Arrays as arguments in first-class functions: the Levenberg-Marquardt
algorithm in Chapel

Nelson Luis Dias', Débora Roberti?, and Vanessa Arruda?

Department of Environmental Engineering, Federal University of Parana, Brazil
P g g y
M nelsonluisdias@gmail . com %: www.nldias.github.io
’Department of Physics, Federal University of Santa Maria, Rio Grande do Sul, Brazil

ChapelCon 24, June 7 2024

nelsonluisdias@gmail.com
www.nldias.github.io

Contents 2/26

Contents|

7

ChapelCon 24 g/;pa

Contents O 3/26
Motivation 4
First-class procedures 8
The real ada.chpl ... 13
A Chapel implementation of Levenberg-Marquardt 15
Applications with meteorological data 19
Conclusions 22
=
ChapelCon 24 G

(

Motivation () 4/26

Motivation]|

7

ChapelCon 24 @p.a

Motivation () 5/26

Curve fitting and beyond

The need:

In Science and Engineering, it is often needed to fit a particular mathematical expression to observed data.
This is usually done via least-squares and optimization to find the best parameters for the expression.

The Levenberg-Marquardt (LM) Method (Levenberg, 1944; Marquardt, 1963; Fletcher, 1971) is the undisputed choice.

Some LM tools:

Gnuplot: works well with relatively simple expressions; see www.gnuplot.info.

Numerical Recipes (Press et al., 1992): works, but not very much up-to-date; see https://www.stat.uchicago.edu/
~lekheng/courses/302/wnnr/nr .html.

Gnu Scientific Library: up-to-date, thorough, in C, and with a steep learning curve.
CMinpack at http://devernay.github.io/cminpack also in C.

Python + SciPy: easy (it’s Python!); see for example
https://hernandis.me/2020/04/05/three-examples-of-nonlinear-least-squares-fitting-in-python-with-
scipy.html.

ChapelCon 24 @WEL

www.gnuplot.info
https://www.stat.uchicago.edu/~lekheng/courses/302/wnnr/nr.html
https://www.stat.uchicago.edu/~lekheng/courses/302/wnnr/nr.html
http://devernay.github.io/cminpack
https://hernandis.me/2020/04/05/three-examples-of-nonlinear-least-squares-fitting-in-python-with-scipy.html
https://hernandis.me/2020/04/05/three-examples-of-nonlinear-least-squares-fitting-in-python-with-scipy.html

Motivation () 6/26

In all cases except Gnuplot, the LM function calls a function with array arguments

Numerical Recipes:

void mrqmin(float x[], float y[], float sigl], int ndata,

float all], int ial], int ma, float **covar, float **alpha, float
*chisq,

void (xfuncs)(float, float [], float *, float [], int), float *alamda)

CMinpack:

void 1mdifl (void (*xfcn)(int *m, int *n, double *x, double *fvec, int *xiflag),
int *m, int * n, double *x, double *fvec,
double *tol, int *info, int *iwa, double *wa, int *lwa)

ChapelCon 24 @EL

Motivation () 7/26

...But no (known to myself) native Chapel implementation

Limitations:
« LM is not very simple to understand/implement.
 All implementations have a procedural argument that in turn has an array as an argument.

« But Chapel can only have procedures as arguments if they are first-class functions (or first-class procedures).

= A LM procedure with a relatively simple interface in Chapel would be desirable, and would streamline a Chapel-
based workflow.

A Reviewer’s caveat:

That said, | would suggest that the authors mention that there is another type of interface which implements a
finite state machine for LM which better suits experienced users of the case where the evaluation of the function is
highly complex.

However, | was unable to find finite state machines & LM references.

Q@\
1]
m
r

ChapelCon 24

First-class procedures

O 8/26

First-class procedures|

ChapelCon '24

First-class procedures

O 9/26

Definition

From https://chapel-lang.org/docs/technotes/firstClassProcedures.html

First-class procedures can be captured as values:

proc myfunc(x:int) { return x + 1; }
const p = myfunc;
writeln(p(3)); // outputs: 4

A first-class procedure cannot:

- Refer to any outer variable that is not at module scope
Have a type or param return type

Accept type or param formals

Be a method

Be overloaded
- Be generic
 Be parenless

ChapelCon '24

https://chapel-lang.org/docs/technotes/firstClassProcedures.html

First-class procedures

O 10/26

° ° (< ° °
Problem: a function with an “open” array argument is generic

proc g(a: [] real): real { // calculates the sum of a
var s = 0.0;
for e in a do {
s += e ;
}

return s;

