
On the Design of Graph Analytical
Software in Chapel

Oliver Alvarado Rodriguez, Zhihui Du, David A. Bader

Department of Data Science

New Jersey Institute of Technology

Newark, NJ, USA

Supported by NSF grant: CCF-2109988

Introduction

• Graph analytical software consists of two main objectives: designing
efficient graph data structures for fast data access and algorithms that
exploit these efficient data accesses.
• We have implemented an edge-based data structure based on a modified version of

CSR we call the Double-Index (DI) data structure.

• We have implemented algorithms for different graph analytical kernels such as
breadth-first search (BFS), triangle counting, connected components, etc.

• All our functionality is bundled into the framework, Arachne, built on top of Arkouda.

• Firstly, this talk will present DI with a focus on new functionality to
facilitate in-memory property graph analysis. Secondly, I will share our
journey of optimizing BFS for distributed-memory execution in Chapel.

07 June 2024 Oliver Alvarado Rodriguez 2

07 June 2024 Oliver Alvarado Rodriguez 3

A Bird’s Eye-View of Arachne+Arkouda

read_matrix_market_file()

read_hdf()

read_parquet()

rmat()

Load in CSVs, HDF5s, Parquets, etc. Convert tabular data to a property graph with all data closely
maintained with vertex and edges.

Generate or load graphs in from
various sources.

bfs_layers()

subgraph_isomorphism()

square_counting()

subgraph_view()

Perform analysis or filter for
NetworkX, iGraph, or graph-tool.

1. import arkouda as ak
2. import arachne as ar
3.
4. ## Get src and dst from input file.
5.
6. graph = ar.PropGraph()
7.
8. ## Generate label_df and relationships_df from input file.
9.
10. graph.load_edge_attributes(relationships_df)
11. graph.load_node_attributes(label_df)
12.
13. ## User generates labels_to_find and relationships_to_find.
14. returned_nodes = graph.node_attributes[“column”] == 1
15. returned_edges = graph.edge_attributes[“column”] == 2
16.
17. subgraph_src = ak.in1d(returned_edges[0], returned_nodes)
18. subgraph_dst = ak.in1d(returned_edges[1], returned_nodes)
19.
20. kept_edges = subgraph_src & subgraph_dst
21.
22. subgraph_src = subgraph_src[kept_edges]
23. subgraph_dst = subgraph_dst[kept_edges]
24.
25. subgraph = ar.Graph()
26. subgraph.add_edges_from(subgraph_src, subgraph_dst)
27. ## Run some other operations on subgraph! Reference our HPEC22 paper ☺

Easily usable through NetworkX-like API.

Runs on any hardware, data stays in the back-end,
user calls API through Python: powerful and

productive. Server can run on supercomputers;
Python API usable locally.

OPEN SOURCE: https://github.com/Bears-R-Us/arkouda-njit
PUBLICATIONS & PRESENTATIONS AT: HPEC, HiPC, IPDPS, & PPoPP

ZMQ

User

User edits a Python
script or a Jupyter

Notebook.

https://github.com/Bears-R-Us/arkouda-njit

Modular View of Arachne Functionality

07 June 2024 Oliver Alvarado Rodriguez 4

add_edges_from()

load_edge_attributes()

load_node_attributes()

read_matrix_market_file()

bfs_layers()

connected_components()

triangles()

triangle_centrality()

squares()

subgraph_isomorphism()

diameter()

data
DI

graph | pdarray | numeric

Graph AlgorithmsGraph Construction

rmat()

gnp()

random_tree()

…more!

Double-Index (DI) Data Structure
Examples and Persistence

07 June 2024 Oliver Alvarado Rodriguez 5

(Property) Graph Data Structure

07 June 2024

MAP

34

69

89

SRC

0

0

1

1

2

DST

1

2

0

2

2

IND

0

1

2

3

SEG

0

2

4

5

Vertices Edges

IND

0

1

2

3

4

• Allows for simple, compact, distributable storage of vertex and edge sets.
• Given an edge index, 𝑒, all vertices that make up that edge are found in constant time,

avoiding a binary search into SRC (CSR offsets index equivalent).
• MAP allows explicitly storing original vertex labels, returning original graph involves

index operations SRC[MAP] and DST[MAP].

