
synergy.cs.vt.edu

A case for parallel-first languages in

a post-serial, accelerated world
Paul Sathre

Research Software Engineer

Synergy Lab & NSF Center for Space, High-Performance and Resilient Computing

Virginia Tech

synergy.cs.vt.edu

Disclaimers

• Imperfect tools are better than no tools, and doing serious science with

them should be lauded, even as we strive to make better ones.

– Critical feedback does not diminish the value that prior art has given us

• All thoughts and opinions expressed are my own, and shouldn’t be

attributed to my employer, coworkers, or sponsors

• Logos and product names belong to their respective rights holders, and

are neither an endorsement of this talk, nor of the referenced products

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

2

Intro

synergy.cs.vt.edu

My Background → portable accelerated computing
• Undergrad:

– Went in with a high-end desktop for “course work”
• Quad-core 64-bit AMD, NVIDIA 8800 Ultra GPU, Aegia PhysX physics processing unit (PPU)

– Roadrunner just coming online → friends & lab with PlayStation 3s

– Brief stint doing bioinformatics on Tilera Tile64

– GPGPU via OpenCL → two summers at LANL (cosmo + neutron transport)

• Grad school and shortly post-MS: CUDA ↔ OpenCL Interop
– MS Thesis: CUDA to OpenCL translation → (CU2CL) on NVIDIA GTX 480

– Interoperable MPI+{CUDA, OpenCL, OpenMP} for Micro-Air Vehicles → (MetaMorph)
• Running on Nvidia GPU, AMD GPU, Intel MIC, respectively

• Since then: languages and tools for modern heterogeneous HPC
– OpenCL support for FPGA: Linters (FLOCL) and autogenerators (MetaCL)

– SYCL for irregular apps: AMD+NVIDIA GPU (via AdaptiveCpp), Intel FPGA (via DPC++)

– GPU Chapel for irregular apps: perf./prod. tradeoffs → partitionability → portability (soon)

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

3

Intro

synergy.cs.vt.edu

What I really care about:

Closing the gaps between the

parallel hardware we already have,

and the people who could benefit from it

So how do we enable them?

(Conversely, what are the barriers to use?)

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

4

Intro

synergy.cs.vt.edu

Setlist
• Intro [you are here]

• Act I: Parallelism is everywhere, start acting like it

• Act II: The rise of GPUs, up through today

• Act III: Chapel’s role in our GPU future, and our role in Chapel’s

• Outro

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

5

Intro

synergy.cs.vt.edu

ChapelCon #1: Looking back on ten CHIUW keynotes

• GPGPU was already in mind at CHIUW #1

• Python (and later Jupyter) interactive dev flows are important
– Keep turns within the human thought loop, whether compilation or analysis

• Need a middle ground between FAANG-scale frameworks which often don’t scale
down well, and laptop-scale which often don’t scale up well

• Analysis, Viz, Packaging, community-alignment are all important

• PGAS tends to beat explicitly-distributed when it comes to network-perf and productivity

• Flexibility and performance are more important than transparency
– Start high level, but keep access and provide a smooth ramp to greater complexity

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

6

Intro

synergy.cs.vt.edu

Act I

Parallelism is everywhere, start acting like it

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

7

synergy.cs.vt.edu

Hardware is parallel, and likely to stay so

CC-by-4.0:

https://github.com/karlrupp/microprocessor-trend-data/blob/master/50yrs/50-years-processor-trend.png

• Serial performance has barely

improved since I started

• Parallel hardware was already

common, now ubiquitous

– Try to buy a laptop or cellphone

without at least dual-core

• HPC has been using parallel and

distributed software, but it’s still

not very general

• Hardware is also heterogeneous,

more on that in Act II

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

My cohort,

and all to come

8

Act I: Parallelism is everywhere ...

https://github.com/karlrupp/microprocessor-trend-data/blob/master/50yrs/50-years-processor-trend.png

synergy.cs.vt.edu

HPC moved to parallel, distributed,

and heterogeneous long ago

But nobody starts programming on an HPC cluster

They start on a laptop/desktop

So what are regular users using?

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

9

Act I: Parallelism is everywhere ...

synergy.cs.vt.edu

0

5

10

15

20

25

30

35

Physical Cores

%
 o

f
re

s
p
o
n
d
e
n
ts

(A

p
ri
l
2
0
2
4
)

Physical CPUs

1 2 4 6 8 10

12 14 16 20 24

What do desktop and laptop users actually have?

