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A Distributed Tree-based Search in Chapel

DistributedIters:

distributed load balancing/work 

distribution

Metrics reduction

Termination criteria

Intra-node:

Chapel+CUDA

Branch-and-
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Redundant and Difficult to Maintain

Intra-node Parallelism

Replace interoperability 

code with Chapel's 

native GPU support



Objectives
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1. Objective:

1. to verify whether it is possible to 

achieve both code portability and 

performance portability in distributed 

exact optimization with Chapel's 

native GPU support.

▪ Is it worth in terms of programming 

effort?
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▪ The following applications for enumerating all valid complete solutions of the N-Queens 
problem are considered: (Backtracking)

▪ Single-node Multi-GPU baseline: HIP+OpenMP and CUDA+OpenMP

▪ Single-node Multi-GPU: Chapel-GPU

▪ Distributed Hybrid: Chapel+CUDA/Chapel+HIP

▪ Distributed Chapel-GPU: Chape's native GPU support
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Protocol

N-Queens – proof 

of concept

C. Optimization Problems – B&B



Performance Experiments

▪ N-Queens:

▪ Queens of sizes ranging from N=18 to N=22

▪ Computers:

▪ NVIDIA System:
▪ Perlmutter supercomputer (#12 of TOP500)

▪ 1 to 128 computer nodes

▪ 4 to 512 GPUs (A100 SXM4)

▪ AMD System:
▪ Frontier supercomputer (#1 of TOP500)

▪ 1 to 128 computer nodes

▪ 8 to 1024 GPUs (MI250As)

▪ (only two hours of execution)

10

Testbeds and Parameters



Performance Experiments

▪ N-Queens:

▪ Queens of sizes ranging from N=18 to N=22

▪ Computers:

▪ NVIDIA System:
▪ Perlmutter supercomputer (#12 of TOP500)

▪ 1 to 128 computer nodes

▪ 4 to 512 GPUs (A100 SXM4)

▪ AMD System:
▪ Frontier supercomputer (#1 of TOP500)

▪ 1 to 128 computer nodes

▪ 8 to 1024 GPUs (MI250As)

▪ (only two hours of execution)

11

Testbeds and Parameters



Performance Results

▪ N-Queens of sizes ranging from N=18 to N=22

▪ 4 to 128 computer nodes, Chapel's native GPU support vs. Hybrid

12

Distributed Application



Performance Results

▪ N-Queens of sizes ranging from N=18 to N=22

▪ 4 to 128 computer nodes, Chapel's native GPU support vs. Hybrid

13

Distributed Application

Chpl - 30% slower
Chpl - 7% 

slower



Performance Results

▪ N-Queens of sizes ranging from N=18 to N=22

▪ 4 to 128 computer nodes, Chapel's native GPU support vs. Hybrid

14

Distributed Application

From 3.7x 

slower to 

slightly faster



Performance Results

▪ N-Queens of sizes ranging from N=18 to N=22

▪ 4 to 128 computer nodes, Chapel's native GPU support vs. Hybrid

15

Distributed Application

From 3.7x 

slower to 

slightly faster



Performance Results
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Single-node Application
Similar behavior 

on single-node

The lower the load - the worse 

the Chapel performance
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Performance Results

▪ N-Queens of sizes ranging from N=18 to N=22

▪ 4-128 computer nodes, speedup compared to the Baseline
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Strong Scaling

Hybrid HIP – 61% strong scaling

Vs.

Chapel – 57% strong scaling

(***)



Programming Effort

▪ The HIP, CUDA and Chapel-GPU applications are equivalent in terms of SLOC
▪ Single-node – Multi-GPU

▪ One thread per GPU

▪ N-Queens kernel

▪ The benefit is to get rid of both HIP and CUDA applications
▪ Low/no performance loss for the biggest loads
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Single-node – Multi-GPU



Programming Effort

▪ Replacing one  interoperability code (CUDA or HIP) with Chapel's native 

GPU support results in an application 30% shorter.

▪ Getting rid of both interoperability codes (CUDA and HIP) results in a final code 

65% shorter.

▪ Almost no performance loss in distributed execution - biggest loads
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Distributed



Conclusion

▪ It is possible to use Chapel to program all levels of parallelism of a large-scale cluster.

▪ Both the Chapel-GPU implementation and its hybrid counterpart achieved similar strong 

scaling efficiency on 128 nodes.

▪ Using Chapel's Native GPU support instead of interoperability results in a distributed 

application 65% shorter.

▪ It is possible to achieve both code portability and performance portability in 

distributed exact optimization with Chapel's native GPU support. 

▪ ** Results are from a paper of the same title that will be presented in Europar 2024
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Thank you!

https://github.com/tcarneirop/ChOp

Chapel-based Optimization on Github

tcarneiropessoa@gmail.com
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Questions?

https://github.com/tcarneirop/ChOp
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