}

proc f(ref a: [] real, const ref g: proc(x:

if g(a) > 0.0 then {
writeln("sum_,is_ positive");
+
else if g(a) == 0.0 then {
writeln("sum_ is zero");
+
else {
writeln("sum_,is_ negative");
+
+
var a = [1.0,2.0,-3.0];
fla,g);

[] real)) {

// tells sign of sum

fof-fail.chpl:20: error: the proc 'g' is generic and cannot be captured

ChapelCon '24

g

¢ N
K‘ CHAPEL

= 4

First-class procedures O 11/26

Solution: attached domain arrays

« A feature that exists in Chapel. Please see The this Accessor, in
https://chapel-lang.org/docs/primers/Methods.html.

« Inspired by
https://stackoverflow.com/questions/48086588/how-to-create-a-ragged-array-in-chapel,
which discusses how to create ragged arrays in Chapel.

Here is a very simple implementation:

record vec {
var dom: domain (1) ;
var arr: [dom] real;
proc ref this(k:int) ref {
return arr[k];

}

« A variable of type vec contains a domain and a 1-D array over this domain.

« A procedure with an argument of type vec no longer is generic — why?

ChapelCon 24 @WEL

https://chapel-lang.org/docs/primers/Methods.html
https://stackoverflow.com/questions/48086588/how-to-create-a-ragged-array-in-chapel

First-class procedures O 12/26

The modified program using type vec

proc g(ref a: vec): real { // calculates the sum of a
var s = 0.0;
for i in a.dom do {
s += ali];

+
return s;
+
proc f(ref a: vec, const ref g: proc(ref x: vec)) { // tells sign of sum
if g(a) > 0.0 then {
writeln("sum_,is_ positive");
+
else if g(a) == 0.0 then {
writeln("sum_ is zero");
+
else {
writeln("sum_,is_ negative");
+
+
var a = new vec({1..3},[1.0,2.0,-3.0]1);
fla,g);

=

N
UR ChapelCon 24 (CC:HApsl-

The real ada.chpl ...

O 13/26

The real ada. chpl |

ChapelCon '24

The real ada.chpl ... O 14/26

...is available at https://nldias.github.io/software.html

| have implemented a slightly more capable ada (for attached domain arrays) module. Main highlights:

« Two record types: vec for 1D attached arrays, and mat for 2D attached arrays.
A size method.

A limited reindex method.

Overloaded arithmetic operators between real and vec, and real and mat.

Overloaded arithmetic operators between vec and vec, and mat and mat.

No slicing of vecs and mats.

No overloaded operators between arrays and vecs or mats (frankly, things got complicated and | couldn’t do it, although
it seems possible).

(Probably inefficient) tovec and tomat procedures to convert (by fully copying) arrays to vecs and mats.

[There is probably room for improving ada. chpl! At this point, | valued simplicity over efficiency.]

2=

ChapelCon 24 @p.a

https://nldias.github.io/software.html

A Chapel implementation of Levenberg-Marquardt O 15/26
A Chapel implementation of Levenberg-Marquardt'
ChapelCon '24 @“’E“

A Chapel implementation of Levenberg-Marquardt O 16/26

General remarks

The procedure, levmar, is in module nstat.chpl, also at https://nldias.github.io/software.html

« Based (with several adaptations) on the excellent presentation of the LM method by Gavin (2022) and its MatLab imple-
mentation.

« Uses a module smatrix.chpl to calculate products between matrices and vectors, solve systems of linear equations, etc..
smatrix.chpl’s routines are very straightforward and are not optimized: far and away from blas!

ChapelCon 24 K(i::;ps;

https://nldias.github.io/software.html

A Chapel implementation of Levenberg-Marquardt O 17/26

levmar’s interface

e e
// --> levmar: nonlinear least squares by curve fitting with the
// Levenberg-Marquard method. Here x is a mat.
e
proc levmar (
ref x: mat, // independent variables (used as arg to func) (m x ell)
ref y: vec, // data to be fit by func (m x 1)
ref w: [] real, // array, *not matrix*, of weights (m x 1)
ref p: vec, // initial guess of parameter values (n x 1)
// returns the estimated parameters
ref sigp: [] real, // standard errors of the parameters (n x 1)
ref cp: [] real, // parameter covariance matrix (n x n)
const ref func: proc(ref ax: mat, // the independent variables
ref ap: vec, // the parameters
ref yhat: vec), // in the sim model call func(ax,ap,yhat)
const in epsilon p = 1.0e-6 // stop criterion
) : (real,real,real) // (red chi sq, st err of estimate, coeff det)
where (w.rank == 1 && sigp.rank == 1 && cp.rank == 2) {

