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Introduction
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Arkouda: NumPy for Supercomputers
l A Pythonic interface to high-performance computing

l Open-source framework for exploratory data analysis at scale

l Combines NumPy-like syntax with Chapel’s distributed performance

l Operates interactively from Python — no parallel programming required

l Handles billions of elements across many nodes, reproducibly

v
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Arkouda: Where Python Meets Performance

l Bridging Productivity and Performance

l Familiar — mirrors NumPy, pandas, and SciPy semantics

l Scalability — parallel computation over massive arrays

l Reproducible — deterministic RNG and shuffle operations

l Extensible — easy to add new Chapel functions via message framework

l Accessible —  installable via Spack; Docker/Kubernetes support under exploration

l Evolving — ak.numpy, ak.pandas, ak.scipy

l Bottom Line

l Empowers researchers to move seamlessly from prototyping in Python to analyzing terabytes interactively, without rewriting code.
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Success Stories
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Telemetry Use Case 1
l How does energy-capping GPUs impact application 

performance?
l This work is a collaboration between our colleagues at 

HPE and ORNL
l Using telemetry data from Frontier

Experiment details:
l A pandas script has been transliterated to Arkouda

l Achieved 3.5x better performance on a single node

l Same script also demonstrates good weak scaling
l Note that pandas can't be used on multiple nodes 

at all

7



Telemetry Use Case 2
l What is the relationship between environment (e.g. 

temperature) and node failures?
l Imagine you have a very large server telemetry data, 

and information on failures, can you find any 
correlation?

Experiment details:
l 4TB of data stored in Parquet files

l Operations include:

l Histogram
l Mean, max

l Covariance
l All experiments were run on 64 nodes of HPE Cray EX
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Numpy & Pandas 
Alignment
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Numpy Alignment
Strategy

l Start with NumPy (foundation) → pandas & SciPy depend on it; covering 
NumPy unlocks most downstream call paths.

l Mirror NumPy APIs in ak.numpy → Users reuse NumPy muscle memory 
(same names/args/semantics).

l Use NumPy docs as the contract → Solves the “web-search problem”: 
answers from NumPy docs apply to Arkouda.

l Reorganize into ak.numpy, ak.pandas, ak.scipy → Clear place for each 
function; easier for contributors to navigate.

l Rank by real usage (analyzed pandas/SciPy calls) → High-impact first; all 
but 2 NumPy funcs used ≥10× in pandas functions are now supported.

l Next: verify per-function parity → Audit dtype promotion, 
broadcasting/axis, NA/Inf, and error behavior for exact NumPy match.
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Numpy Alignment
pandas & SciPy (what matters in practice)
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Numpy Alignment
pandas & SciPy (what matters in practice)
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l What It Is

l Arkouda-backed ExtensionArrays so pandas Series/DataFrame 
columns stay remote (numeric, bool, string, categorical).

l Supports zero-copy construction where possible.

l Why

l Enable scalable pandas workflows.

l Avoid rewriting all of pandas.

l What works today

l Column creation, indexing, equality, argsort, and common 
reductions.

l Clean fallback to NumPy dtypes when needed.

l Caveats

l Experimental — some pandas paths still call .to_numpy().

l NA semantics and a few reductions incomplete in certain types.

Pandas ExtensionArray API (Arkouda)
Experimental
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l Key point

l Arkouda already has distributed merges/groupby — need a pandas 
bridge that dispatches to Arkouda (avoid .to_numpy()) 

l Preferred: pandas accessor

l .ak on Series/DataFrame:

l df.ak.merge(...), df.ak.groupby(...).agg(...)

l Other integration options

l Subclassing (pd.DataFrame/Series + mixin): natural syntax 
(df.merge) — but brittle vs pandas internals & upgrades

l Monkeypatching (override DataFrame.merge, GroupBy.agg): 
fastest demo path — but risky, version-fragile; keep opt-in

l Status

l Early experimental EAs/dtypes exist; bridge layer TBD.

