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Runtime Systems? ©

* Runtime systems are systems level software that organize hardware and operating system level services
 HPC application software attempts to minimize operating system dependencies/interactions

* Runtime systems are designed around different abstraction models
* Charm++ uses the Actor abstraction model
 UPC++ has it's own unique abstraction model

« HPX uses the ISO C++ data parallelism and concurrency model

« Chapel's runtime system abstraction model is coupled to programming language features
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HPX <

« HPXis an Asynchronous Many Task Runtime System

 All features housed under the ISO C++ standard

. HPX Application
for data parallelism and concurrency  ° e
3
» User's develop ISO C++ complaint code, using an | [ Thwadscheduling __J<¢——#-{Active Global Address Space
API that mirrors the ISO C++ STL # :
. L Parcel Transport Layer  |<@=== [ ocal Control Objects [~
..... Operating System

 All functionality is provided “for free”

 Emphasis on futures and futurization - C++ DAGs chained together w/futures
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HPX O

Locality 0  Locality 1. Locality i Locality N-1

» Objects (partitioned data types) can be instantiated across Fog| |Cow| o (PWal  Pag
different localities - AGAS (Active Global Address Space) o i Bl e e 1
« Asynchronously deploy remote functions and methods nE | Ew u-m "
yielding a form of 1 and 2 sided communication (active Parcelport
messag eS) Active Global Address Space (AGAS) Service
Thread- Thread- Thread- Thread-
Scheduler | | Scheduler Scheduler Scheduler

« Supports SPMD / non-SPMD

« Parcelport: OpenMPI, LCI, libfabric, sockets, OpenSHMEM*, GASNet*

* [mplements support for OpenMP




Chapel

* Programming Language supporting PGAS - Partitioned Global Address Space
« Users program the runtime system by-way of Chapel’s language features

» Parallelism through explicitly defined control structures in the Chapel’'s grammar;
SPMD style loops, data parallel thread level loops, etc

» Distributed data types instantiated using ‘Domains’

» Users can predefine data layouts and tiling strategies making array-based distributed
programming more approachable




Chapel

* Productivity oriented language
* Feels like a scripting language but compiles out to statically optimized executables

* Provides support for distributed arrays (variation on Coarrays/ZPL) and distributed data
structures

* Places substantial emphasis on Domain (index set) loop structures

« Users *could™ cross a physical boundary by not using domains and adversely impact
performance

« |SO C++ Ranges are a conceptuali§ssimilar abstraction




HPX & Chapel

« HPX & Chapel have more in common than they are different

* Venn diagram shows significant functionality overlap

« Chapel provides a level of accessibility and convenience at the language layer of the
application software stack which would benefit HPX application development
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“Benchmarklng the ParaIIeI 1D Heat Equatlon Solver N
Chapel, Charm++, C++, HPX, Go, Julia, Python, Rust, |
Swift, and Java” i

| Diehl, Brandt, Morris, Gupta, Kaiser
. &

, Euro-Par 2023 : Parallel Processing Workshops {
Pre prlnt https //arX|v org/abs/2307 01 1 1 7



https://arxiv.org/abs/2307.01117
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.1 Dimensional Heat Equation
|

du  Ou Chapel Julia
—=ar—, 0<z<Lit>0, 1
ot Oz C++ Python |
| alpha term is material diffusivit Charm++  Rust |
. i ial diffusivi . \
" Y HPX  Swift +

' 2nd Order differencing Go Java

|

|
1) — 2 - : .
| u(t + oty z;) = u(t,z;) + 0t - Ozu(t’ Zi-1) u(t, i) + u(t, Tit1)
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. SoftaCbmpIeit asu red

» Constructive Cost Model (COCOMO) 1

—

e scc - Sloc Cloc and Code
-+ Estimated Schedule Effort (ESE)

ﬁ
|
* Time to implement in a month {
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Fig. 1. Software engineering metrics: (a) Lines of codes for all implementations. The
numbers were determined with the Linux tool cloc and (b) Two-dimensional classifica-
tion using the computational time and the COCOMO model.

e Python




Chplx




Chplx i

R e —

. FoIIW sktudy

_ _ _ e — _—— ——— ——— ——— —

* Can the complexity gap b/n HPX & Chapel be closed?

|
|

e Source to source compilation! Chapel to C++

i
-+ What could be done in ~6 months of part time effort? {

-+ Heat Equation, STREAM, & GUPS

|




Chplx

Uskray—CaeI cmpiler’s
existing lexing and parsing infrastructure

Chapel’s language features implemented
as an ISO C++20 library using HPX

Support enough Chapel to generate
C++ for each identified benchmark

Focus on single-locality solution
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Chapel Program

Traveler Visualization Tools
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» The Chx éompilra passes

 Symbol Table/Scope Creation |
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- * C++ Code generation w/CMake support

» Chapel AST to Chplx Program Tree ‘
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« No typhécking

* Allow the C++ compiler to manage that w/pragmas |

R
| |

* Users can select a C++ compiler

—_— =

\ * This study uses Clang for consistency
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» HPE/Cray-Chapel cole’sparse tree

J

-~ (UAST) O remerent s e ond seprecnte o somstonat
] Chapel Conditional | Chapel AST
* Naively used uAST : ond
| dse 10 0 N
{l , o else i 0
|« UAST’s structure injects Scope clse {} .
AST nodes into the program structure cond0
cond() {
. . if () {} {
 Complicates Syntax analysis else i0 , cond0d
1J €1s€c 1 }
: : : C }
 Scope handling in this scenario is |
challenging
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Chapel support for prlnt statements and tlmers’?

Listing 1: ChplX ‘inlinecxx‘ input and compiled C++ output

Created a new intrinsic function for /) imlincexx " function signature

proc inlinecxx(string, n?...)

Chapel to inline C++ 'inlinecxx() ) Chape code that uses “intineces-

r i = 0;

inlinecxx ("std :: cout << i << std::endl");
] inlin x("std::cout << {} << std::endl", i);
* Provides pass-through SO USErs Can |, cui s e oupue srom 1ines 50

int i = 0;

embed C++ code into a Chapel s;gmz’: ; < i e
application

Uses 1ISO C++20 support for std fmt “

#‘ = —7

V“'
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« Intel(R) Xeon(R) CPU E5-2680 w/2.5 GHz

e 48 cores, 128 GiB DDR4

|

—_— =

e Ubuntu focal

-« Clang+LLVM 15™, HPX v1.9.1

CHPL_RT_NUM_THREADS_PER_LOCAL

‘ ° Chapel 2'0 --hpx:threads
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 Generates C++ and the project CMake files 1

» '-std=c++20 enabled for ISO C++ coroutine support !

|
, e |ISO C++20 coroutines provide co_await & yield ‘
functionality {

'  C++ co_await & yield are equivalent to python
~ generators
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Figure 8: Lines of Code Measurements
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Figure 9: COCOMO: Estimated Schedule Effort
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1 . Performance delta’?
&

I

e (Generated code

|« Data copies? ‘~
* Runtime system +
| « Chapel w/qgthreads H
~+ Chplx w/HPX o B | )
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* Did not achieve 1-to-1 mapping...got closer |

|

——

 +/-4 Lines of Code w/o Bollerplate |

-+ Not bad considering the time investment
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Given the code colx:cy gap cIosedKad
performance offered by Chplx

Effort demonstrates a viable avenue of continued
research! ‘

|
* Resolve UAST issue ‘

* Develop support for multi-node distributed computing i
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