Unbalanced tree-search at scale using the Chapel’s DistributedBag module

G. Helbecque, T. Carneiro, J. Gmys, N. Melab, P. Bouvry

1University of Luxembourg, DCS-FSTM/SnT, Luxembourg
2Université de Lille, CNRS/CRIStAL UMR 9189, Centre Inria de l’Université de Lille, France
3Interuniversity Microelectronics Centre, Belgium

7 June, 2024
Virtual event
Need for a specialized data structure

Combinatorial optimization

e.g. the Branch-and-Bound (B&B) method:

- **Exact method**
 - Large trees
 - **Memory efficiency**

- **Node elimination (pruning)**
 - Irregular trees
 - **Load balancing**

The Chapel’s DistributedBag package module

The `distBag` data structure:

- Extensively reworked in Chapel 2.0
- Parallel-safe distributed multi-pool specialized for Depth-First Search (DFS)
- Dynamic load balancing mechanism, based on work stealing
CODE DEMO:

distBag-based distributed multi-core B&B applied to the Permutation Flowshop Scheduling Problem (PFSP)

[Click here to access the video]
distBag-based scalable B&B: Experimental results

(higher is better)

Fig. 1: Strong scaling efficiency.

- TOP500-ranked MeluXina supercomputer:
 2 × 64-cores AMD EPYC Rome 7H12 @ 2.6 GHz CPUs and 512 GB of RAM per node. Interconnection using the InfiniBand HDR high-speed fabric.

- 50% of strong scaling efficiency using 400 compute nodes (51,200 CPU cores)
Conclusions & Future perspectives

- **distBag** is a powerful tool to implement tree-based algorithms at scale
- We demonstrated its efficiency at scale on the B&B method applied to PFSP

Future perspectives:
- Look for ways that programmers might not need to pass the task ID
- Collect users feedbacks and improve/add features
- Performance optimization and tuning

Thank you for your attention.

Contact:
Guillaume HELBECQUE
guillaume.helbecque@uni.lu

Related work are supported by the Agence Nationale de la Recherche (ref. ANR-22-CE46-0011) and the Luxembourg National Research Fund (ref. INTER/ANR/22/17133848), under the UltraBO project.