “No, I fear a language developed by a single vendor will not be successful”
— Me: “OK… :’(” [who am I to argue with Burton?]

~Nov 2002:
— Me: “But wait, several important languages started with a single vendor…”
— Burton: “Good point, let’s do a thought experiment…”

— [a few days later…]

— Burton: “OK. And note that successful single-vendor languages typically made a jump to community governance…”

Chapel’s Inception

25

HPSF = High Performance Software Foundation
— a neutral hub for open-source HPC software
— a Linux Foundation project

— mission: “to constantly improve the quality
and open availability of software for HPC
through open collaboration”, focusing on:
• performance
• portability
• productivity

— goals for member projects:
• increase adoption
• aid community growth
• enable development efforts

What is HPSF?

26

Synergies Between HPSF’s Goals and Chapel

27

Lowering barriers to using HPC
• Chapel helps real users write real applications
• Many are writing HPC code for the first time
• Others are HPC experts, working more quickly than they could’ve
• Others are simply leveraging their desktop multicore CPUs + GPUs

Aiding HPC community growth

Enabling HPC development efforts

Portable software for diverse HW • Chapel currently supports most any HPC, desktop, or cloud system
• Its language design and SW architecture support porting to others

Performance and productivity • Chapel performance often matches or beats conventional HPC models
• Code is almost always shorter and easier to read/write/maintain

Motivations for Applying:
• Have always intended to move governance of project into the community
• Goal: shed the “single-vendor” stigma

• A chance to network with other open-source HPC projects and share best practices
• Share our experience that may be useful to other projects
• We have lots to learn as well

• Anticipated benefits to Chapel’s visibility and stature

Sponsored by various companies, labs, and universities (“members”):

Who sponsors HPSF?

28

https://hpsf.io/members/

https://hpsf.io/members/

Founding projects are:
• AMReX
• Apptainer
• Charliecloud
• E4S
• HPCToolkit
• Kokkos
• Spack
• Trilinos
• Viskores
• WarpX

And since then:
• OpenCHAMI

What projects are involved?

29

https://hpsf.io/projects/

https://hpsf.io/projects/

2023:
• Nov 13 @ SC23: Public statements of intention to form HPSF

2024:
• May 13: Linux Foundation announces launch of HPSF
• Sept 3: First applications are submitted by founding projects
• Sept 19: Chapel encouraged to apply after inquiring about the possibility
• Oct 1: Submitted our application

2025:
• Jan 9: Presented our application to the HPSF Technical Advisory Committee (TAC)
• Jan 23: Learned we were accepted

• Kicked off legal processes at both HPE and LF
• April: Made weekly project meetings and chapel-www repo public
• May 22: Made weekly deep-dive meetings public
• July: Made chapel-blog repo public: https://github.com/chapel-lang/chapel-blog
• Aug 26–Sept 2: Formed the initial technical steering committee (TSC)
• Sept 16–18: Finalized technical charter and held first TSC meeting, approving it
• Sept 25: Signed the paperwork transferring Chapel name and accounts to HPSF/LF

Chapel’s HPSF Timeline

30

https://github.com/hpsfoundation/tac/issues/11
https://github.com/user-attachments/files/18365273/ChapelHPSFApplication-presented.pdf
https://github.com/chapel-lang/chapel/discussions
https://github.com/chapel-lang/chapel-www
https://github.com/chapel-lang/chapel-www
https://github.com/chapel-lang/chapel-www
https://github.com/chapel-lang/chapel/discussions/27247
https://github.com/chapel-lang/chapel/discussions/27247
https://github.com/chapel-lang/chapel/discussions/27247
https://github.com/chapel-lang/chapel-blog
https://github.com/chapel-lang/chapel-blog
https://github.com/chapel-lang/chapel-blog
https://github.com/chapel-lang/chapel-blog
https://github.com/chapel-lang/chapel-blog
https://github.com/chapel-lang/governance/blob/main/GOVERNANCE.md
https://github.com/chapel-lang/governance/blob/main/TechCharter.pdf
https://github.com/chapel-lang/TSC/

Create a new logo:
• Our traditional logo was not part of the transfer to the Linux Foundation
• See TSC issue #17 for details
• Quickly crowd-sourcing designs?

Do a big announcement, jointly with HPSF/LF and HPE
• In time for SC25?

Thereafter, open up additional aspects of the project
• Determine application process for prospective new Technical Steering Committee members
• Determine how to add new project committers
• …

Chapel and HPSF: What’s Next?

