HPE

Towards A General Aggregation
Framework in Chapel

Oliver Alvarado Rodriguez, Engin Kayraklioglu, Bartosz Bryg, Mohammad Dindoost, David Bader, and Brad Chamberlain

October 10, 2024

Introduction

« Indistributed-memory, parallel programming, one of the most common bottlenecks is the quantity of
communications performed between remote, parallel tasks.

Increases in communication are especially noticeable in irregular workloads such as those that use sparse
matrices and graphs.

For this talk the focus will be on optimizing sparse matrix creation but also taking a minor look at sparse matrix
multiplication and RMAT matrix generators for background.

« Chapel has the CopyAggregation module to facilitate the batching of fine-grained communications for
array-specific operations.

However, there is not a more general framework to support the aggregation of more user-specific operations.
We will introduce a framework prototype for more general aggregation.

The work for this talk did not only involve the framework prototype.
« Compressed sparse layouts in Chapel were modified to add parallel safety.

« The sparse domain buffer functionality, for faster adding of indices into sparse domains, was updated to pass uniqueness and
sorted flags.

Motivating Use Case - Sparse Operations in Arkouda

1. n = 20 # Matrices will be of size (2**n X 2**n).

2. rows, cols = rmat(n) # Create 1D pdarrays of row and column indices.

3. vals = ak.randint(1, len(rows), len(rows)) # Generate random values.

4. A = create_sparse_matrix(2**n, rows, cols, vals, "CSR") # Create sparse matrix with CSR layout.

5. B = create_sparse_matrix(2**n, rows, cols, vals, "CSC") # Create sparse matrix with CSC layout.

6. C = ak.sparse_matrix_matrix_mult(A, B) # Do the sparse matrix multiplication.

Execution Time Comparison Execution Time Comparison
HPE Cray EX, 64locales, 2M indices HPE Cray EX, 64locales, 2M indices

70 60

60 50

50
- _ 40
% v % 30 s d ~3flx;(aster ti
E 20 E parse domain & array creation
= -

20

20

10 10

0 0 | I —

Different Phases of the Operation Different Phases of the Operation
OMatrix Multiplication #CSR Creation (Arkouda) #CSC Creation (Arkouda) OMatrix Multiplication B CSR Creation (Aggregation) B CSC Creation (Aggregation)

—1

Backgro

Background - Array Aggregation

R=Ta - B B = R I Y B - B

use BlockDist, CopyAggregation;

const size = 10000;

const space = {@..size};

const D = space dmapped new blockDist(space);
var A, rA: [D] int = D;

forall (ra, i) in zip(rA, D) with (var agg = new SrcAggregator(int)) do
agg.copy(ra, A[lsize-1i]);

Forall loops spawn a source aggregator per-task, therefore
there are per-task buffers, making aggregation memory-
intensive.
In this case the destination is ra, which is local, but the source
of the data is remote, which is A[size-i].

« This example shows source aggregation, but the rest of the

talk focuses on destination aggregation.

Whenever the buffer gets full, or the all the iterations of the task
are finished, then a flush gets issues, that moves all the saved
values in the buffer to the memory location they belong in.

Background - Power-Law Matrices

What? Experiment graphs were recursive matrix (R-MAT) random graphs: S Nodes =

. V| < 25CALE From EIRIE

+ |E| < (25CALE« e FACTOR) a %9-:-914--&--

e

How? T
. . .. Nodes '

1. Split adjacency matrix into four equal parts. c | d

2. Choose part & subdivide again into four equal parts.

3. Once you reach a 1x1 cell, assign it O or 1 to keep that edge in the graph

Why?