At least 68.17% CUDA-capable GPUs according to: https://developer.nvidia.com/cuda-gpus

At least 0.38% ROCm-capable GPUs according to: https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.1.1

0

10

20

30

40

50

60

70

80

NVIDIA AMD Intel Other

GPU by Vendor

• Steam hardware survey → rough proxy for general-purpose users

– In reach of {hobbyists, tinkerers, undergrads} → future HPC buyers

0

10

20

30

40

50

60

CPU RAM

System RAM

<4GB 4 8 12 16 24
32 48 64 >64GB Other

>92% have
• 4-16 “Physical CPUs”

4-32GB RAM

More in

Act II

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

Data collected 5/28/24 from https://store.steampowered.com/charts/
10

Act I: Parallelism is everywhere ...

https://developer.nvidia.com/cuda-gpus
https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.1.1
https://store.steampowered.com/charts/

synergy.cs.vt.edu

HPC is changing, broadening

• Users and developers are more mobile/remote

– Less cubicle high-power workstation, more laptop / BYOD / tablet / cell

– Are centrally-installed dev environments still the norm? Or more individual?

• Multicore + GPU at home in gaming / streaming / editing rigs

– Everybody’s a Twitch, YouTube, insert-platform-here star

• It’s not just the privately-owned datacenter anymore → lots of IaaS

– Renting cycles as needed vs. surpassable Big Iron cap-ex

– Anyone with a credit card can buy GPU cycles for AI, crypto, etc.

• Need a unified approach to programming all of it

– CPUs, GPUs, NICs, and whatever comes next

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

11

Act I: Parallelism is everywhere ...

synergy.cs.vt.edu

So regular users have (or can get) parallel hardware

But isn’t parallelism hard to understand?

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

12

Act I: Parallelism is everywhere ...

synergy.cs.vt.edu

The natural order of the world is massively parallel!

• Humans have innate experiences and understanding of parallel processes

– Beehives → Scatter/Gather

– School of fish, flock of sheep → single instruction (sheepdog), multiple thread (sheep)

– Check-out lines → task parallelism and work stealing

– Road networks → numerous parallel and sync constructs

Pipelined Parallelism

(SIMD LANES)

Memory Fence

(toll STORE)

Semaphore

(controlled intersection)

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

Images CC-by-2.0 (cropped):

https://commons.wikimedia.org/w/index.php?curid=71040887 , https://www.flickr.com/photos/16801915@N06/19022810042 , https://www.flickr.com/photos/193316968@N06/52086734514

13

Act I: Parallelism is everywhere ...

https://commons.wikimedia.org/w/index.php?curid=71040887
https://www.flickr.com/photos/16801915@N06/19022810042
https://www.flickr.com/photos/193316968@N06/52086734514

synergy.cs.vt.edu

We have broad access to parallel hardware

Humans experience parallel phenomena

in their day-to-day lives

Why does it still seem so hard?

Because we teach serial first, through the

lens of old, post-serial norms!

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

14

Act I: Parallelism is everywhere ...

synergy.cs.vt.edu

Reality and hardware are parallel, so teach that

• Even “serial” threads don’t run in isolation

– OS time-slicing, async IO, ISP/power outages

• Teach how to be safe and effective in a parallel world

– New driver → defensive driving

– New programmer → thread-safety and fault-tolerance

• Should be teaching async, concurrent, and parallel to all, and earlier!

– After C/systems sequence, as an elective is too late → serial habits already anchored

– To move earlier, need a language that is easy, parallel-first, and general

• PGAS is more approachable for learning distributed

– Just some “further” cores/mem with more latency and failure modes

– Don’t snail-mail a co-located co-worker! Use a whiteboard, post-its, Kanban, lunch meeting

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

Image CC-by-2.0 (cropped):

https://www.flickr.com/photos/36989019@N08/22906552924

“Life is what

happens to

you while

you’re busy

making

other plans”

15

Act I: Parallelism is everywhere ...

https://www.flickr.com/photos/36989019@N08/22906552924

synergy.cs.vt.edu

Post-serial or “serial with sprinkles”

• Dominant programming models are still post-serial

– “Sprinkles”: optional libraries, pragmas, language extensions

• Chapel presents a different option: parallel-first

– A non-separable part of the keywords, data abstractions,

and semantics of the language (i.e. promotion)

• Why parallel-first matters?

– Philosophical: realign languages to hardware, demystify parallelism

– Technical: better ground-up parallel safety built into its fabric

– Technical: no conflicts between base and parallel sprinkle,

they grow together

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

5.0 spec. (2018) 16

Act I: Parallelism is everywhere ...

synergy.cs.vt.edu

Code Example: CPU vector add

Chapel

1.proc vecAdd(A: [] real(32),
B: [] real(32), C: [] real(32))
{

2. C = A + B; //promoted
3.}

OpenMP

1.#include <omp.h>
2.void vecAdd(float *A, float *B,
float *C, int n) {

3. #pragma omp parallel for
shared(A, B, C) private(i)

4. for (int i=0; i<n; i++) {
5. C[i] = A[i]+B[i];
6. }
7.}

Serial C

1.void vecAdd(float *A, float *B,
float *C, int n) {

2. for (int i=0; i<n; i++) {
3. C[i] = A[i]+B[i];
4. }
5.}

Chapel (without promotion) a

1.proc vecAdd(A: [] real(32),
B: [] real(32), C: [] real(32))
{

2. forall i in C.domain {
3. C[i] = A[i] + B[i];
4. }
5.}

This is closer to

the mental model

A vector is just a linear

collection of things.

