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Introduction

• In distributed -memory, parallel programming, one of the most common bottlenecks is the quantity of 
communications performed between remote, parallel tasks.

• Increases in communication are especially noticeable in irregular workloads such as those that use sparse 
matrices and graphs.

• For this talk the focus will be on optimizing sparse matrix creation but also taking a minor look at sparse matrix 
multiplication and RMAT matrix generators for background.

• Chapel has the CopyAggregation  module to facilitate the batching of fine -grained communications for 
array -specific operations.

• However, there is not a more general framework to support the aggregation of more user -specific operations. 

• We will introduce a framework prototype for more general aggregation.

• The work for this talk did not only involve the framework prototype.

• Compressed sparse layouts in Chapel were modified to add parallel safety. 

• The sparse domain buffer functionality, for faster adding of indices into sparse domains, was updated to pass uniqueness and 
sorted flags. 
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Motivating Use Case – Sparse Operations in Arkouda
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1. n = 20       # Matrices will be of size (2**n X 2**n).

2. rows, cols = rmat(n)             # Create 1D pdarrays of row and column indices.

3. vals = ak.randint(1, len(rows), len(rows))   # Generate random values.

4. A = create_sparse_matrix(2**n, rows, cols, vals, "CSR") # Create sparse matrix with CSR layout.

5. B = create_sparse_matrix(2**n, rows, cols, vals, "CSC") # Create sparse matrix with CSC layout.

6. C = ak.sparse_matrix_matrix_mult(A, B)   # Do the sparse matrix multiplication. 
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Background
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Background – Array Aggregation
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• Forall  loops spawn a source aggregator per -task, therefore 
there are per -task buffers, making aggregation memory -
intensive.

• In this case the destination is ra, which is local, but the source 
of the data is remote, which is A[size -i]. 
• This example shows source aggregation, but the rest of the 

talk focuses on destination aggregation.
• Whenever the buffer gets full, or the all the iterations of the task 

are finished, then a flush gets issues, that moves all the saved 
values in the buffer to the memory location they belong in. 



Background – Power -Law Matrices

What?  Experiment graphs were recursive mat rix (R -MAT) random graphs:

• |𝑉| ≤ 2𝑆𝐶𝐴𝐿𝐸

• |𝐸| ≤ (2𝑆𝐶𝐴𝐿𝐸∗ 𝑒𝐹𝐴𝐶𝑇𝑂𝑅)

How? 

1. Split adjacency matrix into four equal parts.

2. Choose part & subdivide again into four equal parts. 

3. Once you reach a 1x1 cell, assign it 0 or 1 to keep that edge in the graph.

Why? 

• Probabilities a=0.57, b=c=0.19, and d=0.05 give a Kronecker  graph. 

• This type of graph exhibits a power -law vertex degree distribution.

• Real -world graphs exhibit power -law vertex degree distributions.

• This makes them an ideal random graph for benchmarking.
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Background – Sparse Matrix Layouts
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Background – Sparse Matrix Multiplication
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Background – Sparse Matrix Multiplication
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Proposed Solution
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Proposed Solution – High -Level Description

• We take the current CopyAggregation  module and modify it to accept two new user -defined records.

• The source handler to dictate where data is going to be transferred to and how it will be stored within the buffer.

• The destination handler to perform a flushing operation to move the data from the buffers to their physical 
memory location. 

• Gives more power to the user to let them specify what data structures they want to aggregate into and 
how should the data be treated.
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Proposed Solution – Source Handling
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Line 4: we have the expected format for the source 
data, and eventually the destination data of type ( i,j,v ) 
where ( i,j) is the sparse domain index and v is the data 
we are passing.

Lines 6 -12: the initializer extracts the underlying 
record for domains and arrays; this is a workaround as 
current classes in Chapel do not let us take a ref 
(pointer) of a domain or array.

Lines 14 -16: the aggregator has a backend handler that 
uses this function to instantiate a destination handler 
whenever it comes time to perform a flush. 

Lines 18 -21: gets the locale that owns the index ( i,j) 
during a copy step that is used to add a full tuple ( i,j,v ) 
to the buffer.



