
Chplx an HPX
Foundation for

Chapel

tactcomplabs.com

Shreyas Atre, Hartmut Kaiser
Louisiana State University CCT

Patrick Diehl

US Department of Energy

Christopher Taylor
Tactical Computing Labs

St. George’s Church
Madabah, Jordan

Overview

• Background HPX & Chapel

• 1D Heat Equation Study

• Chplx

• Challenges

• Benchmarks

• Analysis

Runtime Systems?

• Runtime systems are systems level software that organize hardware and operating system level services

• HPC application software attempts to minimize operating system dependencies/interactions

• Runtime systems are designed around different abstraction models

• Charm++ uses the Actor abstraction model

• UPC++ has it’s own unique abstraction model

• HPX uses the ISO C++ data parallelism and concurrency model

• Chapel’s runtime system abstraction model is coupled to programming language features

HPX

• HPX is an Asynchronous Many Task Runtime System

• All features housed under the ISO C++ standard
for data parallelism and concurrency

• User’s develop ISO C++ complaint code, using an
API that mirrors the ISO C++ STL

• All functionality is provided “for free”

• Emphasis on futures and futurization - C++ DAGs chained together w/futures

HPX

• Objects (partitioned data types) can be instantiated across
different localities - AGAS (Active Global Address Space)

• Asynchronously deploy remote functions and methods
yielding a form of 1 and 2 sided communication (active
messages)

• Supports SPMD / non-SPMD

• Parcelport: OpenMPI, LCI, libfabric, sockets, OpenSHMEM*, GASNet*

• Implements support for OpenMP

Chapel

• Programming Language supporting PGAS - Partitioned Global Address Space

• Users program the runtime system by-way of Chapel’s language features

• Parallelism through explicitly defined control structures in the Chapel’s grammar;
SPMD style loops, data parallel thread level loops, etc

• Distributed data types instantiated using ‘Domains’

• Users can predefine data layouts and tiling strategies making array-based distributed
programming more approachable

Chapel

• Productivity oriented language

• Feels like a scripting language but compiles out to statically optimized executables

• Provides support for distributed arrays (variation on Coarrays/ZPL) and distributed data
structures

• Places substantial emphasis on Domain (index set) loop structures

• Users *could* cross a physical boundary by not using domains and adversely impact
performance

• ISO C++ Ranges are a conceptually similar abstraction

HPX & Chapel

• HPX & Chapel have more in common than they are different

• Venn diagram shows significant functionality overlap

• Chapel provides a level of accessibility and convenience at the language layer of the
application software stack which would benefit HPX application development

1D Heat Equation Study

1D Heat Equation Study

“Benchmarking the Parallel 1D Heat Equation Solver in
Chapel, Charm++, C++, HPX, Go, Julia, Python, Rust,

Swift, and Java” 
 

Diehl, Brandt, Morris, Gupta, Kaiser 

Euro-Par 2023 : Parallel Processing Workshops 
 

 Pre-print: https://arxiv.org/abs/2307.01117

https://arxiv.org/abs/2307.01117

1D Heat Equation Study

• 1 Dimensional Heat Equation 
 

• alpha term is material diffusivity

• 2nd Order differencing

• Euler’s method 
 

Chapel 
C++ 

Charm++ 
HPX 
Go

Julia 
Python 
Rust 
Swift 
Java

1D Heat Equation Study

• Software Complexity Measured

• Constructive Cost Model (COCOMO)

• `scc` - Sloc Cloc and Code

• Estimated Schedule Effort (ESE)

• Time to implement in a month

1D Heat Equation Study

Chplx

Chplx

• Follow on study

• Can the complexity gap b/n HPX & Chapel be closed?

• Source to source compilation! Chapel to C++

• Heat Equation, STREAM, & GUPS

• What could be done in ~6 months of part time effort?

Chplx

• Use HPE/Cray-Chapel compiler’s 
existing lexing and parsing infrastructure

• Chapel’s language features implemented 
as an ISO C++20 library using HPX

• Support enough Chapel to generate 
C++ for each identified benchmark

• Focus on single-locality solution

Chplx

• The Chplx compiler has 3 passes

• Symbol Table/Scope Creation

• Chapel AST to Chplx Program Tree

• C++ Code generation w/CMake support

Chplx

• No type checking!

• Allow the C++ compiler to manage that w/pragmas

• Users can select a C++ compiler

• This study uses Clang for consistency

Challenges

Challenges

• HPE/Cray-Chapel compiler’s parse tree 
(uAST)

• Naively used uAST

• uAST’s structure injects Scope 
AST nodes into the program structure

• Complicates Syntax analysis

• Scope handling in this scenario is 
challenging

Challenges

• Chapel support for print statements and timers?

• Created a new intrinsic function for 
Chapel to inline C++ `inlinecxx()`

• Provides pass-through so users can 
embed C++ code into a Chapel 
application

• Uses ISO C++20 support for `std::fmt`

Benchmarks

Benchmarks

• Intel(R) Xeon(R) CPU E5-2680 w/2.5 GHz

• 48 cores, 128 GiB DDR4

• Ubuntu focal

• Clang+LLVM 15**, HPX v1.9.1

• Chapel 2.0
** Chapel parser/lexer requirement

CHPL_RT_NUM_THREADS_PER_LOCAL

--hpx:threads

Benchmarks

• Chplx

• Generates C++ and the project CMake files

• `-std=c++20` enabled for ISO C++ coroutine support

• ISO C++20 coroutines provide `co_await` & `yield`
functionality

• C++ `co_await` & `yield` are equivalent to python
generators

Benchmarks - 1D Heat Eqn
1 million doubles Lower is Better

Benchmarks - STREAM Copy

Strong Scaling

bytes / time

Strong Scaling

Lower is Better Lower is Better Higher is Better

Megabytes

1 million doubles

Benchmarks - STREAM Add

Strong Scaling Strong Scaling

bytes / time

Lower is Better Higher is BetterLower is Better

Megabytes

1 million doubles

Benchmarks - STREAM Scale

Strong Scaling Strong Scaling

bytes / time

Lower is Better Higher is BetterLower is Better

Megabytes

1 million doubles

Benchmarks - STREAM Triad

Strong Scaling
Strong Scaling

bytes / time

Lower is Better Higher is BetterLower is Better

Megabytes

1 million doubles

num_updates = n_threads * bytes
gups = num_updates / seconds / 1e9 (gig)

Strong Scaling

Benchmarks - GUPS

GUPS for 1GB of 17GB
Average

Strong Scaling

Lower is Better
Lower is Better Higher is Better

Benchmarks - COCOMO

•

Lower is Better Lower is Better

Analysis

Analysis

• Performance delta?

• Generated code

• Data copies?

• Runtime system

• Chapel w/qthreads

• Chplx w/HPX

Analysis

• COCOMO differential

• Did not achieve 1-to-1 mapping…got closer

• +/- 4 Lines of Code w/o Boilerplate

• Not bad considering the time investment

Analysis

• Given the code complexity gap closed and the
performance offered by Chplx

• Effort demonstrates a viable avenue of continued
research!

• Resolve uAST issue

• Develop support for multi-node distributed computing

Clip Art License
Compliance Statement

• The clip art in this presentation was created by
rawpixel.com

Thanks!

