

Towards A General Aggregation Framework in Chapel

Oliver Alvarado Rodriguez, Engin Kayraklioglu, Bartosz Bryg, Mohammad Dindoost, David Bader, and Brad Chamberlain

October 10, 2024

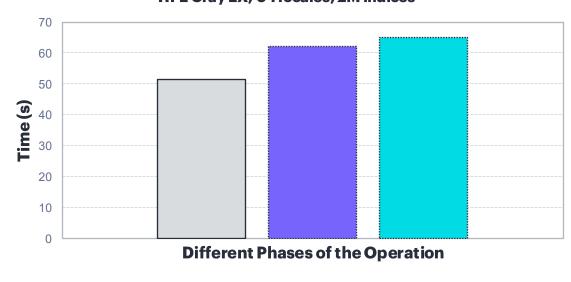
Introduction

- In distributed-memory, parallel programming, one of the most common bottlenecks is the quantity of communications performed between remote, parallel tasks.
 - Increases in communication are especially noticeable in irregular workloads such as those that use sparse matrices and graphs.
 - For this talk the focus will be on optimizing sparse matrix creation but also taking a minor look at sparse matrix multiplication and RMAT matrix generators for background.
- Chapel has the CopyAggregation module to facilitate the batching of fine-grained communications for array-specific operations.
 - However, there is not a more general framework to support the aggregation of more user-specific operations.
 - We will introduce a framework prototype for more general aggregation.
 - The work for this talk did not only involve the framework prototype.
 - Compressed sparse layouts in Chapel were modified to add parallel safety.
 - The sparse domain buffer functionality, for faster adding of indices into sparse domains, was updated to pass uniqueness and sorted flags.

Motivating Use Case - Sparse Operations in Arkouda

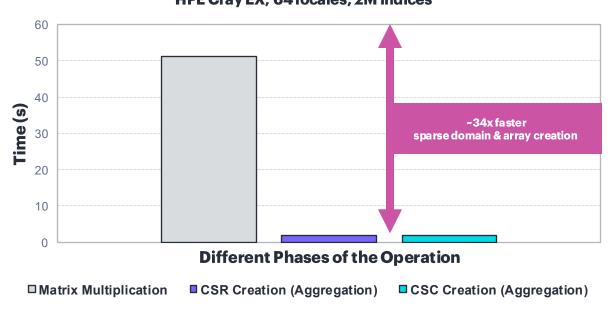
- 1. n = 20
- 2. rows, cols = rmat(n)
- 3. vals = ak.randint(1, len(rows), len(rows))
- 4. A = create_sparse_matrix(2**n, rows, cols, vals, "CSR")
- 5. B = create_sparse_matrix(2**n, rows, cols, vals, "CSC")
- 6. C = ak.sparse_matrix_matrix_mult(A, B)

Execution Time Comparison HPE Cray EX, 64 locales, 2M indices



- # Matrices will be of size (2**n X 2**n).
- # Create 1D pdarrays of row and column indices.
- # Generate random values.
- # Create sparse matrix with CSR layout.
- # Create sparse matrix with CSC layout.
- # Do the sparse matrix multiplication.

Execution Time Comparison HPE Cray EX, 64 locales, 2M indices



Background

Background - Array Aggregation

```
use BlockDist, CopyAggregation;

const size = 10000;
const space = {0..size};
const D = space dmapped new blockDist(space);
var A, rA: [D] int = D;

forall (ra, i) in zip(rA, D) with (var agg = new SrcAggregator(int)) do
    agg.copy(ra, A[size-i]);
```

- Forall loops spawn a source aggregator per-task, therefore there are per-task buffers, making aggregation memoryintensive.
- In this case the destination is ra, which is local, but the source of the data is remote, which is A[size-i].
 - This example shows source aggregation, but the rest of the talk focuses on destination aggregation.
- Whenever the buffer gets full, or the all the iterations of the task are finished, then a flush gets issues, that moves all the saved values in the buffer to the memory location they belong in.

