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Introduction

• Graph analytical software consists of two main objectives: designing 
efficient graph data structures for fast data access and algorithms that 
exploit these efficient data accesses.
• We have implemented an edge-based data structure based on a modified version of 

CSR we call the Double-Index (DI) data structure. 

• We have implemented algorithms for different graph analytical kernels such as 
breadth-first search (BFS), triangle counting, connected components, etc. 

• All our functionality is bundled into the framework, Arachne, built on top of Arkouda.

• Firstly, this talk will present DI with a focus on new functionality to 
facilitate in-memory property graph analysis. Secondly, I will share our 
journey of optimizing BFS for distributed-memory execution in Chapel.
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A Bird’s Eye-View of Arachne+Arkouda

read_matrix_market_file()

read_hdf()

read_parquet()

rmat()

Load in CSVs, HDF5s, Parquets, etc. Convert tabular data to a property graph with all data closely 
maintained with vertex and edges.

Generate or load graphs in from 
various sources.

bfs_layers()

subgraph_isomorphism()

square_counting()

subgraph_view()

Perform analysis or filter for 
NetworkX, iGraph, or graph-tool.

1. import arkouda as ak
2. import arachne as ar
3.  
4. ## Get src and dst from input file.
5.  
6. graph = ar.PropGraph()
7.  
8. ## Generate label_df and relationships_df from input file.
9.  
10. graph.load_edge_attributes(relationships_df)
11. graph.load_node_attributes(label_df)
12.  
13. ## User generates labels_to_find and relationships_to_find.
14. returned_nodes = graph.node_attributes[“column”] == 1
15. returned_edges = graph.edge_attributes[“column”] == 2
16.  
17. subgraph_src = ak.in1d(returned_edges[0], returned_nodes)
18. subgraph_dst = ak.in1d(returned_edges[1], returned_nodes)
19.  
20. kept_edges = subgraph_src & subgraph_dst
21.  
22. subgraph_src = subgraph_src[kept_edges]
23. subgraph_dst = subgraph_dst[kept_edges]
24.  
25. subgraph = ar.Graph()
26. subgraph.add_edges_from(subgraph_src, subgraph_dst)
27. ## Run some other operations on subgraph! Reference our HPEC22 paper ☺

Easily usable through NetworkX-like API.

Runs on any hardware, data stays in the back-end, 
user calls API through Python: powerful and 

productive. Server can run on supercomputers; 
Python API usable locally.

OPEN SOURCE: https://github.com/Bears-R-Us/arkouda-njit
PUBLICATIONS & PRESENTATIONS AT: HPEC, HiPC, IPDPS, & PPoPP

ZMQ

User

User edits a Python 
script or a Jupyter 

Notebook.

https://github.com/Bears-R-Us/arkouda-njit


Modular View of Arachne Functionality
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add_edges_from()

load_edge_attributes()

load_node_attributes()

read_matrix_market_file()

bfs_layers()

connected_components()

triangles()

triangle_centrality()

squares()

subgraph_isomorphism()

diameter()

data
DI

graph | pdarray | numeric

Graph AlgorithmsGraph Construction

rmat()

gnp()

random_tree()

…more!



Double-Index (DI) Data Structure
Examples and Persistence
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(Property) Graph Data Structure
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• Allows for simple, compact, distributable storage of vertex and edge sets.
• Given an edge index, 𝑒, all vertices that make up that edge are found in constant time, 

avoiding a binary search into SRC (CSR offsets index equivalent).
• MAP allows explicitly storing original vertex labels, returning original graph involves 

index operations SRC[MAP] and DST[MAP].

L1

L2

[𝑆𝐸𝐺[𝑢]. . < 𝑆𝐸𝐺[𝑢 + 1]]
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(Property) Graph Data Structure
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• Same distributable storage of vertex and edge attributes as base DI.
• Given an edge or vertex index, all attribute data can be easily accessed.
• Same storage principles apply to strings, which are stored in an object containing a byte 

array for characters and segments for where each string starts in the byte array.
• Sparse attribute arrays maintaining locality can also be created to only store attribute 

values that belong to a subset of indices.

INT
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sparse



Persisting Graphs via Arkouda Symbol Table

• Graph is stored as a GraphSymEntry which is a wrapper to 
SegGraph that inherits from CompositeSymEntry.

• Sparse arrays are stored in a SparseSymEntry (shoutout to Vass 
from the Chapel team) that inherits from GenSymEntry.