Should we express our

code according to an

individual element’s

experience?

Or do we actually care

about the collective?

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

17

Act I: Parallelism is everywhere ...

synergy.cs.vt.edu

Intermezzo
• The world and modern hardware are parallel, let’s start acting like it

– Use parallel-first languages, and teach them to new users

– Move our mental model from “The Hero [thread]’s Journey”, to “shepherds of threads”

• But we also have to think about heterogeneous parallelism...

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

18

Act I: Parallelism is everywhere ...

synergy.cs.vt.edu

Setlist
• Intro

• Act I: Parallelism is everywhere, start acting like it

• [you are here]

• Act II: The rise of GPUs, up through today

• Act III: Chapel’s role in our GPU future, and our role in Chapel’s

• Outro

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

19

Act I: Parallelism is everywhere ...

synergy.cs.vt.edu

Act II

The rise of GPUs, up through today

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

20

synergy.cs.vt.edu

Hardware is heterogeneous

June 2006: Clearspeed (1.4%)

June 2008: IBM Cell (8.6%)

Nov. 2010: NVIDIA Fermi (12.7%)

Nov. 2013: Intel Xeon Phi (17.7%)

+ NVIDIA Kepler (12.2%)

Nov. 2018: NVIDIA Volta (23.7%)

June 2022: AMD MI250 (30.2%)

(Source: Top500.org, June 2004 – Nov 2023)

P
e
rf

o
rm

a
n
c
e
 S

h
a
re

 (
%

)

0

100

50

75

25

2020201520102005 2023

• Heterogeneous hardware

is ubiquitous (and has

been)

– {floating-point-, graphics-,

physics-, signal-, crypto-,

tensor-, data-, vision-,

reconfigurable-, ...}

Processing Units

– Some get married to the

CPU as a SoC, some don’t

• NVIDIA Grace Hopper,

AMD MI300A APU, AMD

Versal FPGA, Altera Agilex

FPGA, etc.

Performance Share by

Accelerator Family

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

• Accelerator du jour keeps

shifting vendor & language

21

Act II: The rise of GPUs...

synergy.cs.vt.edu

Hardware is heterogeneous

November 2023:

70.1% GPU

By vendor:

• NVIDIA: 36.3%

– Ampere: 14.3%

– Hopper: 12.9%

– Volta: 8.2%

• AMD: 24.9%

– MI250: 24.9%

• Intel: 9.0%

– Max Data Center: 8.9%

• No Coprocessor: 28.8%

(Source: Top500.org, June 2004 – Nov 2023)

P
e
rf

o
rm

a
n
c
e
 S

h
a
re

 (
%

)

Performance Share by

Accelerator Family

0

100

50

75

25

2020201520102005 2023

• Accelerator du jour keeps

shifting vendor & language

• Portable languages

necessary to reach

everything and reduce

rework!

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

22

Act II: The rise of GPUs...

synergy.cs.vt.edu

Timeline of today’s GPU languages*

“Dark Ages”
AMD Close-to-Metal,

Sh, Brook/GPU/+, Cg,

HLSL, other shaders

2020201520102005

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

9.0

10.0 11.0 12.0 12.5

1.0 2.0 3.0 3.0.16

*scale

approximate

1.2.1

First Compliant Compiler (Codeplay)

1.2 2020-r1 2020-r8

1.0 2.0 3.0 4.0 6.05.0 6.1.1

2.0F 2.5 4.03.0 5.04.5 5.2.22.0C/++

GPU via target

Official GPU Support
1.24 Low-level NVIDIA

1.27 Multi-locale NVIDIA

1.30 AMD via ROCm 4.X+

1.31 Multi-locale AMD

1.24 1.27 1.30

1.31

2.0

[1] [2] [3] [4] [5] [7,8][6]

[1] Sidelnik, A., et al. "Using the high

productivity language chapel to target GPGPU

architectures." Tech Report. 2011.

[2] Sidelnik, A., et al. "Performance portability

with the chapel language." IPDPS. 2012.

[3] Breternitz, M., et al. “A Progress Report on

COHX: Chapel on HSA+XTQ.” CHIUW. 2015

[4] Pan, A. & Chu, M. “Chapel-on-HSA:

Towards seamless acceleration of Chapel

programs using HSA.” CHIUW. 2016

[5] Chu, M., et al. "GPGPU support in Chapel

with the Radeon Open Compute platform."

CHIUW. 2017.

[6] Hayashi, A., et al. "GPUIterator: Bridging

the gap between Chapel and GPU platforms."

CHIUW. 2019.

[7] Ghangas, R. & Milthorpe, J. "Chapel on

accelerators." CHIUW. 2020

[8] Hayashi, A., et al. "Exploring a multi-

resolution GPU programming model for

Chapel." CHIUW. 2020.