* Probabilities a=0.57, b=c=0.19, and d=0.05 give a Kronecker graph. powere LAW

« This type of graph exhibits a power-law vertex degree distribution. BETRGUT/ON

« Real-world graphs exhibit power-law vertex degree distributions.
« This makes them an ideal random graph for benchmarking.

degree

vertex label

Background - Sparse Matrix Layouts

1 n=8
Compressed Sparse Column (CSC) format
(sorted within each column)

values:§6 8 1 7 34 3 9512 2
rowinds: 14 51 4 3 3 8 53 6 7 2

1 35689 12 12 13

Compressed Sparse Row (CSR) format
(sorted within each row)

values:I1 2 34 56 7 8 9123
rowstfarts: 1 2 3 6 8 10 11 12 13

colinds:#2 8 3 4 61 215 6 6 4

1

0
0
0
6
8
0
0
0

col starts:

O 0O OO Joomr
O O OO O Ww oo
W o O O O w» OO
O O O VYV O O O o
O MNNBRFHEH OO Ul OO
O O OO O O O o

Space: 2-nnz + n n=38 Space: 2:-nnz + n

Coordinate (COO) format (sorted in row-major order)

values: 11 2 3 4 56 78 91 2 3
rowindices: 1 2 3 3 34 455 6 7 8

columnindices: |2 8 3 4 61 2 15 6 6 4

Space: 3:nnz (nnz = number of nonzeroes)

Background - Sparse Matrix Multiplication

1§01 0000O00O0

O 0O0OO0O0O0O02
00340500
67000000
8 0009000O0

0O 000O01O00O0

LHS matrix (CSC storage)

00000200
8J0 003 0000

1 01000000

1§01 0000O00O0

o
o
o
o
o
o
o
o

0O000O0O0O0OO

RHS matrix (CSR storage)

0000O0O0O00O

0000O0O0O00O

0000O0O0O00O

0000O0O0O00O

O O O W oWw o o o

O 0O0O0OO0O0O0O2

00340500

67000000
8 0009000O0

0O 000O0O01O00O0

00000200
8J0 003 0000O0

Background - Sparse Matrix Multiplication

1§01 0000O0O

0O 0O0O0O0O0O2
00340500
67000000
8 0009000O0

0O 000O01O00O0

LHS matrix (CSC storage)

00000200
8J0 003 0000

1 0 00 0O0O00O02

1§01 0000O00O0

- O O~ O O O O

o
o
o
o
o
o
o
o

O 0O0O0O0O0O0O2

0000O0O0O00O

00340500

67000000
8 0009000O0

080000O00O0

0000O0O0O00O

0O 000O01O00O0

0000O0O0O0O

00000200
8J0 003 00O00O0

G+ G

0000O0O0O0O

etc.

Propose

Proposed Solution - High-Level Description

We take the current CopyAggregation module and modify it to accept two new user-defined records.
The source handler to dictate where data is going to be transferred to and how it will be stored within the buffer.
The destination handler to perform a flushing operation to move the data from the buffers to their physical

memory location.
Gives more power to the user to let them specify what data structures they want to aggregate into and

how should the data be treated.

M

Proposed Solution - Source Handling

0 ~1 U1 W=

[T O T e T T R e e e T o T - T = N S S S Gy Sy
B = © WO 00 I U W= O O

class SourceHandler {

}

var dVal;
var aVal;
type elemType = (int,int,int);

proc init(D, A) {
// workaround as ref domain is not implemented
this.dval = D._value;

// workaround as ref array is not implemented
this.avVal = A._value;

}

proc sourceCopy() {
return new unmanaged DestinationHandler (dVal, aVal);

}

proc getDestinationLocale(val: elemType) {

var (i,j,_) = val;

return dVal.parentDom.dist.dsiIndexToLocale((i,j));
}

Line 4: we have the expected format for the source
data, and eventually the destination data of type (i,j,v)
where (i,j) is the sparse domain index and v is the data
we are passing.

Lines 6-12: the initializer extracts the underlying
record for domains and arrays; this is a workaround as
current classes in Chapel do not let us take a ref
(pointer) of a domain or array.

Lines 14-16: the aggregator has a backend handler that
uses this function to instantiate a destination handler
whenever it comes time to perform a flush.

Lines 18-21: gets the locale that owns the index (i,j)

during a copy step that is used to add a full tuple (i,j,v)
to the buffer.

