©

Chplx an HPX
Foundation for
Chapel

Shreyas Atre, Hartmut Kaiser
Louisiana State University CCT

Patrick Diehl
US Department of Energy

Christopher Taylor
Tactical Computing Labs

tactcomplabs.com

LS

CENTER FOR COMPUTATIO
& TECHN

| St. George’s Chur'cih |
| Madabah, Jordan

Overview

N

|

1D Heat Equation Study

—_— =

|

|
e Challenges ‘
e Benchmarks |

* Analysis

e =
— —= — =

. Background HPX & Chapel

» Chplx l

— —

112>

STE||AR GROUP

Runtime Systems? ©

* Runtime systems are systems level software that organize hardware and operating system level services
 HPC application software attempts to minimize operating system dependencies/interactions

* Runtime systems are designed around different abstraction models
* Charm++ uses the Actor abstraction model
 UPC++ has it's own unique abstraction model

« HPX uses the ISO C++ data parallelism and concurrency model

« Chapel's runtime system abstraction model is coupled to programming language features

112>

STE||AR GROUP

HPX <

« HPXis an Asynchronous Many Task Runtime System

 All features housed under the ISO C++ standard

. HPX Application
for data parallelism and concurrency ° e
3
» User's develop ISO C++ complaint code, using an | [Thwadscheduling __J<¢——#-{Active Global Address Space
API that mirrors the ISO C++ STL # :
. L Parcel Transport Layer |<@=== [ocal Control Objects [~
..... Operating System

 All functionality is provided “for free”

 Emphasis on futures and futurization - C++ DAGs chained together w/futures

112>

STE||AR GROUP

HPX O

Locality 0 Locality 1. Locality i Locality N-1

» Objects (partitioned data types) can be instantiated across Fog| |Cow| o (PWal Pag
different localities - AGAS (Active Global Address Space) o i Bl e e 1
« Asynchronously deploy remote functions and methods nE | Ew u-m "
yielding a form of 1 and 2 sided communication (active Parcelport
messag eS) Active Global Address Space (AGAS) Service
Thread- Thread- Thread- Thread-
Scheduler | | Scheduler Scheduler Scheduler

« Supports SPMD / non-SPMD

« Parcelport: OpenMPI, LCI, libfabric, sockets, OpenSHMEM*, GASNet*

* [mplements support for OpenMP

Chapel

* Programming Language supporting PGAS - Partitioned Global Address Space
« Users program the runtime system by-way of Chapel’s language features

» Parallelism through explicitly defined control structures in the Chapel’'s grammar;
SPMD style loops, data parallel thread level loops, etc

» Distributed data types instantiated using ‘Domains’

» Users can predefine data layouts and tiling strategies making array-based distributed
programming more approachable

Chapel

* Productivity oriented language
* Feels like a scripting language but compiles out to statically optimized executables

* Provides support for distributed arrays (variation on Coarrays/ZPL) and distributed data
structures

* Places substantial emphasis on Domain (index set) loop structures

« Users *could™ cross a physical boundary by not using domains and adversely impact
performance

« |SO C++ Ranges are a conceptuali§ssimilar abstraction

HPX & Chapel

« HPX & Chapel have more in common than they are different

* Venn diagram shows significant functionality overlap

« Chapel provides a level of accessibility and convenience at the language layer of the
application software stack which would benefit HPX application development

1D Heat Equation Study

T'\I — ki

il Bactical

L .¥(Computing
l.abs

1D Heat Equation Study i

e —_ — —_— —_—
— e e ———— ———— N —_— e —

“Benchmarklng the ParaIIeI 1D Heat Equatlon Solver N
Chapel, Charm++, C++, HPX, Go, Julia, Python, Rust, |
Swift, and Java” i

| Diehl, Brandt, Morris, Gupta, Kaiser
. &

, Euro-Par 2023 : Parallel Processing Workshops {
Pre prlnt https //arX|v org/abs/2307 01 1 1 7

https://arxiv.org/abs/2307.01117

1D Heat Equation Study i

LSU

CENTER FOR COMPUTATION
& TECHNOLOGY

e e — e —
=

.1 Dimensional Heat Equation
|

du Ou Chapel Julia
—=ar—, 0<z<Lit>0, 1
ot Oz C++ Python |
| alpha term is material diffusivit Charm++ Rust |
. i ial diffusivi . \
" Y HPX Swift +