Heroic Efforts

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

Distribution →

23

Act II: The rise of GPUs...

synergy.cs.vt.edu

What can we learn from CUDA?

Consistency is king
• Pick a model, stick to it, and iterate on it when needed

• Build and keep knowledge: docs, forums, code examples
– Dead links are dead ends, insights lost to time

Reach people before they learn something else
• University programs – free training and GPUs – were a smashing success

Give away your tools
• Easy to install and use everywhere

Welcome the small fish, they are many and some will grow bigger
• New codes, users, buyers start on laptops before growing to datacenter

Drive the conversation
• Know where you excel, and show it to people

Recall Act I:

At least 68% of the

NVIDIA “gaming” GPUs

in Steam’s April 2024

survey support CUDA!

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

24

Act II: The rise of GPUs...

synergy.cs.vt.edu

GPU languages have a pick 2 of 3 problem

Performance

Productivity

Portability

Where we

want to be

But where

do we fit?

I haven’t gotten to do

much portability work

yet, just a few spot tests

on AMD RDNA3 GPU.

Hope you saw the talks

in Session #2!

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

25

Act II: The rise of GPUs...

synergy.cs.vt.edu

GPU Productivity Example: Vector Add

SYCL

1. void vecAdd(float *A_h, float *B_h, float *C_h,
int32_t nelem) {

2. sycl::queue myQueue;
3. sycl::buffer<float> A(A_h, nelem,

sycl::property::buffer::use_host_ptr());
4. sycl::buffer<float> B(B_h, nelem,

sycl::property::buffer::use_host_ptr());
5. sycl::buffer<float> C(C_h, nelem,

sycl::property::buffer::use_host_ptr());
6. C.set_write_back(true);
7. sycl::range<1> local{256};
8. sycl::range<1> global{((nelem / local.get(0)) +

(nelem % local.get(0) ? 1 : 0)) * local.get(0)};
9. myQueue.submit([&](sycl::handler &cgh) { //GPU

submit
10. auto A_acc =

A.get_access<sycl::access::mode::read>(cgh,
sycl::range<1>{(size_t)nelem});

11. auto B_acc =
B.get_access<sycl::access::mode::read>(cgh,
sycl::range<1>{(size_t)nelem});

12. auto C_acc =
C.get_access<sycl::access::mode::discard_write>(cgh
, sycl::range<1>{(size_t)nelem});

13. cgh.parallel_for(sycl::nd_range<1>{global,
local}, [=](sycl::nd_item<1> tid_info) {

14. size_t tid = tid_info.get_global_linear_id();
15. if (tid < nelem) {
16. C_acc[tid] = A_acc[tid] + B_acc[tid];
17. }
18. });
19. });
20. myQueue.wait();
21. }

CUDA

1. __global__ void vecAddKernel(float *A, float
*B, float *C, int32_t nelem) {

2. size_t tid = blockDim.x * blockIdx.x +
threadIdx.x;

3. if (tid < nelem) {
4. C[tid] = A[tid] + B[tid];
5. }
6. }
7. void vecAdd(float *A_h, float *B_h, float

*C_h, int32_t nelem) {
8. float *A, *B, *C;
9. int32_t work = hi-lo+1;
10. cudaMalloc(&A, sizeof(float) * nelem);
11. cudaMalloc(&B, sizeof(float) * nelem);
12. cudaMalloc(&C, sizeof(float) * nelem);
13. cudaMemcpy(A, A_h, sizeof(float) * nelem,

cudaMemcpyHostToDevice);
14. cudaMemcpy(B, B_h, sizeof(float) * nelem,

cudaMemcpyHostToDevice);
15. dim3 block = {256, 1, 1};
16. dim3 grid = {(nelem / block.x) + (nelem %

block.x ? 1 : 0), 1, 1};
17. vecAddKernel<<<grid, block>>>(A, B, C,

nelem);
18. cudaMemcpy(C_h, C, sizeof(float) * nelem,

cudaMemcpyDeviceToHost);
19. cudaFree(dA);
20. cudaFree(dB);
21. cudaFree(dC);
22. }

OpenCL via MetaCL

1. __kernel void vecAddKernel(__global float *A,
__global float *B, __global float *C, int nelem) {