12

Proposed Solution - Destination Handling

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

53
54

class DestinationHandler (
var domVal;
var arrVal;

proc init(domVal, arrVal) {
this.domVal domVval;
this.arrval arrval;

}

inline proc flush(ref rBuffer, const ref remBufferPtr, const ref myBufferIdx) {
const (_, locid) = this.domVal.dist.chpl__locToLocIdx(here);
var locIdxBuf = this.domVal.locDoms[locid]!.mySparseBlock._value.createIndexBuffer(bufSize);
for (dstAddr, srcVal) in rBuffer.locallter(remBufferPtr, myBufferIdx) {
assert(dstAddr == nil);
var (i,j,_) = srcval;
locIdxBuf.add((i, j));
}
locIdxBuf.commit () ;
for (dstAddr, srcVal) in rBuffer.locallter(remBufferPtr, myBufferIdx) {
assert(dstAddr == nil);
var (i,j,v) = srcVal;
var (_,loc) = this.domVal.locDoms[locid]!.mySparseBlock._value.find((i,j));
this.arrVal.locArr[locid]!.myElems._value.data[loc] = v;

}

forall (i,j,v) in zip(rows, cols, vals) with (var agg = new CustomDstAggregator(new shared SourceHandler(SparseDom, SparseArr))) do
agg.copy((i,j,v));

Lines 32-45: we have the works for the flushing operation, which currently is a lot more scary-looking than intended, | just couldn’t help myself and
wanted to optimize as much as possible ©.

Lines 33-34: create an index buffer for faster addition of indices into a sparse domain.

Lines 35-39: add a given index (i,j) into the buffer, once the buffer is full, or hits the commit() in line 40, the buffer gets flushed and those indices get
added to the domain. This is not the same as the remote buffer within the aggregator.

Lines 41-45: once the indices have been added, we add in the actual data, which requires finding the index for (,j) in the backend data array.

Lines 53-54: we see the aggregation prototype in action where we create a custom aggregator with the source handler shown in the previous slide.

—1 13

Benchm

Aggregated vs. Non-Aggregated Sparse Matrix Creation Time

Speedup (NoAgg / Agg)

60

50 1

Speedup (NoAgg / Agg)

10 A

CSR Construction Speedup (Aggregation vs Default)

1 BBl Scale 14

1 = scale17

=
o

Scales

I Scale 15
Em Scale 16

I Scale 18

64 81 100

Locales

CSC Construction Speedup (Aggregation vs Default)

S
o

w
o

[
o

Scales
B Scale 14
I Scale 15
B Scale 16
B Scale 17
[Scale 18

49 64 81

Locales

System: HPE Cray EX.

—1 Slingshot-11 interconnect with communication managed through libfabric.
2 AMD EPYC 7763 processors with 256 cores total and 512GB memory per locale.

We see consistent speed-ups across all scales for the
aggregated construction times vs. the current Arkouda
construction times.

The speed-up for CSR is greater because CSC non-
aggregated construction was generally slower.

« | do not have a strong reason or sense of “why”
and | do not want to speculate, but it would be a
good study to figure out why.

Generally, as the number of locales increased, the
performance got better for aggregated construction
whereas the non-aggregated construction slightly
degraded in performance as locales increased.
System-specific issues with compute nodes caused
odd results like the ones for CSC construction at 121
locales, where the aggregated code did not perform as
well as it should have.

« Re-running the test with one trial showed much
better performance, but | kept the “bad” result to
showcase how system-specific issues can affect
aggregation.

15

(SpMM Time) / (Creation Time)

Sparse Matrix Multiplication vs. Aggregated Creation

2™9

(]
>
)]

275 A

274 -

273

272 -

Sparse Matrix Multiply vs Creation Ratios (Scales 14-18)

Scales

Scale 14
Scale 15
Scale 16
Scale 17
Scale 18

64 81 100 121
Locales

System: HPE Cray EX.

Slingshot-11 interconnect with communication managed through libfabric.
2 AMD EPYC 7763 processors with 256 cores total and 512GB memory per locale.

