
Amanda Potts, Engin Kayraklioglu

ChapelCon '25
October 9, 2025

Arkouda Bulletin
A Year of Progress in
Exploratory Data Analytics at Scale

1

l Arkouda Overview & Introduction
l Success Stories
l Alignment to NumPy/Pandas
l Random Module
l Multi-Dimensional Data
l Parquet I/O Support
l Sparse Computations
l Outlook/Conclusion

Outline

2

Introduction

3

Arkouda: NumPy for Supercomputers
l A Pythonic interface to high-performance computing

l Open-source framework for exploratory data analysis at scale

l Combines NumPy-like syntax with Chapel’s distributed performance

l Operates interactively from Python — no parallel programming required

l Handles billions of elements across many nodes, reproducibly

v

4

Arkouda: Where Python Meets Performance

l Bridging Productivity and Performance

l Familiar — mirrors NumPy, pandas, and SciPy semantics

l Scalability — parallel computation over massive arrays

l Reproducible — deterministic RNG and shuffle operations

l Extensible — easy to add new Chapel functions via message framework

l Accessible — installable via Spack; Docker/Kubernetes support under exploration

l Evolving — ak.numpy, ak.pandas, ak.scipy

l Bottom Line

l Empowers researchers to move seamlessly from prototyping in Python to analyzing terabytes interactively, without rewriting code.

5

Success Stories

6

Telemetry Use Case 1
l How does energy-capping GPUs impact application

performance?
l This work is a collaboration between our colleagues at

HPE and ORNL
l Using telemetry data from Frontier

Experiment details:
l A pandas script has been transliterated to Arkouda

l Achieved 3.5x better performance on a single node

l Same script also demonstrates good weak scaling
l Note that pandas can't be used on multiple nodes

at all

7

Telemetry Use Case 2
l What is the relationship between environment (e.g.

temperature) and node failures?
l Imagine you have a very large server telemetry data,

and information on failures, can you find any
correlation?

Experiment details:
l 4TB of data stored in Parquet files

l Operations include:

l Histogram
l Mean, max

l Covariance
l All experiments were run on 64 nodes of HPE Cray EX

8

0

100

200

300

400

500

600

700

800

900

1000

Arkouda Dask Spark

Ti
m

e
(s

)

1.7x faster
than Dask

4x faster
than Spark

be
tte

r

Numpy & Pandas
Alignment

9

Numpy Alignment
Strategy

l Start with NumPy (foundation) → pandas & SciPy depend on it; covering
NumPy unlocks most downstream call paths.

l Mirror NumPy APIs in ak.numpy → Users reuse NumPy muscle memory
(same names/args/semantics).

l Use NumPy docs as the contract → Solves the “web-search problem”:
answers from NumPy docs apply to Arkouda.

l Reorganize into ak.numpy, ak.pandas, ak.scipy → Clear place for each
function; easier for contributors to navigate.

l Rank by real usage (analyzed pandas/SciPy calls) → High-impact first; all
but 2 NumPy funcs used ≥10× in pandas functions are now supported.

l Next: verify per-function parity → Audit dtype promotion,
broadcasting/axis, NA/Inf, and error behavior for exact NumPy match.

10

Numpy Alignment
pandas & SciPy (what matters in practice)

11

Numpy Alignment
pandas & SciPy (what matters in practice)

12

l What It Is

l Arkouda-backed ExtensionArrays so pandas Series/DataFrame
columns stay remote (numeric, bool, string, categorical).

l Supports zero-copy construction where possible.

l Why

l Enable scalable pandas workflows.

l Avoid rewriting all of pandas.

l What works today

l Column creation, indexing, equality, argsort, and common
reductions.

l Clean fallback to NumPy dtypes when needed.

l Caveats

l Experimental — some pandas paths still call .to_numpy().

l NA semantics and a few reductions incomplete in certain types.

Pandas ExtensionArray API (Arkouda)
Experimental

13

l Key point

l Arkouda already has distributed merges/groupby — need a pandas
bridge that dispatches to Arkouda (avoid .to_numpy())

l Preferred: pandas accessor

l .ak on Series/DataFrame:

l df.ak.merge(...), df.ak.groupby(...).agg(...)

l Other integration options

l Subclassing (pd.DataFrame/Series + mixin): natural syntax
(df.merge) — but brittle vs pandas internals & upgrades

l Monkeypatching (override DataFrame.merge, GroupBy.agg):
fastest demo path — but risky, version-fragile; keep opt-in

l Status

l Early experimental EAs/dtypes exist; bridge layer TBD.