2. size_t tid = get_global_id(0);
3. if (tid < nelem) {
4. C[tid] = A[tid] + B[tid];
5. }
6. }
7. void vecAdd(float *A_h, float *B_h, float *C_h,

int32_t nelem) {
8. meta_set_acc(-1, metaModePreferOpenCL);
9. cl_device_id dev;
10. cl_platform_id plat;
11. cl_context ctx;
12. cl_command_queue q;
13. meta_get_state_OpenCL(&plat, &dev, &ctx, &q);
14. cl_mem A, B, C;
15. A = clCreateBuffer(ctx, NULL, sizeof(float) *

nelem, NULL, NULL);
16. B = clCreateBuffer(ctx, NULL, sizeof(float) *

nelem, NULL, NULL);
17. C = clCreateBuffer(ctx, NULL, sizeof(float) *

nelem, NULL, NULL);
18. clEnqueueWriteBuffer(q, A, CL_FALSE, 0,

sizeof(float) * nelem, A_h, 0, NULL, NULL);
19. clEnqueueWriteBuffer(q, B, CL_TRUE, 0,

sizeof(float) * work, B_h, 0, NULL, NULL);
20. size_t local[3] = {256, 1, 1};
21. size_t global[3] = {((nelem / local[0]) + (nelem

% local[0] ? 1 : 0)) * local[0], 1, 1};
22. metacl_vecAdd_vecAddKernel(q, &global, &local,

NULL, false, NULL, &A, &B, &C, nelem);
23. //Copy buffers
24. clEnqueueReadBuffer(q, C, CL_TRUE, 0,

sizeof(float) * work, C_h, 0, NULL, NULL);
25. clFinish(q);
26. //Release buffers
27. clReleaseMemObject(A);
28. clReleaseMemObject(B);
29. clReleaseMemObject(C);
30. }

OpenMP 4.0+

1.#include <omp.h>
2.void vecAdd(float *A,
float *B, float *C, int n)
{

3. #pragma omp target
teams distribute parallel
for simd map(to: A[0:n],
B[0:n]) map(from: C[0:n])

4. for (int i=0; i<n; i++)
{

5. C[i] = A[i]+B[i];
6. }
7.}

• Either: concise but implicit or explicit but verbose

Kernel boxed

in green

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

26

Act II: The rise of GPUs...

synergy.cs.vt.edu

Chapel GPU Productivity Example: Vector Add

Chapel
1.use GPU;
2.proc vecAdd(A_h: [] real(32), B_h: [] real(32), C_h: [] real(32)) {
3. on here.gpus[0] { //enter 0-th device scope
4. var A: [A_h.domain] real(32) = A_h; //copy-init from host
5. var B: [B_h.domain] real(32) = B_h; //copy-init from host
6. var C: [C_h.domain] real(32) = noinit; //alloc without init
7. C = A + B; //PROMOTED GPU add
8. C_h = C; //copy-from
9. } //release mem at GPU scope end
10.}

• Chapel allows you to be both concise and explicit

– Concise → Productivity Explicit → Maintainability

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

Kernel boxed in green 27

Act II: The rise of GPUs...

synergy.cs.vt.edu

• Transliteration of CUDA Edge- and Vertex-centric
graph analysis pipeline → Jaccard Similarity
– See my CHIUW’23 talk for more detail

• Non-trivial: 3D kernels, atomics, random-access

• Most recent line counts: CUDA 1212 vs Chapel 599 (-51%!!)

• Relative kernel performance was great!
– 18 graph inputs (see appendix): |E| =~3-500M, avg. density:= ~2.1-160

– Min: 0.51x, Max: 1.98x, Geo. Mean: 0.87x

– Performance gap on the sparser inputs

– Performance parity (± 5%) on the denser inputs

– Performance gain on a handful!

• Currently working on partitionable multi-GPU, multi-locale version

Chapel GPU on Irregular Apps

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

Chapel Speedup

vs CUDA on RTX 3090

28

Act II: The rise of GPUs...

synergy.cs.vt.edu

As a language for GPGPU kernels, Chapel is pretty good!

More productive, more maintainable,

similar (and improving) performance

But how are people actually using GPGPU?

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

29

Act II: The rise of GPUs...

synergy.cs.vt.edu

Is it post-serial GPGPU languages?

Google Trends Snapshot: 5/23/2024

• CUDA clearly the market leader

• OpenMP and OpenCL on the decline

• ROCm and SYCL on the rise

SYCL

ROCm

OpenCL

CUDA

OpenMP

Interest over time

(Concept)

●SYCL ●ROCm ●OpenCL ●CUDA ●OpenMP

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

30

Act II: The rise of GPUs...

synergy.cs.vt.edu

Or is it Python with Libraries?

• High-performance Python → NumPy, et al

– CuPy for GPU w/ compatible API is new, but growing

• TensorFlow & PyTorch compete w/ CUDA

• ONNX is following trends, but w/ lower share

Google Trends Snapshot: 6/5/2024

Interest over time

(Concept)

●ONNX ●NumPy ●PyTorch●CUDA ●TensorFlow

ONNX

NumPy

PyTorch

CUDA

TensorFlow

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

31

Act II: The rise of GPUs...

synergy.cs.vt.edu

Intermezzo
• GPUs are critical to modern performance, both at exa- and laptop scales

• Chapel’s GPU support is young but productive, performant and portable

• High-level Python has more energy & interest than low-level GPU

– AI / Data science communities → new federated frontiers for HPC

• Chapel with GPU could fill the gap between library-driven Python and

existing post-serial GPU languages!