' 2nd Order differencing Go Java

|

|
1) — 2 - : .
| u(t + oty z;) = u(t,z;) + 0t - Ozu(t’ Zi-1) u(t, i) + u(t, Tit1)

|
‘u
e Euler’s method {

2h

e ——

. _ 0t

1D Heat Equation Study i

—— e e

. SoftaCbmpIeit asu red

» Constructive Cost Model (COCOMO) 1

—

e scc - Sloc Cloc and Code
-+ Estimated Schedule Effort (ESE)

ﬁ
|
* Time to implement in a month {

1D Heat Equation Study i DY ectical,

/_\
LSL) l.abs

CENTER FOR COMPUTATION

& TECHNOLOGY
¢ Chapel HPX 'oh T Hust
Charm++ °
< Java
Java, |

C+ 17 | Julia e
Charm++ | *Go
(' Chapel)
Rust |
Go |
Julia |
(HPX D)
Swift |
Python |

0 50 100 150 200
Lines of code (LOC)

(a) (b)

Fig. 1. Software engineering metrics: (a) Lines of codes for all implementations. The
numbers were determined with the Linux tool cloc and (b) Two-dimensional classifica-
tion using the computational time and the COCOMO model.

e Python

Chplx

Chplx i

R e —

. FoIIW sktudy

_ _ _ e — _—— ——— ——— ——— —

* Can the complexity gap b/n HPX & Chapel be closed?

|
|

e Source to source compilation! Chapel to C++

i
-+ What could be done in ~6 months of part time effort? {

-+ Heat Equation, STREAM, & GUPS

|

Chplx

Uskray—CaeI cmpiler’s
existing lexing and parsing infrastructure

Chapel’s language features implemented
as an ISO C++20 library using HPX

Support enough Chapel to generate
C++ for each identified benchmark

Focus on single-locality solution

e — e ~ — —— ———— _ — e —

v"

LSU

CENTER FOR COMPUTATION
& TECHNOLOGY

= @ @ ——

Chapel Program

Traveler Visualization Tools

Chplx

e ——
—

» The Chx éompilra passes

 Symbol Table/Scope Creation |

|

—_— =

- * C++ Code generation w/CMake support

» Chapel AST to Chplx Program Tree ‘

Chplx i

LSU

CENTER FOR COMPUTATION
& TECHNOLOGY

- —_— ——
—_———

« No typhécking

* Allow the C++ compiler to manage that w/pragmas |

R
| |

* Users can select a C++ compiler

—_— =

\ * This study uses Clang for consistency

Challenges

Challenges i

LSU

CENTER FOR COMPUTATION
& TECHNOLOGY

e —
—_— — —_——— =

» HPE/Cray-Chapel cole’sparse tree

J

-~ (UAST) O remerent s e ond seprecnte o somstonat
] Chapel Conditional | Chapel AST
* Naively used uAST : ond
| dse 10 0 N
{l , o else i 0
|« UAST’s structure injects Scope clse {} .
AST nodes into the program structure cond0
cond() {
. . if () {} {
 Complicates Syntax analysis else i0 , cond0d
1J €1s€c 1 }
: : : C }
 Scope handling in this scenario is |
challenging

P e ————

v"

Challenges i

LSU

CENTER FOR COMPUTATION
& TECHNOLOGY

—_— =
—

J : -

Chapel support for prlnt statements and tlmers’?

Listing 1: ChplX ‘inlinecxx‘ input and compiled C++ output

Created a new intrinsic function for /) imlincexx " function signature

proc inlinecxx(string, n?...)