Background – Power-Law Matrices

What? Experiment graphs were recursive matrix (R-MAT) random graphs:

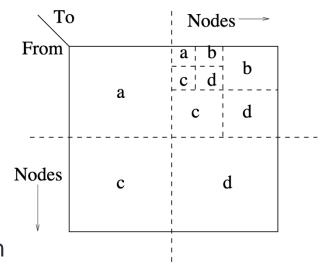
- $|V| < 2^{SCALE}$
- $|E| \le (2^{SCALE} * eFACTOR)$

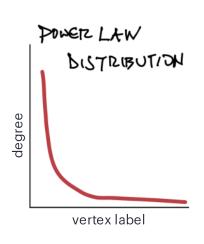
How?

- 1. Split adjacency matrix into four equal parts.
- 2. Choose part & subdivide again into four equal parts.
- 3. Once you reach a 1x1 cell, assign it 0 or 1 to keep that edge in the graph

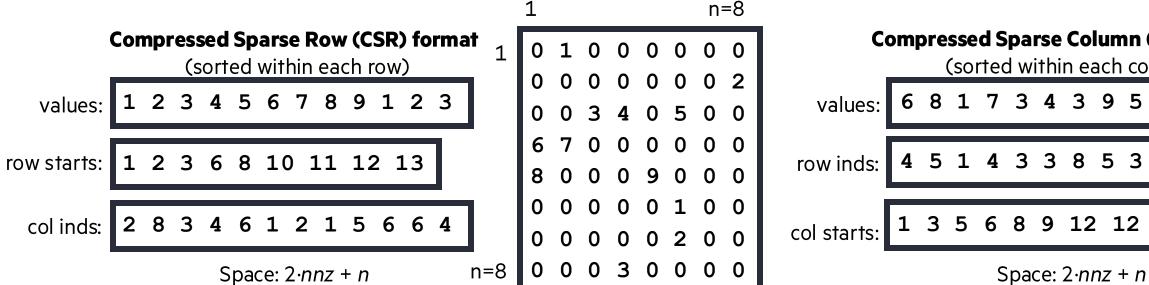
Why?

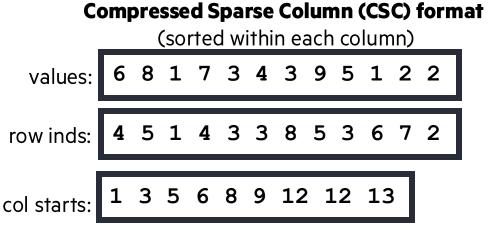
- Probabilities a=0.57, b=c=0.19, and d=0.05 give a Kronecker graph.
- This type of graph exhibits a power-law vertex degree distribution.
- Real-world graphs exhibit power-law vertex degree distributions.
- This makes them an ideal random graph for benchmarking.



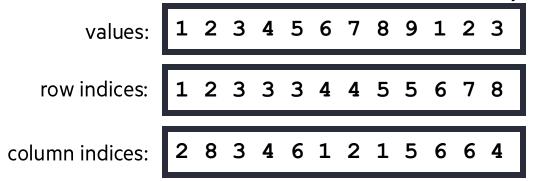


Background – Sparse Matrix Layouts





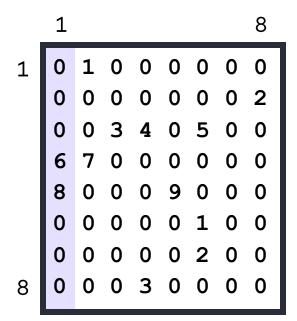
Coordinate (COO) format (sorted in row-major order)

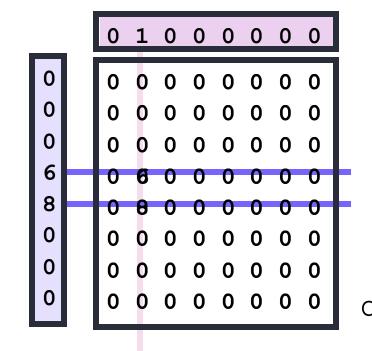


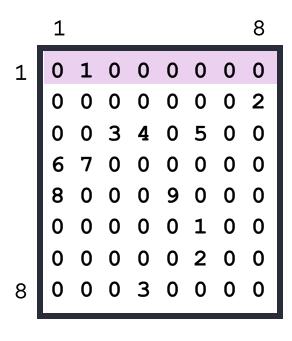
Space: $3 \cdot nnz$ (nnz = number of nonzeroes)