Pandas ExtensionArray API (Arkouda)
l Pandas ↔ Arkouda Bridge (Joins/Merges/Groupby)
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Random Module
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l ak.random.Generator via default_rng(seed)

l PCG64 backend, independent streams per dtype

l Supported distributions

l integers, uniform, normal / lognormal

l exponential / standard_exponential, poisson, standard_gamma

l choice, permutation, shuffle

l Method variants

l e.g. standard_normal(method={"zig","box"})

l standard_exponential(method={"zig","inv"})

l Legacy API (backward-compatible)

l ak.random.* functions (ak.rand, ak.randint, ak.uniform)

l Now thin wrappers over the new Generator

Random Module
What’s New
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l Seeded & deterministic

l Stable results if locale count is unchanged (most ops)

l Locale sensitivity

l Changing locale count → different draws/permutations

l Locale-invariant exception

l shuffle(method="Feistel"): keyed permutation over [0, N)

l Shuffle methods

l Fisher–Yates: simple, single-locale (testing / small data)

l MergeShuffle: scalable, fully distributed; reproducible only if locale count 
fixed

l Feistel: distributed, keyed, reproducible (not cryptographic)

l Looking ahead

l Exploring stateless RNGs (Philox, Threefry) for locale-independent draws 
and per-element determinism

Random Module
Reproducibility
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Multi-dim Support
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Multi-Dimensional Support

l Creation: array/zeros/ones/full/_like accept tuple shapes

l Shape Ops: reshape/flatten/squeeze with negative-axis support

l Broadcasting: rules aligned; centralized axis validation

l Elementwise: abs/cos/clz/isinf

l Manipulation: repeat, tile, flip are axis-aware for N-D; concatenate, 
where

l Reduction: sum/prod/min/max/cumsum/cumprod/diff

l Linear Algebra: matmul/dot/vecdot (mixed-rank matmuls not 
supported)

l Sorting: argsort/coargsort/sort support axis on numeric arrays

Multi-Dimensional Arrays
What’s New
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Multi-Dimensional Arrays
Current Gaps/Next Up

Feature Area 1-D N-D Notes/Status

Numeric Arrays Yes Yes Core Ops Complete

Strings/Categorical Yes No Not Implemented

Set Operations (intersect1d, 
union1d, etc...)

Yes No Currently 1-D only

Reductions (min/max etc...) Yes Partial mink, argmink pending

Other Yes Partial median, count_nonzero 
pending

Pandas Integration Yes No No DataFrame/Series support
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Parquet I/O Support
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Previous All-Column Read Implementation
Parquet I/O Support

RowGroup 0 / Column 0

RowGroup 0 / Column 1

RowGroup 0 / Column 2

RowGroup 1 / Column 0

RowGroup 1 / Column 1

RowGroup 1 / Column 2

RowGroup 2 / Column 0

RowGroup 2 / Column 1

RowGroup 2 / Column 2

Column 0 Column 1 Column 2

Column 0 Column 1 Column 2

pd_array pd_array pd_array

Logical Table:

Simplified Representation of
Parquet File:

Arkouda Client's Dataframe:

Read a column

Jump back to read the next

Previous implementation Arkouda Server's Symbols:
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New All-Column Read Implementation
Parquet I/O Support

RowGroup 0 / Column 0

RowGroup 0 / Column 1

RowGroup 0 / Column 2

RowGroup 1 / Column 0

RowGroup 1 / Column 1

RowGroup 1 / Column 2

RowGroup 2 / Column 0

RowGroup 2 / Column 1

RowGroup 2 / Column 2

Column 0 Column 1 Column 2

Column 0 Column 1 Column 2

pd_array pd_array pd_array

Logical Table:

Simplified Representation of
Parquet File:

Arkouda Client's Dataframe:

Arkouda Server's Symbols:
Read the file linearly

Populate columns at the same time

Current implementation
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Significantly Improved Read Performance, Especially with Multiple Columns

Performance Results in Synthetic Benchmarks
Parquet I/O Support

before (s) after (s) speedup (x)

16.69 9.38 1.78

~400GBs of data, 5 columns, split into 128 files, read by 16 locales:

before (s) after (x) speedup (x)

335.97 9.98 33.67

~30GBs of data, 1000 columns, split into 128 files, read by 16 locales:

Noticeable improvement with
smaller numbers of columns

Gets more significant as
number of columns increase
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Performance Results from the Telemetry Use Case 2
Parquet I/O Support

More than
2x improvement

at scale

Much better
weak scaling 

behavior
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Sparse Computations
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Improving Arkouda's Sparse Linear Algebra Capabilities
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Challenge: Can you create a distributed sparse domain & array pair,

l using 3 Arkouda pdarrays for rows, columns, and values,
l where the arrays are not necessarily sorted, nor contain unique data ?

