Hewlett Packard Enterprise

Coupling Chapel-Powered HPC Workflows for Python, part 2

John Byrne, Harumi Kuno, Chinmay Ghosh, Porno Shome, Amitha C, Sharad Singhal, Clarete Riana Crasta, David Emberson, Abhishek Dwaraki

June 7, 2023

How quickly can we simultaneously ingest and interactively process data ... using Chapel and Fabric-Attached Memory?

Challenge: maximize concurrency for interactive workloads

Sizing:

- Allocate too few nodes: could run out of resources (e.g., out of memory)
- Allocate too many nodes: could underutilize resources (e.g., low concurrency)
- Share nodes between servers: could run out of resources.

Increase Concurrency via Batch-oriented dataset manager + Work-Stealing

Arkouda extension for Fabric-Attached Memory (FAM)

FAM bandwidth and latency are currently superior to Flash but inferior to local DRAM

- The OpenFAM library for programming Fabric-Attached Memory lets programmers create and share in-memory data using fabric-attached memory (FAM) hosted on conventional nodes.
- OpenFAM uses RDMA for operations like put, get, scatter, gather, copy, backup, and restore, as well as standard atomic operations like fetch-andadd, compare-and-swap.
- Arkouda extension lets programmers move data between Arkouda pdarrays and OpenFAM.
 5

Performance Tuning

- 1. Dual NIC, dual socket servers: bound a locale to each socket + NIC.
- 2. Lock-free concurrency control while processing batches using work-stealing
- 3. Memory registration registered Chapel memory with OpenFAM's Libfabric endpoints so all memory within every Chapel locale was pre-registered for RDMA.
- 4. Update OpenFAM to use Mochi Thallium instead of GRPC for communication between OpenFAM servers and clients.
- 5. Extended FAM Dataset Storage Manager to support option for registering operations as ongoing, meaning results with available data will be returned immediately and as the source data evolves, the result dataset will be updated automatically by workers.

Ingest 8 TB (20 locales, 10 ingest nodes)

Hewlett Packard Enterprise Update OpenFAM to use Mochi Thallium instead of GRPC for communication between OpenFAM servers and clients.

Isolated Ingest Performance for 8 and 16 TB, varying batch size

Measured uni-directional bandwidth is about 24 GB/s per NIC: total 480 GB/s.

Hewlett Packard Enterprise

Isolated Workflow Performance 16 TB, varying number of workers

Measured uni-directional bandwidth is about 24 GB/s per NIC: total 480 GB/s.

Simultaneous Workflow and Ingest, 16 TB, 64 workers

Measured bi-directional bandwidth is about 17 GB/s per NIC: total 340 GB/s each way.

Hewlett Packard Enterprise

Trace-Driven Animation: ingest & process 16 TB

- Experiment Setup

- 64 asynchronous worker Arkouda servers/clients running on 32 nodes
- 20 ingest locales running on 10 nodes
- 20 memory servers running on 10 nodes
- Workflow creates 21 derived data items (derived datasets and derived columns)

BACKUP

Summary of Dataset Management Approach

- 1. Partition incoming data into ordered discrete batches.
- 2. Single batch of data can be efficiently processed by an Arkouda Server running on the compute nodes.
- 3. Provide a Dataset Storage Manager that organizes the discrete batches of data into logical datasets (like an Arkouda/pandas dataframe).
- 4. The Dataset Storage Manager supports the creation of derived dataset (indexes) and derived columns.
- 5. The Dataset Storage Manager supports the incremental maintenance of derived datasets and derived columns. Multiple instances of the FAM Dataset Storage Manager can attach to a store and leverage each other's results.
- 6. To increase concurrency, we extended the FAM Dataset Storage Manager, leveraging its support for incremental maintenance to implement work-stealing functionality.

When a data analyst explores a large dataset in an interactive session by deriving new datasets and columns, they can request that the Dataset Storage Manager present them with early results and delegate completion of the new datasets to a multitude of Arkouda Servers that will complete the work.

FAM Dataset Storage Manager for Arkouda

FAM Dataset Storage Manager

OpenFAM Servers

Within the Arkouda server processes, the FAM Dataset Storage Manager "pages" batches of data between famarrays and Arkouda parallel distributed arrays (pdarrays). Working data resides in the local memory of compute nodes.

Isolated workflow throughput, 16 TB

_		C !-	_
к	atcn	1 8174	2
	αιτι	1 JIZ	-

number of workers	10 GB	20 GB	40 GB
8	65.2975	99.5303	122.0058
16	117.1965	180.805	225.0644
32	199.3732	293.4397	346.6944
64	260.8268	381.7748	437.3626

Isolated workflow latency, 16 TB

Batch Size					
number of workers	10 GB	20 GB	40 GB		
8	245	160.8	131.138		
16	136.5	88.49	71.089		
32	80.25	54.53	46.149		
64	61.34	41.91	36.582		

. ..

Hewlett Packard Enterprise