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

32

Act II: The rise of GPUs...

synergy.cs.vt.edu

Setlist
• Intro

• Act I: Parallelism is everywhere, start acting like it

• Act II: The rise of GPUs, up through today

• [you are here]

• Act III: Chapel’s role in our GPU future, and our role in Chapel’s

• Outro

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

33

Act II: The rise of GPUs...

synergy.cs.vt.edu

Act III

Chapel’s role in our GPU future, and our role in Chapel’s

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

34

synergy.cs.vt.edu

A very simplified view of AI & Data Science

Where is

multi-node?

“I need more performance” → jarring “leap of faith”

Do I have to

move data out

of one lib and

into another?

Application

Flow Logic

Bespoke

Kernels

Analysis /

Visualization

High Performance

GPU Library Kernels

pip install
another library:

(pyMPI, mpi4py,

PySpark, DASK, ...)

Will intra- and

inter-node

play nice?

Are the libs

responsible

for interop,

or am I?

Too many [inter-]dependencies can lead to fragility and overhead!

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

35

Act III: Chapel’s role in our GPU future ...

synergy.cs.vt.edu

Chapel eases path to parallel/GPU/distributed
S

m
o
o
th

 r
a
m

p
 t
o
 c

o
m

p
le

x
it
y

Do viz and

analysis where

the data is being

worked on!

Application

Flow Logic

Bespoke CPU

and GPU Kernels

Analysis /

Visualization

Put intra- and

inter-node into a

language that

does both!

NUMA-awareness

/ distribution via

[co]locales

Retain interop

to existing

approaches

Wrapper

APIs(new)

(Pre-existing) High

Performance GPU

Library KernelsLooks a lot like Arkouda+
Arachne, and what we’ll
hear about in Session #5

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

36

Act III: Chapel’s role in our GPU future ...

synergy.cs.vt.edu

Available parallel and GPU Hardware ✓

Parallel-first, portable GPU Language ✓

AI and Data Science energy towards GPU ✓

So what is still in Chapel’s way?

Inertia Friction Exposure

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

37

Act III: Chapel’s role in our GPU future ...

synergy.cs.vt.edu

Getting from A to B → xt = x0 + t*v0 + t2*a0/2

• Inertia (Position → language share)
– Old codes & langs are battleships: big, expensive, powerful, moved by committee

– Transliteration is necessary to “prove it works” but high effort relative to reward

• Friction (Velocity → rate of new codes)
– Programming is not just about the code, it’s about the whole ecosystem!

• Installation, editor tooling, documentation, debugging, support forums, visualization, ...

– Ecosystem ease of use can help or hinder adoption

– Familiar workflows must be trivial to reproduce, or better yet, improved upon

• Exposure (Acceleration → rate of change in rate of new codes)
– The earlier and more broadly you can reach people, the better

– Users’ struggles will identify friction points, and successes will feed excitement loop!

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

38

Act III: Chapel’s role in our GPU future ...

synergy.cs.vt.edu

What can we learn from CUDA?

Consistency is king

Reach people before they learn

something else

Give away your tools

Welcome the small fish, they are

many and some will grow bigger

Drive the conversation

Positive Inertia

Pre-Inertia Exposure

Exposure and Low Friction

Exposure, Low

Friction and

Positive Inertia

Exposure

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

39

Act III: Chapel’s role in our GPU future ...

synergy.cs.vt.edu

How are we really doing on these?

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

40

Act III: Chapel’s role in our GPU future ...

synergy.cs.vt.edu

Progress on Inertia

• We’re building on lessons from post-serial giants

– Not going anywhere, but we grow as a complement to them

• Higher-level for most, dip into post-serial via interop when needed

• Year-over-year we’ve increased breadth and depth of Chapel codes

– Most successes are from new codes and users, not transliteration!

• Rigorous, at-scale successes are slowly chipping away

• I think it wins on clarity for maintainability, but I’m not sure there’s enough

Chapel-native developers for a robust HR ecosystem (yet)

– It’s not just the code, it’s the availability of people who know how to work on it

New codes and
app. areas in
Session #4!

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

41

Act III: Chapel’s role in our GPU future ...

synergy.cs.vt.edu

Friction points

• 2.0 improved stability, docs, diags.! Work ongoing on LSP tools, debugging, interactivity

• “Where .exe?” Need better install, migration, in situ viz → where is our matplotlib?

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

Check out Session #1!

Approach Deb package? GPU? Portability? From source? New compiler?

Yes Optional No No

Yes Advanced only Advanced only Yes

Yes NVIDIA required No Yes

Yes w/ Repo AMD or NVIDIA required No Yes

Yes Optional No Host No, Dev. Yes

Yes w/ Repo Optional No Yes

No Optional Yes Yes

CPU/single-loc Soon!! No No Yes

GPU/multi-loc No Optional AMD or NVIDIA Yes Yes
42

Act III: Chapel’s role in our GPU future ...

synergy.cs.vt.edu

What about Exposure?