Background - Sparse Matrix Multiplication

LHS matrix (CSC storage)



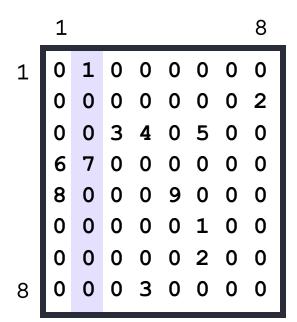


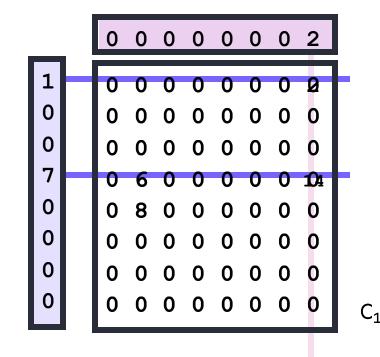


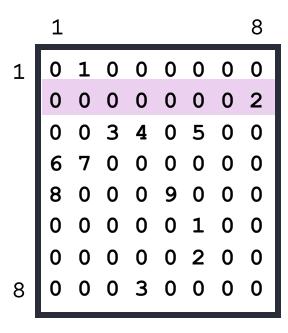
RHS matrix (CSR storage)

Background - Sparse Matrix Multiplication

LHS matrix (CSC storage)







etc.

Proposed Solution

Proposed Solution – High-Level Description

- We take the current CopyAggregation module and modify it to accept two new user-defined records.
 - The source handler to dictate where data is going to be transferred to and how it will be stored within the buffer.
 - The destination handler to perform a flushing operation to move the data from the buffers to their physical memory location.
- Gives more power to the user to let them specify what data structures they want to aggregate into and how should the data be treated.

Proposed Solution – Source Handling

```
class SourceHandler {
       var dVal;
       var aVal;
       type elemType = (int,int,int);
       proc init(D, A) {
         // workaround as ref domain is not implemented
         this.dVal = D._value;
         // workaround as ref array is not implemented
10
         this.aVal = A._value;
11
12
13
14
       proc sourceCopy() {
         return new unmanaged DestinationHandler(dVal, aVal);
15
16
17
       proc getDestinationLocale(val: elemType) {
18
19
         var(i,j,_) = val;
         return dVal.parentDom.dist.dsiIndexToLocale((i,j));
20
21
22
```

Line 4: we have the expected format for the source data, and eventually the destination data of type (i,j,v) where (i,j) is the sparse domain index and v is the data we are passing.

Lines 6-12: the initializer extracts the underlying record for domains and arrays; this is a workaround as current classes in Chapel do not let us take a ref (pointer) of a domain or array.

Lines 14-16: the aggregator has a backend handler that uses this function to instantiate a destination handler whenever it comes time to perform a flush.

Lines 18-21: gets the locale that owns the index (i,j) during a copy step that is used to add a full tuple (i,j,v) to the buffer.

Proposed Solution – Destination Handling

```
class DestinationHandler {
24
         var domVal:
         var arrVal;
27
         proc init(domVal, arrVal) {
28
             this.domVal = domVal:
             this.arrVal = arrVal:
29
30
31
         inline proc flush(ref rBuffer, const ref remBufferPtr, const ref myBufferIdx) {
32
33
             const (_, locid) = this.domVal.dist.chpl__locToLocIdx(here);
             var locIdxBuf = this.domVal.locDoms[locid]!.mySparseBlock._value.createIndexBuffer(bufSize);
34
             for (dstAddr, srcVal) in rBuffer.localIter(remBufferPtr, myBufferIdx) {
35
36
                  assert(dstAddr == nil):
37
                  var (i,j,_) = srcVal;
38
                 locIdxBuf.add((i, j));
39
             locIdxBuf.commit():
40
             for (dstAddr, srcVal) in rBuffer.localIter(remBufferPtr, myBufferIdx) {
41
                  assert(dstAddr == nil);
                  var (i,j,v) = srcVal;
43
                  var (_,loc) = this.domVal.locDoms[locid]!.mySparseBlock._value.find((i,j));
                  this.arrVal.locArr[locid]!.myElems._value.data[loc] = v;
45
46
47
48
     forall (i,j,v) in zip(rows, cols, vals) with (var agg = new CustomDstAggregator(new shared SourceHandler(SparseDom, SparseArr))) do
53
54
             agg.copy((i,j,v));
```