31

???

https://github.com/chapel-lang/TSC/issues/17

Excerpts from “Reflections on
30 Years of HPC Programming”

32

Top 5 systems in the Top500, June 1995:
• Cores: 80–3680 cores
• Rmax: ~98.9–170 GFlop/s
• Systems: Fujitsu, Intel Paragon XP/S, Cray T3D
• Networks: crossbar, mesh, 3D torus

Top 5 systems in the Top 500, June 2025:
• Cores: 2,073,600–11,039,616 (~563x–138,000x)
• Rmax: ~477.9–1742.0 PFlop/s (~2,810,000x–17,600,000x)
• Systems: HPE Cray EX, Eviden Bullsequana, Microsoft Azure
• Networks: Slingshot-11, InfiniBand NDR

30 Years Ago vs. Now: Top HPC Systems

33

And complex!
• commodity vector processors
• multicore processors
• multi-socket compute nodes
• NUMA compute node architectures
• high-radix, low-diameter interconnects
• GPU computing

Top 5 systems in the Top500, June 1995:
• Cores: 80–3680 cores
• Rmax: ~98.9–170 GFlop/s
• Systems: Fujitsu, Intel Paragon XP/S, Cray T3D
• Networks: crossbar, mesh, 3D torus

Top 5 systems in the Top 500, June 2025:
• Cores: 2,073,600–11,039,616 (~563x–138,000x)
• Rmax: ~477.9–1742.0 PFlop/s (~2,810,000x–17,600,000x)
• Systems: HPE Cray EX, Eviden Bullsequana, Microsoft Azure
• Networks: Slingshot-11, InfiniBand NDR

And complex!
• commodity vector processors
• multicore processors
• multi-socket compute nodes
• NUMA compute node architectures
• high-radix, low-diameter interconnects
• GPU computing

(Often in ways that hurt programmability)

30 Years Ago vs. Now: Top HPC Systems

34

HPC HW has
become far

more capable…

Top 5 systems in the Top500, June 1995:
• Cores: 80–3680 cores
• Rmax: ~98.9–170 GFlop/s
• Systems: Fujitsu, Intel Paragon XP/S, Cray T3D
• Networks: crossbar, mesh, 3D torus

Broadly-adopted HPC programming notations:
• Languages: C, C++, Fortran
• Inter-node: MPI, SHMEM
• Intra-node: vendor-specific pragmas & intrinsics

• OpenMP on the horizon: 1997
• Scripting: Perl, [[t]c]sh, Tcl/TK

Top 5 systems in the Top 500, June 2025:
• Cores: 2,073,600–11,039,616 (~563x–138,000x)
• Rmax: ~477.9–1742.0 PFlop/s (~2,810,000x–17,600,000x)
• Systems: HPE Cray EX, Eviden Bullsequana, Microsoft Azure
• Networks: Slingshot-11, InfiniBand NDR

Broadly-adopted HPC programming notations:
• Languages: C, C++, Fortran
• Inter-node: MPI, SHMEM
• Intra-node: OpenMP, vendor-specific pragmas & intrinsics
• GPUs: CUDA, HIP, SYCL, Kokkos, OpenMP, OpenACC, …
• Scripting: Python, bash

30 Years Ago vs. Now: Top HPC Systems and Programming Notations

35

HPC HW has
become far

more capable…

Top 5 systems in the Top500, June 1995:
• Cores: 80–3680 cores
• Rmax: ~98.9–170 GFlop/s
• Systems: Fujitsu, Intel Paragon XP/S, Cray T3D
• Networks: crossbar, mesh, 3D torus

Broadly-adopted HPC programming notations:
• Languages: C, C++, Fortran
• Inter-node: MPI, SHMEM
• Intra-node: vendor-specific pragmas & intrinsics

• OpenMP on the horizon: 1997
• Scripting: Perl, [[t]c]sh, Tcl/TK

Top 5 systems in the Top 500, June 2025:
• Cores: 2,073,600–11,039,616 (~563x–138,000x)
• Rmax: ~477.9–1742.0 PFlop/s (~2,810,000x–17,600,000x)
• Systems: HPE Cray EX, Eviden Bullsequana, Microsoft Azure
• Networks: Slingshot-11, InfiniBand NDR

Broadly-adopted HPC programming notations:
• Languages: C, C++, Fortran
• Inter-node: MPI, SHMEM
• Intra-node: OpenMP, vendor-specific pragmas & intrinsics
• GPUs: CUDA, HIP, SYCL, Kokkos, OpenMP, OpenACC, …
• Scripting: Python, bash

30 Years Ago vs. Now: Top HPC Systems and Programming Notations

36

HPC HW has
become far

more capable…

…while HPC notations have
 largely stayed the same,
modulo GPU computing

Chapel predates all of the architectural changes mentioned previously, apart from commodity vectors

Yet it supports all of these HW features
• Using essentially the same language features as ~20 years ago
• How? By focusing on expressing parallelism and locality independently from HW mechanisms

Chapel’s adaptable persistence

37

• commodity vector processors
• multicore processors
• multi-socket compute nodes
• NUMA compute node architectures
• high-radix, low-diameter interconnects
• GPU computing

Chapel in the age of AI

38

Q: AI can program now*. Do languages like Chapel still matter?

My answer is a resounding ”yes”…
• To say we no longer need good programming languages and compilers in the age of AI

is like saying we no longer need to invest in roads, automobile manufacturing,
fuel efficiency, safety, and traditional driving skills in an age of self-driving cars.

Value proposition:
• humans will still program
• higher-level, clearer languages should enable greater AI successes
• when users need to look under the hood, the more comprehensible the code is, the better

 (* = your mileage may vary)

AI, HPC, and Languages

39

Wrapping Up

40

A huge amount of progress has been made since ChapelCon ’24

We’re looking forward to what the year ahead holds!

41

© 2025 Hewlett Packard Enterprise Development LP

@ChapelLanguage

Thank You