• We’re here, so how’d we get here? → Community survey might show common themes

• Curricula are the long term answer, but generality is a precursor!
– Right now part of inertia: slow battleships only moved by committees

– But there are other places to teach: bootcamps, pre-college, online platforms!

• 3rd party blogs are great → independent credibility

• Increased social media needs to align to where prospective users already are
– There’s a ton of CS, AI, Python, Rust, ProgrammerHumor on Reddit, but r/Chapel is quite thin

• Need to reach beyond HPC bastions, because everyone has parallel hardware now
– Instead of “pushing out” from HPC spaces, “pull in” concepts and people from more general spaces

Check out
Luca’s talk next
in Session #3

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

43

Act III: Chapel’s role in our GPU future ...

synergy.cs.vt.edu

Where to put our efforts?

• Inertia is a giant / battleship, strong and slow

– Small splashes won’t move it, but riding a tide could → GPGPU!

• ✓✓ Friction is a solvable engineering problem

– Make moving to Chapel as easy as drifting downstream

– Programmers we’ve reached have interest and energy that we
shouldn’t waste on turbulence

• 2.0 stability, LSP tools, installation, interactivity, debugging,
visualization

• ✓ Exposure is important, but not a guarantee!

– AI / data science devs are gravitating to more general languages

– Reach into general spaces to show a better path downstream

• Focusing on the upstream experience and potential energy
of newer users, could finally shift the tide to parallel-first

→ Cascades start upstream

Cascades in winter

Photo Credit: Paul Sathre, 2015

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

44

Act III: Chapel’s role in our GPU future ...

synergy.cs.vt.edu

Conclusion

• The real world and everyday hardware are parallel, so lets act like it

– Use parallel-first languages, like Chapel and teach them to new users

• Chapel’s GPU support learned quickly from prior GPU approaches

– Now a productive, performant, and portable contender

• Let’s align to broader GPU trends towards a future in AI / Data science

– Smooth the gap between high-level libraries, and low-level post-serial

• To grow a Cascade, seek general users & provide a low-friction experience

– Reduce barriers to entry, expand reach from HPC to general parallelism

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

45

Outro

synergy.cs.vt.edu

Thanks

• ... to current members and alums of Synergy Lab @ VT

• ... to the Chapel team at HPE for Q&A, feature requests, discussion

– ... and inviting me to speak today!

– Particular shoutouts to GPU and IO teams: Brad, Engin, Andy, Ben H., Michael, Lydia

• ... to the Chapel community for fighting hard on inertia, exposure, and friction

• Sponsorship

– The work detailed herein has been supported in part by

NSF I/UCRC CNS-1822080 via the NSF Center for Space,

High-performance, and Resilient Computing (SHREC).

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

46

Outro

synergy.cs.vt.edu

Question & Answer

• The real world and everyday hardware are parallel, so lets act like it

– Use parallel-first languages, like Chapel and teach them to new users

• Chapel’s GPU support learned quickly from prior GPU approaches

– Now a productive, performant, and portable contender

• Let’s align to broader GPU trends towards a future in AI / Data science

– Smooth the gap between high-level libraries, and low-level post-serial

• To grow a Cascade, seek general users & provide a low-friction experience

– Reduce barriers to entry, expand reach from HPC to general parallelism

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

47

Outro

synergy.cs.vt.edu

Encore Slides

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

48

synergy.cs.vt.edu

Difficult Discussion Questions

• If a business has a Chapel-driven product or internal tool, how quickly can they
bring a new grad up to speed to work on the language?

• If we use Chapel’s higher-level parallelism for teaching, are we hiding parts of
the underlying parallelism that are critical for developing deep understanding?

• After improving base language installation, what is our package ecosystem
like? Is / could Mason be as easy as Pip, Cargo, etc.?

• How well and portably do we expose GPU features like threadfence, tensor
cores?

• Is a new language more or less rigid than coding to a [large] C/++ framework?

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

49

synergy.cs.vt.edu

Wishlist

• Viz Viz Viz and Interactivity

• GPU-enabled install packages
– WSL for students, deb for me, rpm and IaaS images for business

• Evangelism, show how good 2.0 is on real, important problems

• Tutorial series, in places where people are learning about code
– YouTube, Twitch, Reddit, Blogs?

– Installation all the way through to first GPGPU code

• Curricula examples for profs to grab-n-go
– Auto-grading plugin(s) via LSP?

• Automatically co-schedule forall/foreach to CPU+GPU(s)
– i.e. not an explicitly-partitioned cobegin

– Ok to start with strictly unified memory within a single locale

• Intel GPU support eventually → 3 competitors is good for user pricing

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

50

synergy.cs.vt.edu

Select artifacts

• OpenDwarfs: https://github.com/vtsynergy/OpenDwarfs

– 13 computational idioms for OpenCL. Would love to see “Chapel-tastic” versions!