Chapel to inline C++ 'inlinecxx()) Chape code that uses “intineces-

r i = 0;

inlinecxx ("std :: cout << i << std::endl");
] inlin x("std::cout << {} << std::endl", i);
* Provides pass-through SO USErs Can |, cui s e oupue srom 1ines 50

int i = 0;

embed C++ code into a Chapel s;gmz’: ; < i e
application

Uses 1ISO C++20 support for std fmt “

#‘ = —7

V“'

Benchmarks

Benchmarks i

e
—

« Intel(R) Xeon(R) CPU E5-2680 w/2.5 GHz

e 48 cores, 128 GiB DDR4

|

—_— =

e Ubuntu focal

-« Clang+LLVM 15™, HPX v1.9.1

CHPL_RT_NUM_THREADS_PER_LOCAL

‘ ° Chapel 2'0 --hpx:threads

Benchmarks i

.
O
j
O
X

 Generates C++ and the project CMake files 1

» '-std=c++20 enabled for ISO C++ coroutine support !

|
, e |ISO C++20 coroutines provide co_await & yield ‘
functionality {

' C++ co_await & yield are equivalent to python
~ generators

m

Benchmarks - 1D Heat Egn i

~

LSU

CENTER FOR COMPUTATION
& TECHNOLOGY

"Ll Bactical
¥ (Computing
l.abs

1 million doubles Lower is Better
[[I I [I
—i— chapel
—— chplx
4 -]
W)
e
=
@)
O
A
2 _— .
O’—\‘— —— ¢ 4
l l l l l |
5 10 15 20 25 30
threads

Heat Equation: Strong Scaling, Average Time

Benchmarks - STREAM Copy PP ractical,

~

LSU l.abs
CENTER FOR COMPUTATION
& TECHNOLOGY
_ 1 million doubles .
Lower is Better 1 | | | LoT/ver IS Be:cter 10° Higher is Better
1] | | 1 8 - T r T
—&— chapel 3 ["| —#— chapel j ~&— chapel |4
4 —— chplx || —&— chplx —+— chplx
6 — —
3H “ g 2 -]
=
E : s af i
S X 2
g2))
” E |l i .
=
2 —
1 - —1
\\F + s 0 - 0T -
i | 1 1 I | i l l 1 1 ! : v l 1 1 ; '
5 10 15 20 25 30 0 0.2 0.4 0.6 0.8 1 . 10 ltsh dszo 2 30
. H 8
Strong Scaling # threads Megabytes Strong Scaling rea
. . STREAM Copy for 10°real(64)
STREAM Copy for 10°real(64) STREAM Copy data scaling over 32 threads

bytes / time

Benchmarks - STREAM Add §

‘Bactical

> ¥{>omputing

~
LSU l.abs
CENTER FOR COMPUTATION
& TECHNOLOGY
Lower is Better 1 million doubles Lower is Better .10° Higher is Better
| 1] I 1 1 | | | | | . T T 1 1
. —&— chapel —— chapel 5 |- > —&— chapel |4
—— chplx 4 || —=— chplx - —+— chplx
4
» 3 ;
| 4 =
- :) ‘
= 2 &
3z E 2 | 4 2
- 2 B r
21 -1 —
1k .
l — —
0\\‘ ¢ j 0 .
0 .
1 | | A i 1 | | 1 I !) | | | 1 ‘
5 10 15 20 25 30 0 0.2 0.4 0.6 0.8 1 5 10 15 20 25 30
Strong Scaling # threads Megabytes Strong Scaling # threads

8
STREAM Add for 10°real(64) STREAM Add data scaling over 32 threads

STREAM Add for 10%real (64)

bytes / time

Benchmarks - STREAM Scale Y actical

~
LSU l.abs
CENTER FOR COMPUTATION
& TECHNOLOGY
9
Lower is Better 1 million doubles Lower is Better ‘10 Higher is Better
| 1§] | 1 T | | \ ' ! | 4
—&— chapel —4— chapel ~&— chapel -4
4 —— chplx | 4 || —=— chplx | 6 |- —+— chplx |
3 N @* 3
= |
2 k= af- il
8 S &
g 2 g &
7 o 2 n —8
E
= 27)
1 i i
\\-o + ?
i i | | | | 0 = . | | | | 1 '
5 10 15 20 25 30 1 1 1 1 1 | 5 10 15 20 25 30
Strong Scaling # threads 0 0.2 0.4 0.6 0.8 1 Strong Scaling # threads
Megabytes
STREAM Scale for 10°real(64) STREAM Scale for 10°real(64)

