
1

Investigating Portability in Chapel for Tree-based

Optimization on GPU-powered Clusters

Tiago Carneiro¹, Engin Kayraklioglu², Guillaume Helbecque³ and Nouredine Melab4

IMEC Leuven – Belgium¹, Hewlett Packard Enterprise - USA², University of

Luxembourg³, University of Lille - France4

Chapel-Con 2024

June 5–7, 2024

Chapel-based Optimization (ChOp)

▪ Chapel-based Optimization (ChOp)

▪ The DistributedIters module, encapsulates a complex distributed master-worker

load balancing scheme.

2

A Distributed Tree-based Search in Chapel

Chapel-based Optimization (ChOp)

▪ Chapel-based Optimization (ChOp)

▪ The DistributedIters module, encapsulates a complex distributed master-worker

load balancing scheme.

3

A Distributed Tree-based Search in Chapel

DistributedIters:

distributed load balancing/work

distribution

Metrics reduction

Termination criteria

Branch-and-

Bound/Backtracking

To solve big COP

Chapel-based Optimization (ChOp)

▪ Chapel-based Optimization (ChOp)

▪ The DistributedIters module, encapsulates a complex distributed master-worker

load balancing scheme.

4

A Distributed Tree-based Search in Chapel

DistributedIters:

distributed load balancing/work

distribution

Metrics reduction

Termination criteria

Intra-node:

Chapel+CUDA

Branch-and-

Bound/Backtracking

To solve big COP

The Complexity of Using C-Interoperability

5

Redundant and Difficult to Maintain

Intra-node Parallelism

The Complexity of Using C-Interoperability

6

Redundant and Difficult to Maintain

Intra-node Parallelism

Replace interoperability

code with Chapel's

native GPU support

Objectives

7

1. Objective:

1. to verify whether it is possible to

achieve both code portability and

performance portability in distributed

exact optimization with Chapel's

native GPU support.

▪ Is it worth in terms of programming

effort?

Performance Experiments

8

Protocol

▪ The following applications for enumerating all valid complete solutions of the N-Queens
problem are considered: (Backtracking)

▪ Single-node Multi-GPU baseline: HIP+OpenMP and CUDA+OpenMP

▪ Single-node Multi-GPU: Chapel-GPU

▪ Distributed Hybrid: Chapel+CUDA/Chapel+HIP

▪ Distributed Chapel-GPU: Chape's native GPU support

▪ The following applications for enumerating all valid complete solutions of the N-Queens
problem are considered: (Backtracking)

▪ Single-node Multi-GPU baseline: HIP+OpenMP and CUDA+OpenMP

▪ Single-node Multi-GPU: Chapel-GPU

▪ Distributed Hybrid: Chapel+CUDA/Chapel+HIP

▪ Distributed Chapel-GPU: Chape's native GPU support

Performance Experiments

9

Protocol

N-Queens – proof

of concept

C. Optimization Problems – B&B

Performance Experiments

▪ N-Queens:

▪ Queens of sizes ranging from N=18 to N=22

▪ Computers:

▪ NVIDIA System:
▪ Perlmutter supercomputer (#12 of TOP500)

▪ 1 to 128 computer nodes

▪ 4 to 512 GPUs (A100 SXM4)

▪ AMD System:
▪ Frontier supercomputer (#1 of TOP500)

▪ 1 to 128 computer nodes

▪ 8 to 1024 GPUs (MI250As)

▪ (only two hours of execution)

10

Testbeds and Parameters

Performance Experiments

▪ N-Queens:

▪ Queens of sizes ranging from N=18 to N=22

▪ Computers:

▪ NVIDIA System:
▪ Perlmutter supercomputer (#12 of TOP500)

▪ 1 to 128 computer nodes

▪ 4 to 512 GPUs (A100 SXM4)

▪ AMD System:
▪ Frontier supercomputer (#1 of TOP500)

▪ 1 to 128 computer nodes

▪ 8 to 1024 GPUs (MI250As)

▪ (only two hours of execution)