L1

L2

[𝑆𝐸𝐺[𝑢]. . < 𝑆𝐸𝐺[𝑢 + 1]]

Oliver Alvarado Rodriguez 6

 𝑒

(Property) Graph Data Structure

07 June 2024 Oliver Alvarado Rodriguez 7

MAP

34

69

89

SRC

0

0

1

1

2

DST

1

2

0

2

2

IND

0

1

2

3

SEG

0

2

4

5

Vertices Edges

IND

0

1

2

3

4

L1

L2

INT

-1

2

5

UINT

1

0

4

REAL

1.1

0.2

4.1

INT

-1

2

0

-2

2

UINT

1

2

0

2

2

BOOL

T

F

T

T

F

• Same distributable storage of vertex and edge attributes as base DI.
• Given an edge or vertex index, all attribute data can be easily accessed.
• Same storage principles apply to strings, which are stored in an object containing a byte

array for characters and segments for where each string starts in the byte array.
• Sparse attribute arrays maintaining locality can also be created to only store attribute

values that belong to a subset of indices.

INT

1

2

sparse

Persisting Graphs via Arkouda Symbol Table

• Graph is stored as a GraphSymEntry which is a wrapper to
SegGraph that inherits from CompositeSymEntry.

• Sparse arrays are stored in a SparseSymEntry (shoutout to Vass
from the Chapel team) that inherits from GenSymEntry.

• We have other special classes to persist data such as maps, replicated
arrays, and associative arrays. Plans to store “sparse” Arkouda
categoricals and strings.

07 June 2024 Oliver Alvarado Rodriguez 8

Breadth-First Search (BFS)
A Journey of Optimizations

07 June 2024 Oliver Alvarado Rodriguez 9

General Information

• Important algorithm for solving problems that requires a complete
traversal of a graph: answer questions like “how far is every other
vertex from our source?”

• One of the fundamental graph algorithms in computer science.

• Has a sequential complexity of 𝑂(𝑛 + 𝑚) where 𝑛 is the number of
vertices and 𝑚 is the number of edges.

07 June 2024 Oliver Alvarado Rodriguez 10

Single Locale Parallel BFS (version 1.0)

07 June 2024 Oliver Alvarado Rodriguez

0 7

5

3

8

2

4 6

1

9

source

vertex

Input:

Output:

1

1

1

2

2 3 3

4

4

distance from

source vertex

0 7

5

3

8

2

4 6

1

9

source

vertex

Output: D = [0, 4, 1, 2, 3, 1, 3, 1, 2, 4]

11

C
u

rr
en

t
Fr

on
ti

er

N
ex

t
Fr

o
n

ti
er

Multilocale Parallel BFS (version 1.5)

07 June 2024

0 7

5

3

8

2

4 6

1

9

source

vertex

Input:

Output:

1

1

1

2

2 3 3

4

4

distance from

source vertex

0 7

5

3

8

2

4 6

1

9

source

vertex

Output: D = [0, 4, 1, 2, 3, 1, 3, 1, 2, 4]

C
u

rr
en

t
Fr

on
ti

er

N
ex

t
Fr

o
nt

ie
r

Assume our edge list is split down the middle, then the neighborhood of some vertices will live on one
compute node while the rest live on another compute node.

Any cross-color expansions are writes
across the network; fine-grained writes
hold up execution, large coarse-grained

writes are better.

Oliver Alvarado Rodriguez 12

Multilocale Parallel BFS with Aggregators
(version 2.0)

07 June 2024 Oliver Alvarado Rodriguez 13

0 7

5

3

8

2

4 6

1

9

source

vertex

[5,7]

[2]

[8,8]

[3,3]

[6,6]

[4,4]

[1]

[9]

Each frontier is a list. Before we expand the frontiers in the following iteration, we aggregate them, and then write
them to the appropriate frontier list.

Multilocale Parallel
BFS Version 1.0

07 June 2024 Oliver Alvarado Rodriguez 14

Expand frontier based of forward-edges

Expand frontier based of reversed-edges

• Uses ideas of forward and reversed
edges for undirected graphs. For
example, u—v is stored in SRC and
DST and v—u is stored in SRCr and
DSTr.

• Use the “old” distributed bag to
expand frontiers.

Multilocale Parallel
BFS Version 1.5

07 June 2024 Oliver Alvarado Rodriguez 15

Expand frontier based of symmetrized edges

• Combines the forward and reversed
arrays to ensure every vertex has full
access to its neighbors instead of a
split view.