Lines 32-45: we have the works for the flushing operation, which currently is a lot more scary-looking than intended, I just couldn't help myself and wanted to optimize as much as possible ©.

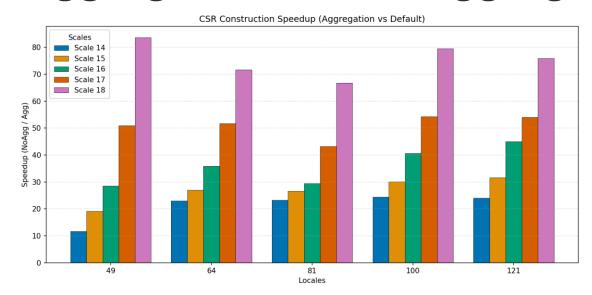
Lines 33-34: create an index buffer for faster addition of indices into a sparse domain.

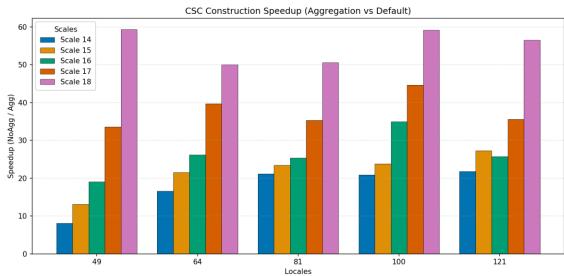
Lines 35-39: add a given index (i,j) into the buffer, once the buffer is full, or hits the commit() in line 40, the buffer gets flushed and those indices get added to the domain. **This is not the same as the remote buffer within the aggregator.**

Lines 41-45: once the indices have been added, we add in the actual data, which requires finding the index for (,j) in the backend data array. Lines 53-54: we see the aggregation prototype in action where we create a custom aggregator with the source handler shown in the previous slide.

Benchmarks

Aggregated vs. Non-Aggregated Sparse Matrix Creation Time



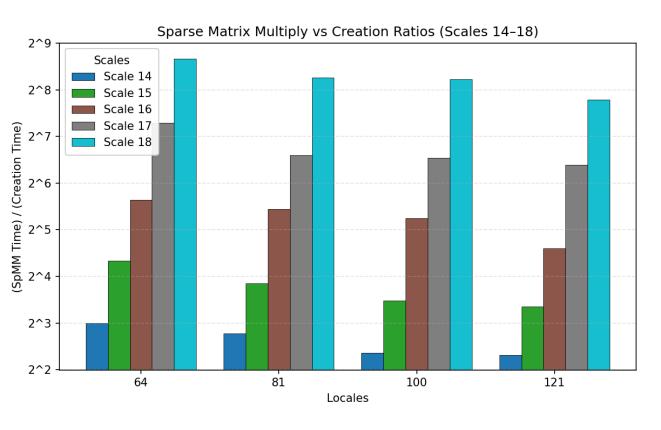


- We see consistent speed-ups across all scales for the aggregated construction times vs. the current Arkouda construction times.
- The speed-up for CSR is greater because CSC nonaggregated construction was generally slower.
 - I do not have a strong reason or sense of "why" and I do not want to speculate, but it would be a good study to figure out why.
- Generally, as the number of locales increased, the performance got better for aggregated construction whereas the non-aggregated construction slightly degraded in performance as locales increased.
- System-specific issues with compute nodes caused odd results like the ones for CSC construction at 121 locales, where the aggregated code did not perform as well as it should have.
 - Re-running the test with one trial showed much better performance, but I kept the "bad" result to showcase how system-specific issues can affect aggregation.