11

Testbeds and Parameters

Performance Results

▪ N-Queens of sizes ranging from N=18 to N=22

▪ 4 to 128 computer nodes, Chapel's native GPU support vs. Hybrid

12

Distributed Application

Performance Results

▪ N-Queens of sizes ranging from N=18 to N=22

▪ 4 to 128 computer nodes, Chapel's native GPU support vs. Hybrid

13

Distributed Application

Chpl - 30% slower
Chpl - 7%

slower

Performance Results

▪ N-Queens of sizes ranging from N=18 to N=22

▪ 4 to 128 computer nodes, Chapel's native GPU support vs. Hybrid

14

Distributed Application

From 3.7x

slower to

slightly faster

Performance Results

▪ N-Queens of sizes ranging from N=18 to N=22

▪ 4 to 128 computer nodes, Chapel's native GPU support vs. Hybrid

15

Distributed Application

From 3.7x

slower to

slightly faster

Performance Results

▪ N-Queens of sizes ranging from N=18 to N=22

▪ 4 GPUS – NVIDIA, 8 GPUs – AMD, Chapel's native GPU support vs. Baseline

16

Single-node Application

Performance Results

▪ N-Queens of sizes ranging from N=18 to N=22

▪ 4 GPUS – NVIDIA, 8 GPUs - AMD

17

Single-node Application
Similar behavior

on single-node

The lower the load - the worse

the Chapel performance

Performance Results

▪ N-Queens of sizes ranging from N=18 to N=22

▪ 4-128 computer nodes, speedup compared to the Baseline

18

Strong Scaling

Performance Results

▪ N-Queens of sizes ranging from N=18 to N=22

▪ 4-128 computer nodes, speedup compared to the Baseline

19

Strong Scaling

Hybrid CUDA – 60% strong

scaling

Vs.

Chapel – 55% strong scaling

Performance Results

▪ N-Queens of sizes ranging from N=18 to N=22

▪ 4-128 computer nodes, speedup compared to the Baseline

20

Strong Scaling

Hybrid HIP – 61% strong scaling

Vs.

Chapel – 57% strong scaling

(***)

Programming Effort

▪ The HIP, CUDA and Chapel-GPU applications are equivalent in terms of SLOC
▪ Single-node – Multi-GPU

▪ One thread per GPU

▪ N-Queens kernel

▪ The benefit is to get rid of both HIP and CUDA applications
▪ Low/no performance loss for the biggest loads

21

Single-node – Multi-GPU

Programming Effort

▪ Replacing one interoperability code (CUDA or HIP) with Chapel's native

GPU support results in an application 30% shorter.

▪ Getting rid of both interoperability codes (CUDA and HIP) results in a final code

65% shorter.

▪ Almost no performance loss in distributed execution - biggest loads

22

Distributed

Conclusion

▪ It is possible to use Chapel to program all levels of parallelism of a large-scale cluster.

▪ Both the Chapel-GPU implementation and its hybrid counterpart achieved similar strong

scaling efficiency on 128 nodes.

▪ Using Chapel's Native GPU support instead of interoperability results in a distributed

application 65% shorter.

▪ It is possible to achieve both code portability and performance portability in

distributed exact optimization with Chapel's native GPU support.

▪ ** Results are from a paper of the same title that will be presented in Europar 2024

23

Acknowledgments

▪ This work was supported by the Ministry of Education,Youth and Sports of the Czech Republic through the e-

INFRA CZ (ID:90254) -- Project EU2022D08-197.

▪ It is also supported by the Agence Nationale de la Recherche (ref.ANR-22-CE46-0011) and the Luxembourg

National Research Fund (ref. INTER/ANR/22/ 17133848), under the UltraBO project.

▪ This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S.

Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory,

operated under Contract No. DE-AC02-05CH11231 using NERSC award ASCR-ERCAP-mp215. In addition,

this research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National

Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No.

DE-AC05-00OR22725.

24

Thank you!

https://github.com/tcarneirop/ChOp

Chapel-based Optimization on Github

tcarneiropessoa@gmail.com

25

Questions?

https://github.com/tcarneirop/ChOp

	Slide 1
	Slide 2: Chapel-based Optimization (ChOp)
	Slide 3: Chapel-based Optimization (ChOp)
	Slide 4: Chapel-based Optimization (ChOp)
	Slide 5: The Complexity of Using C-Interoperability
	Slide 6: The Complexity of Using C-Interoperability
	Slide 7: Objectives
	Slide 8: Performance Experiments
	Slide 9: Performance Experiments
	Slide 10: Performance Experiments
	Slide 11: Performance Experiments
	Slide 12: Performance Results
	Slide 13: Performance Results
	Slide 14: Performance Results
	Slide 15: Performance Results
	Slide 16: Performance Results
	Slide 17: Performance Results
	Slide 18: Performance Results
	Slide 19: Performance Results
	Slide 20: Performance Results
	Slide 21: Programming Effort
	Slide 22: Programming Effort
	Slide 23: Conclusion
	Slide 24: Acknowledgments
	Slide 25: Thank you!