• CU2CL: https://github.com/vtsynergy/CU2CL

• MetaMorph: https://github.com/vtsynergy/MetaMorph

• MetaCL: https://github.com/vtsynergy/MetaMorph/tree/master/metamorph-
generators/opencl

• Unpartitioned Chapel Jaccard

– CHIUW’23 Talk: https://chapel-lang.org/CHIUW/2023/SathreSlides.pdf

• Paper: https://chapel-lang.org/CHIUW/2023/Sathre.pdf

– Code: https://github.com/vtsynergy/Chapel-Examples

– Input data: https://chrec.cs.vt.edu/SYCL-Jaccard/HPEC22-Data/index.html

• Other lab code: https://github.com/vtsynergy

– And papers: https://synergy.cs.vt.edu/publications.php

– Points of contact: {sath6220, feng} at cs dot vt dot edu

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

51

https://github.com/vtsynergy/OpenDwarfs
https://github.com/vtsynergy/CU2CL
https://github.com/vtsynergy/MetaMorph
https://github.com/vtsynergy/MetaMorph/tree/master/metamorph-generators/opencl
https://chapel-lang.org/CHIUW/2023/SathreSlides.pdf
https://chapel-lang.org/CHIUW/2023/Sathre.pdf
https://github.com/vtsynergy/Chapel-Examples
https://chrec.cs.vt.edu/SYCL-Jaccard/HPEC22-Data/index.html
https://github.com/vtsynergy
https://synergy.cs.vt.edu/publications.php

synergy.cs.vt.edu

Code Example: GPU 3D vertex-centric Jaccard Similarity

var intersect : [0..<numEdges] real(32);
forall id in srcIters*destIters*isectIters {
var nd_id : 3*int = get_ND_ID(id);
var zCount = nd_id(2);
while (zCount < srcIters) {
var yCount = nd_id(1);
while (yCount < destIters) {
var xCount = nd_id(0);
while (xCount < isectIters) {

... // bin-search
gpuAtomicAdd(intersect[writeAddr], 1.0);

xCount += nd_id.global_dim(0); }
yCount += nd_id.global_dim(1); }

zCount += nd_id.global_dim(2); }
}

We did run into some issues porting a
3D CUDA kernel
• GPU foralls are only 1D (for now)

– Solution: Linearize loop range, then de-

• for-by loops do NOT GPU-ize (yet)
– Problem: non-constant by clause can halt
– Solution: Replace with while-count

• Accumulate via atomicAdd did NOT
GPU-ize before Chapel 1.31
– Solution: Call CUDA’s via extern C
– Now has a gpuAtomic<Func> API

• Could incrementally validate as kernels
were transparently mapped to CPU

in
te

rs
e
c
ti
o
n

See my talk at CHIUW’23 for more on this

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

52

synergy.cs.vt.edu

Edge- and Vertex-centric Jaccard: Data

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

Sparsest/Largest

Preprocessed CSR binary files: https://chrec.cs.vt.edu/SYCL-Jaccard/HPEC22-Data/index.html

Graph data and images CC-BY-4.0 from the SparseSuite Matrix Collection (https://sparse.tamu.edu/).

Smallest

Densest 53

https://chrec.cs.vt.edu/SYCL-Jaccard/HPEC22-Data/index.html

synergy.cs.vt.edu

H
ig

h
e

r
is

 b
e

tt
e

r!

(min

0.51x)

(max

1.98x)

CPU: AMD Threadripper 3960X

GPU: Nvidia RTX 3090

CUDA: 11.6 / driver 510.108.03

Chapel: pre-1.31 (d7664c9d81)

See my talk at CHIUW’23

for more on this

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

Edge- and Vertex-centric Jaccard:
Kernel performance vs. original CUDA on RTX 3090

54

synergy.cs.vt.edu

{AI, Data, Domain} Scientists need visualization!

• Python/Jupyter drive an interactive code → viz → analysis loop

– Need to support visualization within the human thought loop to attract these workflows

– Chapel doesn’t have a plotting module, but could C interop fill the role? “How hard can it be?”

• Experiment with Chapel → C → C++ interop via matplot++

– 1024x512, 5-point stencil Jacobi heat diffusion toy, after 10k iters →

• ✓ 62 lines of Chapel application with 8 calls to library

– Grid subsampled to 26x13 in a single line for slow gnuplot backend

• ... but 32 lines of manual Chapel→C binding

– not great, but could be automated via c2chapel

• ... and 97 lines of manual C→C++ binding

• There is a gold mine of wrappable AI and Data Science libraries

– ... but would need both Chapel & C++ experience, rough otherwise

Starting condition: 50°
Boundary conditions:

S=100, E=0, N&W=50

1-thick ghost padding

ChapelCon'24 -- June 7, 2024

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"

55

https://github.com/alandefreitas/matplotplusplus