STREAM Scale data scaling over 32 threads

bytes / time

Benchmarks - STREAM Triad Y actical

~
LSU l.abs
CENTER FOR COMPUTATION
& TECHNOLOGY
Lower is Better 1 million doubles Lower is Better 107 Higher is Better
| | | | 1 l I | | I | 5|] | | 1
—&— chapel —4— chapel ‘- —&— chapel
6 —— chplx |- 4 || —%— chplx . —+— chplx [T
4 . —
2 3
4 - 8 3 .
- o 8
= < 9L -
2 2 2 2 ,
3 . .
= —4
2| i 1)
1 |
\\. 0 h
o |- ¢ 1 1 1 1 1 L | 0T | | 1 1 | [|
) | | |
i . i 0 0.2 0.4 0.6 0.8 1 - 10 15 20 25 30
5 10 15 20 25 30 Megabytes
threads # threads
Triad for 10°real(64) STREAM Triad data scaling over 32 threads STREAM Triad for 10°real(64)

bytes / time

Benchmarks - GUPS i p) Loctical,

~

LSU l.abs
CENTER FOR COMPUTATION
& TECHNOLOGY
Lower is Better Higher is Better
Lower is Better : 1 | 1
| | [| 6 I .
I I ! ! : J —— chapel —&— chapel A
—— Chapel 100 - h lx N . Ch p]x
100 —— chplx = P
80 .-
=
80 a g 4
E g
3 S 60 ~ >
& 60 - 3 S
o) Fg..
3 E a0f 1 72l :
40 |- - = 80
O
20 |- =
0 B 0 |
| | | | | | | | I | | \ | | |
> 10 15 20 25 30 0 0.2 0.4 0.6 0.8 1 5 10 15 20 925 30
Strong Scaling # threads Gigabytes 10° Strong Scaling # threads
GUPS for 1GB of 17GB
Average GUPS data scaling over 32 threads GUPS for 1GB of 17GB, Average

num_updates = n_threads * bytes
gups = num_updates / seconds / 1e9 (gig)

Benchmarks - COCOMO

1 we r isetter

!
‘ 0 Chapel B
0l ChplX C++
[ChplX Boilerplate

e e e e e e s

LoC
P et N N LR U TN ONSISJ000ONON\D O O = b= DI DD LR
OUNOUNOUNOUNOUNOUNTOUNOUNIOUROUNOUTOUTIOUTIOLDT

L

L

[

[

[

[

Estimated Schedule Effort

|
| STREAM Heat
| Benchmark

GUPS

Figure 8: Lines of Code Measurements

e e — =

CENTER FOR COMPUTATION
& TECHNOLOGY

I Chapel

L1510 ChplX C++
[ChplX Boilerplate

—
|

S
W

0 T
STREAM Heat

Benchmark

GUPS

Figure 9: COCOMO: Estimated Schedule Effort

Analysis

Analysis i

e e — e — e ———— —— - —— — —_

1

1 . Performance delta’?
&

I

e (Generated code

|« Data copies? ‘~
* Runtime system +
| « Chapel w/qgthreads H
~+ Chplx w/HPX o B |)

— —

V“'

Analysis

- — =

. COOaiﬁereti

* Did not achieve 1-to-1 mapping...got closer |

|

——

 +/-4 Lines of Code w/o Bollerplate |

-+ Not bad considering the time investment

Analysis i

7S
—~

o

R ——————
—_———

Given the code colx:cy gap cIosedKad
performance offered by Chplx

Effort demonstrates a viable avenue of continued
research! ‘

|
* Resolve UAST issue ‘

* Develop support for multi-node distributed computing i

Clip Art License &
Compliance Statement ___ ‘'su

— e ————

. The cllp art in thls presentatlon was Create by
.~ rawpixel.com

Thanks!

LS

CENTER FOR COMPUTATION
& TECHNOLOGY

STE||AR GROUP

