
Arrays as arguments in first-class functions: the Levenberg-Marquardt
algorithm in Chapel

Nelson Luís Dias1, Débora Roberti2, and Vanessa Arruda2

1Department of Environmental Engineering, Federal University of Paraná, Brazil
Q: nelsonluisdias@gmail.com ®: www.nldias.github.io

2Department of Physics, Federal University of Santa Maria, Rio Grande do Sul, Brazil

ChapelCon '24, June 7 2024

1

nelsonluisdias@gmail.com
www.nldias.github.io

Contents 2/26

Contents

ChapelCon '24

Contents ⟳⟳⟳ 3/26

Motivation 4

First-class procedures 8

The real ada.chpl . . . 13

A Chapel implementation of Levenberg-Marquardt 15

Applications with meteorological data 19

Conclusions 22

ChapelCon '24

Motivation ⟳⟳⟳ 4/26

Motivation

ChapelCon '24

Motivation ⟳⟳⟳ 5/26

Curve fitting and beyond
The need:

• In Science and Engineering, it is often needed to fit a particular mathematical expression to observed data.

• This is usually done via least-squares and optimization to find the best parameters for the expression.

• The Levenberg-Marquardt (LM) Method (Levenberg, 1944; Marquardt, 1963; Fletcher, 1971) is the undisputed choice.

Some LM tools:

• Gnuplot: works well with relatively simple expressions; see www.gnuplot.info.

• Numerical Recipes (Press et al., 1992): works, but not very much up-to-date; see https://www.stat.uchicago.edu/
~lekheng/courses/302/wnnr/nr.html.

• Gnu Scientific Library: up-to-date, thorough, in C, and with a steep learning curve.

• CMinpack at http://devernay.github.io/cminpack also in C.

• Python + SciPy: easy (it’s Python!); see for example
https://hernandis.me/2020/04/05/three-examples-of-nonlinear-least-squares-fitting-in-python-with-
scipy.html.

ChapelCon '24

www.gnuplot.info
https://www.stat.uchicago.edu/~lekheng/courses/302/wnnr/nr.html
https://www.stat.uchicago.edu/~lekheng/courses/302/wnnr/nr.html
http://devernay.github.io/cminpack
https://hernandis.me/2020/04/05/three-examples-of-nonlinear-least-squares-fitting-in-python-with-scipy.html
https://hernandis.me/2020/04/05/three-examples-of-nonlinear-least-squares-fitting-in-python-with-scipy.html

Motivation ⟳⟳⟳ 6/26

In all cases except Gnuplot, the LM function calls a function with array arguments

Numerical Recipes:

void mrqmin(float x[], float y[], float sig[], int ndata ,
float a[], int ia[], int ma , float **covar , float **alpha , float
*chisq ,
void (*funcs)(float , float [], float *, float [], int), float *alamda)

CMinpack:

void lmdif1_ (void (*fcn)(int *m, int *n, double *x, double *fvec , int *iflag),
int *m, int * n, double *x, double *fvec ,
double *tol , int *info , int *iwa , double *wa , int *lwa)

ChapelCon '24

Motivation ⟳⟳⟳ 7/26

. . .But no (known to myself) native Chapel implementation

Limitations:

• LM is not very simple to understand/implement.

• All implementations have a procedural argument that in turn has an array as an argument.

• But Chapel can only have procedures as arguments if they are first-class functions (or first-class procedures).

⇒ A LM procedure with a relatively simple interface in Chapel would be desirable, and would streamline a Chapel-
based workflow.

A Reviewer’s caveat:

That said, I would suggest that the authors mention that there is another type of interface which implements a
finite state machine for LM which better suits experienced users of the case where the evaluation of the function is
highly complex.

However, I was unable to find finite state machines & LM references.

ChapelCon '24

First-class procedures ⟳⟳⟳ 8/26

First-class procedures

ChapelCon '24

First-class procedures ⟳⟳⟳ 9/26

Definition
From https://chapel-lang.org/docs/technotes/firstClassProcedures.html

First-class procedures can be captured as values:

proc myfunc(x:int) { return x + 1; }
const p = myfunc;
writeln(p(3)); // outputs: 4

A first-class procedure cannot:

• Refer to any outer variable that is not at module scope
• Have a type or param return type
• Accept type or param formals
• Be a method
• Be overloaded
• Be generic
• Be parenless

ChapelCon '24

https://chapel-lang.org/docs/technotes/firstClassProcedures.html

First-class procedures ⟳⟳⟳ 10/26

Problem: a function with an “open” array argument is generic

proc g(a: [] real): real { // calculates the sum of a
var s = 0.0;
for e in a do {

s += e ;
}
return s;