• We have other special classes to persist data such as maps, replicated 
arrays, and associative arrays. Plans to store “sparse” Arkouda 
categoricals and strings.
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Breadth-First Search (BFS)
A Journey of Optimizations
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General Information

• Important algorithm for solving problems that requires a complete 
traversal of a graph: answer questions like “how far is every other 
vertex from our source?”

• One of the fundamental graph algorithms in computer science.

• Has a sequential complexity of 𝑂(𝑛 + 𝑚) where 𝑛 is the number of 
vertices and 𝑚 is the number of edges.
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Single Locale Parallel BFS (version 1.0)
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Multilocale Parallel BFS (version 1.5)
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Assume our edge list is split down the middle, then the neighborhood of some vertices will live on one 
compute node while the rest live on another compute node.

Any cross-color expansions are writes 
across the network; fine-grained writes 
hold up execution, large coarse-grained 

writes are better.
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Multilocale Parallel BFS with Aggregators 
(version 2.0)
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Each frontier is a list. Before we expand the frontiers in the following iteration, we aggregate them, and then write 
them to the appropriate frontier list.



Multilocale Parallel 
BFS Version 1.0
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Expand frontier based of forward-edges

Expand frontier based of reversed-edges

• Uses ideas of forward and reversed 
edges for undirected graphs. For 
example, u—v is stored in SRC and 
DST and v—u is stored in SRCr and 
DSTr. 

• Use the “old” distributed bag to 
expand frontiers.



Multilocale Parallel 
BFS Version 1.5
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Expand frontier based of symmetrized edges

• Combines the forward and reversed 
arrays to ensure every vertex has full 
access to its neighbors instead of a 
split view.
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Locale parallelism

Parallelism per-locale

Maintaining locality

Neighborhood expansion with 
aggregation

Aggregator per-task

Multilocale Parallel BFS Version 2.0



Multilocale BFS Communication Volume Heatmap
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delaunayn20 get put

locale 1.0 1.5 2.0 1.0 1.5 2.0

0 15672640 7873842 639827 5629422 2749193 138070

1 15834332 7939017 687156 1952226 1016946 127936

2 15715554 7722659 226754 1942839 962031 45217

3 15817879 7723971 226880 1951313 962201 45060

4 15964559 7724880 226691 1961552 962199 51217

5 15739226 7726504 230024 1940688 962439 52714

6 15569450 7727678 229096 1925536 962680 51977

7 15341933 7736094 225083 1904757 963418 48413

1.0: 84 seconds (HPEC 21’)
2.0: 3.36 seconds

delaunayn20 is a graph with 3 million edges and a large diameter

Takeaway: Aggregating writes drastically reduces communication volumes, improving 
performance, all done easily through Chapel by adapting aggregators for different uses.
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2.0 BFS Scalability
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4L 8L 16L 32L 64L

18 2.11 3.43 5.87 8.10 9.66

19 2.14 3.69 6.35 10.28 13.04

20 2.20 3.84 6.41 10.60 15.90

21 1.93 3.09 6.84 9.86 15.56

Speed-Up Over 2 Locales

Takeaway: As the number of locales 
increased, we see a good speed-up 
for distributed-memory breadth-first 
search.



Lessons Learned

• Using Chapel (or any PGAS-based languages and frameworks) don’t 
magically get rid of the complications of parallelizing and distributing 
graph operations.

• Adapting communication-aware optimizations, such as being aware 
of how neighborhoods are split across locales, can help improve 
graph-based performances.
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Conclusion

• Using a programming language like Chapel allows us to quickly 
implement both shared-memory and distributed-memory algorithms 
to enable highly productive large-scale graph analysis.

• Using an existing framework like Arkouda allows us to focus more on 
graph algorithms while offloading tasks such as object persistence 
and array sorting.
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Future Work

• Not everything needs to be distributed – large queries can be done in a 
distributed manner and smaller graphs analyzed on one compute node; can we 
hybridize our graph tools?

• Performance, performance, performance. Array-based operations are wonderful 
in Chapel, but do we need to build harnesses in Arachne to call out to external 
programs written in MPI, YGM, or other massively distributed tools?

• How can we dynamically optimize during runtime? For example, code regions 
that perform a lot of reads or writes on GASNet+Infiniband suffer when multiple 
parallel threads are writing since those values are transmitted sequentially. 
Chapel currently doesn’t allow for forall loops to dynamically use a runtime-given 
thread count.

• There isn’t one data structure to rule them all. Add capabilities in Arachne to 
build at runtime the data structure that is best for a given problem.
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Thank You ☺
Questions?
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