Pandas ExtensionArray API (Arkouda)
l Pandas ↔ Arkouda Bridge (Joins/Merges/Groupby)

14

Random Module

15

l ak.random.Generator via default_rng(seed)

l PCG64 backend, independent streams per dtype

l Supported distributions

l integers, uniform, normal / lognormal

l exponential / standard_exponential, poisson, standard_gamma

l choice, permutation, shuffle

l Method variants

l e.g. standard_normal(method={"zig","box"})

l standard_exponential(method={"zig","inv"})

l Legacy API (backward-compatible)

l ak.random.* functions (ak.rand, ak.randint, ak.uniform)

l Now thin wrappers over the new Generator

Random Module
What’s New

16

l Seeded & deterministic

l Stable results if locale count is unchanged (most ops)

l Locale sensitivity

l Changing locale count → different draws/permutations

l Locale-invariant exception

l shuffle(method="Feistel"): keyed permutation over [0, N)

l Shuffle methods

l Fisher–Yates: simple, single-locale (testing / small data)

l MergeShuffle: scalable, fully distributed; reproducible only if locale count
fixed

l Feistel: distributed, keyed, reproducible (not cryptographic)

l Looking ahead

l Exploring stateless RNGs (Philox, Threefry) for locale-independent draws
and per-element determinism

Random Module
Reproducibility

17

Multi-dim Support

18

Multi-Dimensional Support

l Creation: array/zeros/ones/full/_like accept tuple shapes

l Shape Ops: reshape/flatten/squeeze with negative-axis support

l Broadcasting: rules aligned; centralized axis validation

l Elementwise: abs/cos/clz/isinf

l Manipulation: repeat, tile, flip are axis-aware for N-D; concatenate,
where

l Reduction: sum/prod/min/max/cumsum/cumprod/diff

l Linear Algebra: matmul/dot/vecdot (mixed-rank matmuls not
supported)

l Sorting: argsort/coargsort/sort support axis on numeric arrays

Multi-Dimensional Arrays
What’s New

19

Multi-Dimensional Arrays
Current Gaps/Next Up

Feature Area 1-D N-D Notes/Status

Numeric Arrays Yes Yes Core Ops Complete

Strings/Categorical Yes No Not Implemented

Set Operations (intersect1d,
union1d, etc...)

Yes No Currently 1-D only

Reductions (min/max etc...) Yes Partial mink, argmink pending

Other Yes Partial median, count_nonzero
pending

Pandas Integration Yes No No DataFrame/Series support

20

Parquet I/O Support

21

Previous All-Column Read Implementation
Parquet I/O Support

RowGroup 0 / Column 0

RowGroup 0 / Column 1

RowGroup 0 / Column 2

RowGroup 1 / Column 0

RowGroup 1 / Column 1

RowGroup 1 / Column 2

RowGroup 2 / Column 0

RowGroup 2 / Column 1

RowGroup 2 / Column 2

Column 0 Column 1 Column 2

Column 0 Column 1 Column 2

pd_array pd_array pd_array

Logical Table:

Simplified Representation of
Parquet File:

Arkouda Client's Dataframe:

Read a column

Jump back to read the next

Previous implementation Arkouda Server's Symbols:

22

New All-Column Read Implementation
Parquet I/O Support

RowGroup 0 / Column 0

RowGroup 0 / Column 1

RowGroup 0 / Column 2

RowGroup 1 / Column 0

RowGroup 1 / Column 1

RowGroup 1 / Column 2

RowGroup 2 / Column 0

RowGroup 2 / Column 1

RowGroup 2 / Column 2

Column 0 Column 1 Column 2

Column 0 Column 1 Column 2

pd_array pd_array pd_array

Logical Table:

Simplified Representation of
Parquet File:

Arkouda Client's Dataframe:

Arkouda Server's Symbols:
Read the file linearly

Populate columns at the same time

Current implementation

23

Significantly Improved Read Performance, Especially with Multiple Columns

Performance Results in Synthetic Benchmarks
Parquet I/O Support

before (s) after (s) speedup (x)

16.69 9.38 1.78

~400GBs of data, 5 columns, split into 128 files, read by 16 locales:

before (s) after (x) speedup (x)

335.97 9.98 33.67

~30GBs of data, 1000 columns, split into 128 files, read by 16 locales:

Noticeable improvement with
smaller numbers of columns

Gets more significant as
number of columns increase

24

Performance Results from the Telemetry Use Case 2
Parquet I/O Support

More than
2x improvement

at scale

Much better
weak scaling

behavior

25

Sparse Computations

26

Improving Arkouda's Sparse Linear Algebra Capabilities

27

Challenge: Can you create a distributed sparse domain & array pair,

l using 3 Arkouda pdarrays for rows, columns, and values,
l where the arrays are not necessarily sorted, nor contain unique data ?

Potential Answer: Well, of course! You can add indices to Chapel's sparse domains, just iterate over them
and add to the domain using +=.

Challenge: Can you make it run fast at-scale?