}
proc f(ref a: [] real , const ref g: proc(x: [] real)) { // tells sign of sum

if g(a) > 0.0 then {
writeln("sum␣is␣positive");

}
else if g(a) == 0.0 then {

writeln("sum␣is␣zero");
}
else {

writeln("sum␣is␣negative");
}

}
var a = [1.0 ,2.0 , -3.0];
f(a,g);

fof-fail.chpl:20: error: the proc 'g' is generic and cannot be captured

ChapelCon '24

First-class procedures ⟳⟳⟳ 11/26

Solution: attached domain arrays

• A feature that exists in Chapel. Please see The this Accessor, in
https://chapel-lang.org/docs/primers/Methods.html.

• Inspired by
https://stackoverflow.com/questions/48086588/how-to-create-a-ragged-array-in-chapel,
which discusses how to create ragged arrays in Chapel.

Here is a very simple implementation:
record vec {

var dom: domain (1);
var arr: [dom] real;
proc ref this(k:int) ref {

return arr[k];
}

}

• A variable of type vec contains a domain and a 1-D array over this domain.

• A procedure with an argument of type vec no longer is generic — why?

ChapelCon '24

https://chapel-lang.org/docs/primers/Methods.html
https://stackoverflow.com/questions/48086588/how-to-create-a-ragged-array-in-chapel

First-class procedures ⟳⟳⟳ 12/26

The modified program using type vec

proc g(ref a: vec): real { // calculates the sum of a
var s = 0.0;
for i in a.dom do {

s += a[i];
}
return s;

}
proc f(ref a: vec , const ref g: proc(ref x: vec)) { // tells sign of sum

if g(a) > 0.0 then {
writeln("sum␣is␣positive");

}
else if g(a) == 0.0 then {

writeln("sum␣is␣zero");
}
else {

writeln("sum␣is␣negative");
}

}
var a = new vec ({1..3} ,[1.0 ,2.0 , -3.0]);
f(a,g);

ChapelCon '24

The real ada.chpl . . . ⟳⟳⟳ 13/26

The real ada.chpl . . .

ChapelCon '24

The real ada.chpl . . . ⟳⟳⟳ 14/26

. . . is available at https://nldias.github.io/software.html

I have implemented a slightly more capable ada (for attached domain arrays) module. Main highlights:

• Two record types: vec for 1D attached arrays, and mat for 2D attached arrays.
• A size method.
• A limited reindex method.
• Overloaded arithmetic operators between real and vec, and real and mat.
• Overloaded arithmetic operators between vec and vec, and mat and mat.
• No slicing of vecs and mats.
• No overloaded operators between arrays and vecs or mats (frankly, things got complicated and I couldn’t do it, although
it seems possible).

• (Probably inefficient) tovec and tomat procedures to convert (by fully copying) arrays to vecs and mats.

There is probably room for improving ada.chpl! At this point, I valued simplicity over efficiency.

ChapelCon '24

https://nldias.github.io/software.html

A Chapel implementation of Levenberg-Marquardt ⟳⟳⟳ 15/26

A Chapel implementation of Levenberg-Marquardt

ChapelCon '24

A Chapel implementation of Levenberg-Marquardt ⟳⟳⟳ 16/26

General remarks
The procedure, levmar, is in module nstat.chpl, also at https://nldias.github.io/software.html

• Based (with several adaptations) on the excellent presentation of the LM method by Gavin (2022) and its MatLab imple-
mentation.

• Uses a module smatrix.chpl to calculate products between matrices and vectors, solve systems of linear equations, etc..
smatrix.chpl’s routines are very straightforward and are not optimized: far and away from blas!

ChapelCon '24

https://nldias.github.io/software.html

A Chapel implementation of Levenberg-Marquardt ⟳⟳⟳ 17/26

levmar’s interface
// --
// --> levmar: nonlinear least squares by curve fitting with the
// Levenberg -Marquard method. Here x is a mat.
// --
proc levmar(

ref x: mat , // independent variables (used as arg to func) (m x ell)
ref y: vec , // data to be fit by func (m x 1)
ref w: [] real , // array , *not matrix*, of weights (m x 1)
ref p: vec , // initial guess of parameter values (n x 1)

// returns the estimated parameters
ref sigp: [] real , // standard errors of the parameters (n x 1)
ref cp: [] real , // parameter covariance matrix (n x n)
const ref func: proc(ref ax: mat , // the independent variables

ref ap: vec , // the parameters
ref yhat: vec), // in the sim model call func(ax,ap,yhat)

const in epsilon_p = 1.0e-6 // stop criterion
) : (real ,real ,real) // (red chi sq, st err of estimate , coeff det)
where (w.rank == 1 && sigp.rank == 1 && cp.rank == 2) {