Proposed Solution – Destination Handling
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Lines 32 -45: we have the works for the flushing operation, which currently is a lot more scary -looking than intended, I just cou ldn’t help myself and 
wanted to optimize as much as possible ☺. 
Lines 33 -34: create an index buffer for faster addition of indices into a sparse domain.
Lines 35 -39: add a given index ( i,j) into the buffer, once the buffer is full, or hits the commit() in line 40, the buffer gets flushed and those indices get 
added to the domain. This is not the same as the remote buffer within the aggregator.
Lines 41 -45: once the indices have been added, we add in the actual data, which requires finding the index for ( i,j) in the backend data array.
Lines 53 -54: we see the aggregation prototype in action where we create a custom aggregator with the source handler shown in the  previous slide. 



Benchmarks

14



Aggregated vs. Non -Aggregated Sparse Matrix Creation Time
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• We see consistent speed -ups across all scales for the 
aggregated construction times vs. the current Arkouda  
construction times.

• The speed -up for CSR is greater because CSC non -
aggregated construction was generally slower.
• I do not have a strong reason or sense of “why” 

and I do not want to speculate, but it would be a 
good study to figure out why.

• Generally, as the number of locales increased, the 
performance got better for aggregated construction 
whereas the non -aggregated construction slightly 
degraded in performance as locales increased. 

• System -specific issues with compute nodes caused 
odd results like the ones for CSC construction at 121 
locales, where the aggregated code did not perform as 
well as it should have.
• Re -running the test with one trial showed much 

better performance, but I kept the “bad” result to 
showcase how system -specific issues can affect 
aggregation.  

System: HPE Cray EX. 
               Slingshot -11 interconnect with communication managed through libfabric . 
               2 AMD EPYC 7763 processors with 256 cores total and 512GB memory per locale. 



Sparse Matrix Multiplication vs. Aggregated Creation
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• Overall, the aggregated sparse matrix 
creation is now always significantly faster than 
sparse matrix multiplication.
• This is good for Arkouda  users to quickly 

load in data and immediately start their 
analyses without having to spend too 
much time waiting for data to load.

• I present the y -axis on a log_2 scale. There is 
no specific reason other than that without the 
log scale, the bars for Scale 14 looked almost 
non -existent, even though the creation code 
was consistently 4x or faster.

System: HPE Cray EX. 
               Slingshot -11 interconnect with communication managed through libfabric . 
               2 AMD EPYC 7763 processors with 256 cores total and 512GB memory per locale. 



Testing the Limits of Aggregated Sparse Matrix Creation
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• Here, we see the maximum scale for the RMAT 
matrices constructed.

• As a reminder, the matrices occupy an area of 
2^scale X 2^scale and have NNZ of about 2^scale 
* 32.
• Give or take repeated edges getting parsed 

out.
• If the scale is 20, then that will give a ratio of 

about 1/32768 or 0.00003 of NNZ values to 
the area of the matrix.

• We can see for locales 25 -36 the creation time 
significantly improving for scale 24, and then 
similarly for locales 49 -81 and 100 -144. 
• This exhibits strong scalability for the 

aggregated sparse matrix creation code.
• A graph of scale 26 is considered a “toy” size by 

the Graph500 benchmark (they run on 
supercomputers like Fugaku  & Frontier).
• Assuming 64 bits per edge, a graph of this 

scale takes up about ~20GB in memory.
System: HPE Cray EX. 
               Slingshot -11 interconnect with communication managed through libfabric . 
               2 AMD EPYC 7763 processors with 256 cores total and 512GB memory per locale. 



In Conclusion…
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Conclusion

• This work introduces early steps toward a general aggregation framework in Chapel beyond 
CopyAggregation  to allow more general operations such as modifying sparse matrix domains and 
arrays. 

• This prototype gives finer control of distributed communication while keeping Chapel’s productive 
global namespace.

• Aggregated sparse matrix creation showcases benefits for irregular, power -law style workloads.

• Our performance results show aggregation alleviates communication bottlenecks in sparse workloads.

• We validates that explicit aggregation control yields predictable performance gains without sacrificing 
Chapel’s high -level model.

• Going forward this work would benefit from the following.

• A comparison against state -of -the -art methods like conveyors. 

• A more in -depth look at the framework prototype itself. How well does it support source aggregation? What other 
workloads can it be applied to? 

• “Hyperparameter” tuning. Aggregation has a ton of toggles like buffer sizes. Is there a Goldilocks –space for buffer 
sizes to number of aggregations that is most optimal? 
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