System: HPE Cray EX.

Slingshot-11 interconnect with communication managed through libfabric. 2 AMD EPYC 7763 processors with 256 cores total and 512GB memory per locale.

Sparse Matrix Multiplication vs. Aggregated Creation



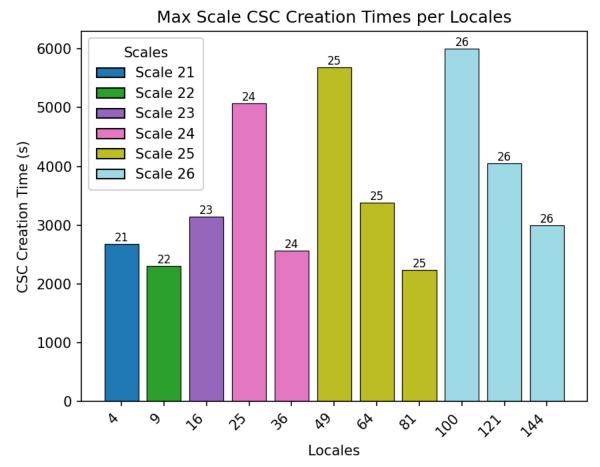
System: HPE Cray EX.

Slingshot-11 interconnect with communication managed through libfabric.

2 AMD EPYC 7763 processors with 256 cores total and 512GB memory per locale.

- Overall, the aggregated sparse matrix creation is now always significantly faster than sparse matrix multiplication.
 - This is good for Arkouda users to quickly load in data and immediately start their analyses without having to spend too much time waiting for data to load.
- I present the y-axis on a log_2 scale. There is no specific reason other than that without the log scale, the bars for Scale 14 looked almost non-existent, even though the creation code was consistently 4x or faster.

Testing the Limits of Aggregated Sparse Matrix Creation



System: HPE Cray EX.

Slingshot-11 interconnect with communication managed through libfabric.

2 AMD EPYC 7763 processors with 256 cores total and 512GB memory per locale.

- Here, we see the maximum scale for the RMAT matrices constructed.
- As a reminder, the matrices occupy an area of 2^scale X 2^scale and have NNZ of about 2^scale * 32.
 - Give or take repeated edges getting parsed out.
 - If the scale is 20, then that will give a ratio of about 1/32768 or 0.00003 of NNZ values to the area of the matrix.
- We can see for locales 25-36 the creation time significantly improving for scale 24, and then similarly for locales 49-81 and 100-144.
 - This exhibits strong scalability for the aggregated sparse matrix creation code.
- A graph of scale 26 is considered a "toy" size by the Graph500 benchmark (they run on supercomputers like Fugaku & Frontier).
 - Assuming 64 bits per edge, a graph of this scale takes up about ~20GB in memory.

In Conclusion...

Conclusion

- This work introduces early steps toward a general aggregation framework in Chapel beyond CopyAggregation to allow more general operations such as modifying sparse matrix domains and arrays.
- This prototype gives finer control of distributed communication while keeping Chapel's productive global namespace.
- Aggregated sparse matrix creation showcases benefits for irregular, power-law style workloads.
- Our performance results show aggregation alleviates communication bottlenecks in sparse workloads.
- We validates that explicit aggregation control yields predictable performance gains without sacrificing Chapel's high-level model.
- Going forward this work would benefit from the following.
 - A comparison against state-of-the-art methods like conveyors.
 - A more in-depth look at the framework prototype itself. How well does it support source aggregation? What other
 workloads can it be applied to?
 - "Hyperparameter" tuning. Aggregation has a ton of toggles like buffer sizes. Is there a Goldilocks-space for buffer sizes to number of aggregations that is most optimal?

Thank You!

Oliver Alvarado Rodriguez

oliver.alvarado-rodriguez@hpe.com