
June 7, 2023

Coupling Chapel-Powered HPC Workflows
for Python, part 2
John Byrne, Harumi Kuno, Chinmay Ghosh, Porno Shome, Amitha C,
Sharad Singhal, Clarete Riana Crasta, David Emberson, Abhishek Dwaraki

HPE Proprietary 1

How quickly can we simultaneously ingest and interactively process data
… using Chapel and Fabric-Attached Memory?

2

NIC NIC NIC NIC

NIC NIC

NIC NICNIC NICNIC NIC

NIC NICNIC NICNIC NIC

Challenge: maximize concurrency for interactive workloads

3

Sizing:
• Allocate too few nodes: could run out of

resources (e.g., out of memory)

• Allocate too many nodes: could
underutilize resources (e.g., low
concurrency)

• Share nodes between servers: could
run out of resources.

Pick one

Increase Concurrency via Batch-oriented dataset manager + Work-Stealing

4

Arkouda extension for Fabric-Attached Memory (FAM)

5

 The OpenFAM library for
programming Fabric-Attached
Memory lets programmers
create and share in-memory
data using fabric-attached
memory (FAM) hosted on
conventional nodes.

 OpenFAM uses RDMA for
operations like put, get, scatter,
gather, copy, backup, and
restore, as well as standard
atomic operations like fetch-and-
add, compare-and-swap.

 Arkouda extension lets
programmers move data
between Arkouda pdarrays and
OpenFAM.

…

…

FAM bandwidth and latency are currently superior
to Flash but inferior to local DRAM

Performance Tuning

1. Dual NIC, dual socket servers: bound a locale to each socket + NIC.
2. Lock-free concurrency control while processing batches using work-stealing
3. Memory registration – registered Chapel memory with OpenFAM’s Libfabric endpoints so all memory within every

Chapel locale was pre-registered for RDMA.
4. Update OpenFAM to use Mochi Thallium instead of GRPC for communication between OpenFAM servers and

clients.
5. Extended FAM Dataset Storage Manager to support option for registering operations as ongoing, meaning results

with available data will be returned immediately and as the source data evolves, the result dataset will be updated
automatically by workers.

6

7

Ingest 8 TB (20 locales, 10 ingest nodes)

Update OpenFAM to use Mochi Thallium instead of GRPC
for communication between OpenFAM servers and clients.

Isolated Ingest Performance for 8 and 16 TB, varying batch size

8

Measured uni-directional bandwidth is about 24 GB/s per NIC: total 480 GB/s.

in
ge

st
 th

ro
ug

hp
ut

Isolated Workflow Performance 16 TB, varying number of workers

9

Measured uni-directional bandwidth is about 24 GB/s per NIC: total 480 GB/s.

pr
oc

es
si

ng
 th

ro
ug

hp
ut

Simultaneous Workflow and Ingest, 16 TB, 64 workers

10

Measured bi-directional bandwidth is about 17 GB/s per NIC: total 340 GB/s each way.

th
ro

ug
hp

ut

Trace-Driven Animation: ingest & process 16 TB

– Experiment Setup
– 64 asynchronous worker Arkouda servers/clients running on 32 nodes
– 20 ingest locales running on 10 nodes
– 20 memory servers running on 10 nodes
– Workflow creates 21 derived data items (derived datasets and derived columns)

11

Experiment: Ten times a second, record
number of batches for ingested data &
derived data items

• At the start:

• A single batch of data has
been ingested; all ingest and
Arkouda workers are waiting
on a barrier.

• The Interactive User has
processed one batch and
registered the workflow for
asynchronous processing.

• Tracing starts when everyone
reaches the barrier.

• The ingest processes all begin to
publish batches of data to FAM.

• The Arkouda Workers all start
looking for and processing data.

• Stop when 1600 processed
batches have been published for
all 21 derived data items.

BACKUP

13

Summary of Dataset Management Approach

1. Partition incoming data into ordered discrete batches.
2. Single batch of data can be efficiently processed by an Arkouda Server running on the compute nodes.
3. Provide a Dataset Storage Manager that organizes the discrete batches of data into logical datasets (like an

Arkouda/pandas dataframe).
4. The Dataset Storage Manager supports the creation of derived dataset (indexes) and derived columns.
5. The Dataset Storage Manager supports the incremental maintenance of derived datasets and derived columns.

Multiple instances of the FAM Dataset Storage Manager can attach to a store and leverage each other’s results.
6. To increase concurrency, we extended the FAM Dataset Storage Manager, leveraging its support for incremental

maintenance to implement work-stealing functionality.

When a data analyst explores a large dataset in an interactive session by deriving new datasets and columns, they can
request that the Dataset Storage Manager present them with early results and delegate completion of the new datasets to
a multitude of Arkouda Servers that will complete the work.

14

FAM Dataset Storage Manager for Arkouda

15

FAMArray
Storage
Manager

FAM Dataset Storage Manager

16

Isolated workflow throughput, 16 TB

17

pr
oc

es
si

ng
 th

ro
ug

hp
ut

Isolated workflow latency, 16 TB

18

	Slide Number 1
	How quickly can we simultaneously ingest and interactively process data … using Chapel and Fabric-Attached Memory?
	Challenge: maximize concurrency for interactive workloads
	Increase Concurrency via Batch-oriented dataset manager + Work-Stealing
	Arkouda extension for Fabric-Attached Memory (FAM)
	Performance Tuning
	Slide Number 7
	Isolated Ingest Performance for 8 and 16 TB, varying batch size�
	Isolated Workflow Performance 16 TB, varying number of workers
	Simultaneous Workflow and Ingest, 16 TB, 64 workers�
	Trace-Driven Animation: ingest & process 16 TB
	Slide Number 12
	BACKUP
	Summary of Dataset Management Approach
	FAM Dataset Storage Manager for Arkouda
	FAM Dataset Storage Manager
	Isolated workflow throughput, 16 TB
	Isolated workflow latency, 16 TB