ChapelCon '24

A Chapel implementation of Levenberg-Marquardt ⟳⟳⟳ 18/26

Simple arithmetic with vecs

proc simplejacob () {
const delp: [1..n] real = 1.0e-6;
var forwp = new vec ({1..n});
var backp = new vec ({1..n});
var yplus = new vec ({1..m});
var yminus = new vec ({1..m});
for k in 1..n do {

forwp = p;
backp = p;
forwp[k] += delp[k];
backp[k] -= delp[k];
func(x,forwp ,yplus);
func(x,backp ,yminus);
J[1..m,k] = (yplus.arr [1..m] - yminus.arr [1..m])/(2* delp[k]);

}
}

ChapelCon '24

Applications with meteorological data ⟳⟳⟳ 19/26

Applications with meteorological data

ChapelCon '24

Applications with meteorological data ⟳⟳⟳ 20/26

A model for atmospheric radiation

Daily data: Rs (measured solar radiation), Rsea (calculated
solar radiation at the top of the atmosphere), ea (measured
water vapor pressure), Ta (measured air temperature)

S = (1/bP) (Rs/Rsea − aP);
C = 1− S ;

Rac = aB (ea/Ta)bBσT 4
a ;

Ra =
(
1+ cBC dB

)
Rac .

σ = 5.670374419 × 10−8Wm−2K−4 (Stefan-Boltzmann con-
stant)
6 parameters to estimate: (aP ,bP , aB ,bB ,cB ,dB)
Data measured over a rice paddy in Rio Grande Sul state,
Brazil.
x is a matrix of 725 days × 4 values of (Rs ,Rsea,ea,Ta)
y is a vector of 725 values of measured Ra

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300 350 400 450 500

𝑅
𝑎

Es
t(

W
m

−2
)

𝑅𝑎 Obs (W m−2)

ChapelCon '24

Applications with meteorological data ⟳⟳⟳ 21/26

A polynomial fit for the seasonal variation of the albedo

Daily data: measured albedoes (reflected/incoming solar ra-
diation)
Adjust a 4th-degree polynomial to measured albedo,

ŷ = p0 + p1x + p2x2 + p3x3 + p4x4,

where x is the day of the year, between 1 and 365.
x is amatrix of 365 days × 1 value of albedo (actually a vector).
y is a vector of 365 values of measured albedo.

0.00

0.10

0.20

0.30

0.40

0.50

Jan-01 Apr-01 Jul-01 Oct-01 Jan-01

A
lb

ed
o

date

observed fitted

ChapelCon '24

Conclusions ⟳⟳⟳ 22/26

Conclusions

ChapelCon '24

⟳⟳⟳ 23/26

Conclusions

• vecs and mats are not generic types, and overcome the limitations imposed on ‘[] real’ for 1st-class procedures.

• They are created as (for example)

var alb = new vec ({1..10});

and can be accessed element-by-element as arrays (alb[i] = ...), etc..

• In this talk they were indispensable to implement a practical procedure to do non-linear least squares with the Levenberg-
Marquardt method.

• There is probably room for improvement both in ada.chpl (which implements vec and mat) and levmar; for now I chose
simplicity of implementation over efficiency.

ChapelCon '24

⟳⟳⟳ 24/26

Thanks for the attention.

ChapelCon '24

⟳⟳⟳ 25/26

References

ChapelCon '24

⟳⟳⟳ 26/26

Fletcher, R. (1971). AmodifiedMarquardt subroutine for non-linear least squares. Technical report, Theoretical Physics Division,
Atomic Energy Research Establishment Harwell, UK.

Gavin, H. P. (2022). The Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems. Available at https:
//people.duke.edu/~hpgavin/ExperimentalSystems/lm.pdf.

Levenberg, K. (1944). Amethod for the solution of certain non-linear problems in least squares.Quarterly of applied mathematics,
2(2), 164–168.

Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial
and Applied Mathematics, 11(2), pp. 431–441. http://www.jstor.org/stable/2098941

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical Recipes in C; The Art of Scientific Computing
(2nd ed.). Cambridge University Press.

ChapelCon '24

https://people.duke.edu/~hpgavin/ExperimentalSystems/lm.pdf
https://people.duke.edu/~hpgavin/ExperimentalSystems/lm.pdf
http://www.jstor.org/stable/2098941

	Motivation
	First-class procedures
	The real ada.chpl …
	A Chapel implementation of Levenberg-Marquardt
	Applications with meteorological data
	Conclusions