Potential Answer: Well, of course! You can add indices to Chapel's sparse domains, just iterate over them 
and add to the domain using +=.

Challenge: Can you make it run fast at-scale? 

Likely Answer: Hmmm....



A Quick Background on Copy Aggregation
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• Copying random data into an ordered array is a common operation
• sometimes called "gather"

forall (dst, idx) in zip(DstArr, SrcInds) do
 d = SrcArr[idx];

forall (d, idx) in zip(DstArr, SrcInds) with (var agg = new DstAggregator(int)) do
 agg.copy(d, SrcArr[idx]);

Results in random remote access

Random access is aggregated and data moved in bulk



Improving Arkouda's Sparse Linear Algebra Capabilities
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Challenge: Can you create a distributed sparse domain & array pair,

l using 3 Arkouda pdarrays for rows, columns, and values,
l where the arrays are not necessarily sorted, nor contain unique data ?

Potential Answer: Well, of course! You can add indices to Chapel's sparse domains, just iterate over them 
and add to the domain using +=.

Challenge: Can you make it run fast at-scale? 

Likely Answer: Hmmm....



Improving Arkouda's Sparse Linear Algebra Capabilities
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Challenge: Can you create a distributed sparse domain & array pair,

l using 3 Arkouda pdarrays for rows, columns, and values,
l where the arrays are not necessarily sorted, nor contain unique data ?

Potential Answer: Well, of course! You can add indices to Chapel's sparse domains, just iterate over them 
and add to the domain using +=.

Challenge: Can you make it run fast at-scale? 

Likely Answer: Hmmm.... A-ha! I am going to use copy aggregation!

Challenge: OK, can you copy the data in aggregate, and populate a sparse matrix during the operation?



forall (i,j,v) in zip(rows,cols,vals) with (

    var agg = new CustomDstAggregator(

                new shared SourceHandler(SparseDom,SparseArr)

            )

) {

  agg.copy((i,j,v));

}

Enter Custom Aggregation
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Custom Aggregator allows 
any operation to be done 
after the data is moved

User-defined type to 
describe the operation

We are still working on 
finishing this effort



Performance w/o Custom Aggregation
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Performance w/ Custom Aggregation
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Checkpointing
• Arkouda server's state can now be checkpointed (for the most part, we are still closing gaps)

ak.save_checkpoint("cp_name")  # arrays stored in server's symbol table are saved on the file system
ak.load_checkpoint("cp_name")  # and they are loaded back

• You can also opt-in for automatic checkpointing
> ./arkouda_server --checkpointMemPct=0.6 --checkpointIdleTime=300

Honorable Mentions

Checkpoint after each operation if
the used memory is >=60% of available memory

Checkpoint if the server is idle for 300 seconds
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Python Interoperability
• Enables the user to run any simple Python function on Arkouda's pdarrays

arr = ak.array([1,2,3])

res = ak.apply(arr, lambda x: x+1) # res is now [2, 3, 4]
 



Conclusion & Outlook
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l What’s Next

l Complete per-function alignment with NumPy semantics

l Deepen pandas-style functionality and DataFrame operations

l Advance benchmarking, diagnostics, and tooling for developers

l Get Involved

l Open-source and community-driven — new contributors welcome!

l 13 active contributors over the past year.

l https://github.com/Bears-R-Us/arkouda

l Help shape Arkouda’s next phase through code, docs, testing, and new use cases.

Outlook
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l Arkouda in 2025

l Mature, NumPy-like framework for distributed analytics

l Stronger alignment with NumPy 2.0 and pandas semantics

l Expanded multi-dimensional and Python interop support

l Enhanced random utilities, sparse matrices, and checkpointing

l Faster parquet I/O

l Easier deployment via Spack and Docker, and Kubernetes

l Key Takeaway

l Arkouda brings Python’s productivity to HPC scale — enabling reproducible, data-intensive 
computing at interactive speed.

Conclusion
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Thank You

Arkouda Contributors (Past Year)
@ajpotts • @drculhane • @1RyanK • @jade-abraham • @vasslitvinov  
@ShreyasKhandekar • @e-kayrakli • @jeremiah-corrado • @jaketrookman  
@stress-tess • @john-hartman • @lydia-duncan • @alvaradoo