Likely Answer: Hmmm....

A Quick Background on Copy Aggregation

28

• Copying random data into an ordered array is a common operation
• sometimes called "gather"

forall (dst, idx) in zip(DstArr, SrcInds) do
 d = SrcArr[idx];

forall (d, idx) in zip(DstArr, SrcInds) with (var agg = new DstAggregator(int)) do
 agg.copy(d, SrcArr[idx]);

Results in random remote access

Random access is aggregated and data moved in bulk

Improving Arkouda's Sparse Linear Algebra Capabilities

29

Challenge: Can you create a distributed sparse domain & array pair,

l using 3 Arkouda pdarrays for rows, columns, and values,
l where the arrays are not necessarily sorted, nor contain unique data ?

Potential Answer: Well, of course! You can add indices to Chapel's sparse domains, just iterate over them
and add to the domain using +=.

Challenge: Can you make it run fast at-scale?

Likely Answer: Hmmm....

Improving Arkouda's Sparse Linear Algebra Capabilities

30

Challenge: Can you create a distributed sparse domain & array pair,

l using 3 Arkouda pdarrays for rows, columns, and values,
l where the arrays are not necessarily sorted, nor contain unique data ?

Potential Answer: Well, of course! You can add indices to Chapel's sparse domains, just iterate over them
and add to the domain using +=.

Challenge: Can you make it run fast at-scale?

Likely Answer: Hmmm.... A-ha! I am going to use copy aggregation!

Challenge: OK, can you copy the data in aggregate, and populate a sparse matrix during the operation?

forall (i,j,v) in zip(rows,cols,vals) with (

 var agg = new CustomDstAggregator(

 new shared SourceHandler(SparseDom,SparseArr)

)

) {

 agg.copy((i,j,v));

}

Enter Custom Aggregation

31

Custom Aggregator allows
any operation to be done
after the data is moved

User-defined type to
describe the operation

We are still working on
finishing this effort

Performance w/o Custom Aggregation

32

0

10

20

30

40

50

60

70
Ti

m
e

(s
)

Different Phases of the Operation

Execution Time Comparison
HPE Cray EX, 64 locales, 2M indices

Matrix Multiplication CSR Creation (Arkouda)
CSC Creation (Arkouda) CSR Creation (Aggregation)
CSC Creation (Aggregation)

Performance w/ Custom Aggregation

33

0

10

20

30

40

50

60

70
Ti

m
e

(s
)

Different Phases of the Operation

Execution Time Comparison
HPE Cray EX, 64 locales, 2M indices

Matrix Multiplication CSR Creation (Arkouda)
CSC Creation (Arkouda) CSR Creation (Aggregation)
CSC Creation (Aggregation)

~34x faster
sparse domain & array creation

Checkpointing
• Arkouda server's state can now be checkpointed (for the most part, we are still closing gaps)

ak.save_checkpoint("cp_name") # arrays stored in server's symbol table are saved on the file system
ak.load_checkpoint("cp_name") # and they are loaded back

• You can also opt-in for automatic checkpointing
> ./arkouda_server --checkpointMemPct=0.6 --checkpointIdleTime=300

Honorable Mentions

Checkpoint after each operation if
the used memory is >=60% of available memory

Checkpoint if the server is idle for 300 seconds

34

Python Interoperability
• Enables the user to run any simple Python function on Arkouda's pdarrays

arr = ak.array([1,2,3])

res = ak.apply(arr, lambda x: x+1) # res is now [2, 3, 4]

Conclusion & Outlook

35

l What’s Next

l Complete per-function alignment with NumPy semantics

l Deepen pandas-style functionality and DataFrame operations

l Advance benchmarking, diagnostics, and tooling for developers

l Get Involved

l Open-source and community-driven — new contributors welcome!

l 13 active contributors over the past year.

l https://github.com/Bears-R-Us/arkouda

l Help shape Arkouda’s next phase through code, docs, testing, and new use cases.

Outlook

36

l Arkouda in 2025

l Mature, NumPy-like framework for distributed analytics

l Stronger alignment with NumPy 2.0 and pandas semantics

l Expanded multi-dimensional and Python interop support

l Enhanced random utilities, sparse matrices, and checkpointing

l Faster parquet I/O

l Easier deployment via Spack and Docker, and Kubernetes

l Key Takeaway

l Arkouda brings Python’s productivity to HPC scale — enabling reproducible, data-intensive
computing at interactive speed.

Conclusion

37

Thank You

Arkouda Contributors (Past Year)
@ajpotts • @drculhane • @1RyanK • @jade-abraham • @vasslitvinov
@ShreyasKhandekar • @e-kayrakli • @jeremiah-corrado • @jaketrookman
@stress-tess • @john-hartman • @lydia-duncan • @alvaradoo