07 June 2024 Oliver Alvarado Rodriguez 16

Locale parallelism

Parallelism per-locale

Maintaining locality

Neighborhood expansion with
aggregation

Aggregator per-task

Multilocale Parallel BFS Version 2.0

Multilocale BFS Communication Volume Heatmap

07 June 2024

delaunayn20 get put

locale 1.0 1.5 2.0 1.0 1.5 2.0

0 15672640 7873842 639827 5629422 2749193 138070

1 15834332 7939017 687156 1952226 1016946 127936

2 15715554 7722659 226754 1942839 962031 45217

3 15817879 7723971 226880 1951313 962201 45060

4 15964559 7724880 226691 1961552 962199 51217

5 15739226 7726504 230024 1940688 962439 52714

6 15569450 7727678 229096 1925536 962680 51977

7 15341933 7736094 225083 1904757 963418 48413

1.0: 84 seconds (HPEC 21’)
2.0: 3.36 seconds

delaunayn20 is a graph with 3 million edges and a large diameter

Takeaway: Aggregating writes drastically reduces communication volumes, improving
performance, all done easily through Chapel by adapting aggregators for different uses.

Oliver Alvarado Rodriguez 17

2.0 BFS Scalability

07 June 2024 Oliver Alvarado Rodriguez 18

4L 8L 16L 32L 64L

18 2.11 3.43 5.87 8.10 9.66

19 2.14 3.69 6.35 10.28 13.04

20 2.20 3.84 6.41 10.60 15.90

21 1.93 3.09 6.84 9.86 15.56

Speed-Up Over 2 Locales

Takeaway: As the number of locales
increased, we see a good speed-up
for distributed-memory breadth-first
search.

Lessons Learned

• Using Chapel (or any PGAS-based languages and frameworks) don’t
magically get rid of the complications of parallelizing and distributing
graph operations.

• Adapting communication-aware optimizations, such as being aware
of how neighborhoods are split across locales, can help improve
graph-based performances.

07 June 2024 Oliver Alvarado Rodriguez 19

Conclusion

• Using a programming language like Chapel allows us to quickly
implement both shared-memory and distributed-memory algorithms
to enable highly productive large-scale graph analysis.

• Using an existing framework like Arkouda allows us to focus more on
graph algorithms while offloading tasks such as object persistence
and array sorting.

07 June 2024 Oliver Alvarado Rodriguez 20

Future Work

• Not everything needs to be distributed – large queries can be done in a
distributed manner and smaller graphs analyzed on one compute node; can we
hybridize our graph tools?

• Performance, performance, performance. Array-based operations are wonderful
in Chapel, but do we need to build harnesses in Arachne to call out to external
programs written in MPI, YGM, or other massively distributed tools?

• How can we dynamically optimize during runtime? For example, code regions
that perform a lot of reads or writes on GASNet+Infiniband suffer when multiple
parallel threads are writing since those values are transmitted sequentially.
Chapel currently doesn’t allow for forall loops to dynamically use a runtime-given
thread count.

• There isn’t one data structure to rule them all. Add capabilities in Arachne to
build at runtime the data structure that is best for a given problem.

07 June 2024 Oliver Alvarado Rodriguez 21

Thank You ☺
Questions?

07 June 2024 Oliver Alvarado Rodriguez 22

	Slide 1: On the Design of Graph Analytical Software in Chapel
	Slide 2: Introduction
	Slide 3: A Bird’s Eye-View of Arachne+Arkouda
	Slide 4: Modular View of Arachne Functionality
	Slide 5: Double-Index (DI) Data Structure
	Slide 6: (Property) Graph Data Structure
	Slide 7: (Property) Graph Data Structure
	Slide 8: Persisting Graphs via Arkouda Symbol Table
	Slide 9: Breadth-First Search (BFS)
	Slide 10: General Information
	Slide 11: Single Locale Parallel BFS (version 1.0)
	Slide 12: Multilocale Parallel BFS (version 1.5)
	Slide 13: Multilocale Parallel BFS with Aggregators (version 2.0)
	Slide 14: Multilocale Parallel BFS Version 1.0
	Slide 15: Multilocale Parallel BFS Version 1.5
	Slide 16: Multilocale Parallel BFS Version 2.0
	Slide 17: Multilocale BFS Communication Volume Heatmap
	Slide 18: 2.0 BFS Scalability
	Slide 19: Lessons Learned
	Slide 20: Conclusion
	Slide 21: Future Work
	Slide 22: Thank You  Questions?