ChapelCon 24 @EL

A Chapel implementation of Levenberg-Marquardt

O 18/26

Simple arithmetic with vecs

proc simplejacob () {
const delp: [1..n] real

var forwp = new vec ({1..
var backp = new vec ({1..
var yplus = new vec ({1..
var yminus = new vec ({1.
for k in 1..n do {

forwp = p;

backp = p;

forwp [k] += delpl[k];

backp [k] -= delpl[k];

func (x,forwp,yplus);
func (x,backp,yminus);

= 1.0e-6;

nt);
nt);
m}) ;
.m});

J[1..m,k] = (yplus.arr[1l..m]

- yminus.arr[1..m])/(2*xdelpl[k]);

ChapelCon '24

Applications with meteorological data O 19/26
Applications with meteorological data|
ChapelCon '24 @“’E“

Applications with meteorological data

O 20/26

A model for atmospheric radiation

Daily data: R (measured solar radiation), Rse, (calculated
solar radiation at the top of the atmosphere), e, (measured
water vapor pressure), T, (measured air temperature)

S = (1/bP)(R5/Rsea_aP);
C=1-3S;
. bg 4,
Rac — aB(ea/Ta) JTa >

Ra — (1 +CBCdB) Rac.

o = 5.670374419 x 10°®Wm=2K=* (Stefan-Boltzmann con-
stant)

6 parameters to estimate: (ap, bp, ag, bp,cp,dp)

Data measured over a rice paddy in Rio Grande Sul state,
Brazil.

x is a matrix of 725 days x 4 values of (Rs, Rsea, €2, T2)

y is a vector of 725 values of measured R,

R, Est (Wm™2)

500

450

400

350

300

250

200

150

100

50

0

0

50

100

150

200 250 300
R, Obs (W m™)

350

400

450

500

ChapelCon '24

N
! CHAPEL
=

Applications with meteorological data O 21/26

A polynomial fit for the seasonal variation of the albedo

Daily data: measured albedoes (reflected/incoming solar ra- 0.50 I
diation) observed —— fitted —— | |
Adjust a 4th-degree polynomial to measured albedo, L I— —— A
5 2 3 4 o 030
Y = Po+Pp1X+PpaX"+ Pp3xXT+pax, 3
< 020

where x is the day of the year, between 1 and 365.
x is a matrix of 365 days x 1value of albedo (actually a vector). ol0L ,, ,,,
y is a vector of 365 values of measured albedo. %

wp . .

Jan-01 Apr-01 Jul-01 Oct-01 Jan-01
date

ChapelCon '24 (e

Conclusions () 22/26

Conclusions|

7

ChapelCon 24 @p.a

O 23/26

Conclusions

. vecs and mats are not generic types, and overcome the limitations imposed on ‘[] real’ for 18t-class procedures.

« They are created as (for example)

var alb = new vec({1..10});

and can be accessed element-by-element as arrays (alb[i] = ...), etc..

o Inthis talk they were indispensable to implement a practical procedure to do non-linear least squares with the Levenberg-
Marquardt method.

 There is probably room for improvement both in ada. chpl (which implements vec and mat) and 1levmar; for now | chose
simplicity of implementation over efficiency.

D

ChapelCon '24 K@WEL

O 24/26

Thanks for the attention.

2=

ChapelCon 24 @!:;psh

O 25/26

References]

=
ChapelCon '24 @MEL

O 26/26

Fletcher, R. (1971). A modified Marquardt subroutine for non-linear least squares. Technical report, Theoretical Physics Division,
Atomic Energy Research Establishment Harwell, UK.

Gavin, H. P. (2022). The Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems. Available at https:
//people.duke.edu/~hpgavin/ExperimentalSystems/1lm.pdf.

Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly of applied mathematics,
2(2), 164-168.

Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial
and Applied Mathematics, 11(2), pp. 431-441. http://www. jstor.org/stable/2098941

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical Recipes in C; The Art of Scientific Computing
(21d ed.). Cambridge University Press.

ChapelCon 24 @WEL

https://people.duke.edu/~hpgavin/ExperimentalSystems/lm.pdf
https://people.duke.edu/~hpgavin/ExperimentalSystems/lm.pdf
http://www.jstor.org/stable/2098941

	Motivation
	First-class procedures
	The real ada.chpl …
	A Chapel implementation of Levenberg-Marquardt
	Applications with meteorological data
	Conclusions