—1

Overall, the aggregated sparse matrix
creation is now always significantly faster than
sparse matrix multiplication.

« This is good for Arkouda users to quickly
load in data and immediately start their
analyses without having to spend too
much time waiting for data to load.

| present the y-axis on alog_2 scale. There is
no specific reason other than that without the
log scale, the bars for Scale 14 looked almost
non-existent, even though the creation code
was consistently 4x or faster.

16

Testing the Limits of Aggregated Sparse Matrix Creation

Max Scale CSC Creation Times per Locales

26

6000 - Scales

Scale 21
Scale 22 24
Scale 23
Scale 24
Scale 25 26
Scale 26

25

5000 +

4000 A

JO0ENN

25

26

3000 A
24

25

CSC Creation Time (s)

2000 -

1000 A

Locales

System: HPE Cray EX.
Slingshot-11 interconnect with communication managed through libfabric.

2 AMD EPYC 7763 processors with 256 cores total and 512GB memory per locale.

—1

Here, we see the maximum scale for the RMAT
matrices constructed.

As a reminder, the matrices occupy an area of
2”scale X 2*scale and have NNZ of about 2"scale
* 32.

« Give or take repeated edges getting parsed
out.

« If the scale is 20, then that will give a ratio of
about 1/32768 or 0.00003 of NNZ values to
the area of the matrix.

We can see for locales 25-36 the creation time
significantly improving for scale 24, and then
similarly for locales 49-81 and 100-144.

« This exhibits strong scalability for the
aggregated sparse matrix creation code.

A graph of scale 26 is considered a “toy” size by
the Graph500 benchmark (they run on
supercomputers like Fugaku & Frontier).

« Assuming 64 bits per edge, a graph of this
scale takes up about ~20GB in memory.

17

In Conclu

Conclusion

« This work introduces early steps toward a general aggregation framework in Chapel beyond
CopyAggregation to allow more general operations such as modifying sparse matrix domains and
arrays.

« This prototype gives finer control of distributed communication while keeping Chapel’s productive
global namespace.

« Aggregated sparse matrix creation showcases benefits for irregular, power-law style workloads.
« Our performance results show aggregation alleviates communication bottlenecks in sparse workloads.

« We validates that explicit aggregation control yields predictable performance gains without sacrificing
Chapel’s high-level model.

« Going forward this work would benefit from the following.
« A comparison against state-of-the-art methods like conveyors.

« A more in-depth look at the framework prototype itself. How well does it support source aggregation? What other
workloads can it be applied to?

« “Hyperparameter” tuning. Aggregation has a ton of toggles like buffer sizes. Is there a Goldilocks-space for buffer
sizes to number of aggregations that is most optimal?

Thank You!

Oliver Alvarado Rodriguez

oliver.alvarado-rodriguez@hpe.com

: © 2025 Hewlett Packard Enterprise Development LP

	Slide 1: Towards A General Aggregation Framework in Chapel
	Slide 2: Introduction
	Slide 3: Motivating Use Case – Sparse Operations in Arkouda
	Slide 4: Background
	Slide 5: Background – Array Aggregation
	Slide 6: Background – Power-Law Matrices
	Slide 7: Background – Sparse Matrix Layouts
	Slide 8: Background – Sparse Matrix Multiplication
	Slide 9: Background – Sparse Matrix Multiplication
	Slide 10: Proposed Solution
	Slide 11: Proposed Solution – High-Level Description
	Slide 12: Proposed Solution – Source Handling
	Slide 13: Proposed Solution – Destination Handling
	Slide 14: Benchmarks
	Slide 15: Aggregated vs. Non-Aggregated Sparse Matrix Creation Time
	Slide 16: Sparse Matrix Multiplication vs. Aggregated Creation
	Slide 17: Testing the Limits of Aggregated Sparse Matrix Creation
	Slide 18: In Conclusion…
	Slide 19: Conclusion
	Slide 20: Thank You!

