
June 5, 2024
ChapelCon 2024

CHAPEL TUTORIAL

2

WELCOME & INTRODUCING THE SPEAKERS

Jade Abraham Michael Ferguson Daniel Fedorin

Why use Chapel for Parallel Computing?

Introducing the Heat Diffusion Problem
• Learn about variables, ranges, arrays, and for loops

Faster Heat Diffusion with Parallel Computing
• Learn about forall loops, race conditions, locales, on statement, implicit communication

Heat Diffusion on Multiple Locales
• Learn about GPUs, domains, distributions, blockDist, cyclicDist, counting implicit communication, stencilDist

Summary

3

TODAY’S OUTLINE

Chapel is a language for efficient and accessible parallel computing

• Parallel computing allows programs to run much, much faster
• Trouble is, most languages are designed for sequential computing

4

PARALLEL COMPUTING WITHIN REACH

Sequential
Grow a single
seed before
planting
anything else

Parallel
Grow plants
simultaneously

Sequential and Parallel

The Chapel language is designed for easier expression of parallel programs

Write understandable parallel programs across the spectrum of hardware:
• Laptops, workstations, GPUs, compute clusters, supercomputers

Result: Chapel is easier to learn than competing technologies
• In one group, new students could contribute 8 times faster to a simulation [1]
• In two studies, it is more productive than Python for parallel applications [2,3]

5

USER-FRIENDLY PARALLEL COMPUTING

https://youtu.be/wD-a_KyB8aI?t=1904
https://inria.hal.science/hal-02879767
https://arxiv.org/abs/2307.01117

Chapel enables performance from laptops to supercomputers

Benchmarks in Chapel meet or beat performance in other languages [3,4,5,6]

Applications written in Chapel have attained new levels of performance
• on supercomputers [7]
• on desktops and workstations [6,8]

Chapel is helping users with real-world simulation and analysis tasks [9,10,11]

6

ACHIEVE PERFORMANCE AT ANY SCALE

https://arxiv.org/abs/2307.01117
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://chapel-lang.org/performance.html
https://chapel-lang.org/blog/posts/std-sort-performance/
https://chapel-lang.org/blog/posts/announcing-chapel-2.0/
https://chapel-lang.org/blog/posts/std-sort-performance/
https://www.youtube.com/watch?v=400jmMzdzHQ&t=348s
https://chapel-lang.org/CHIUW/2023/BachmanSlides.pdf
https://www.youtube.com/watch?v=hzLbJF-fvjQ&t=1505s
https://publications.polymtl.ca/56024/

[1] Laurendeau, Éric . HPC Lessons from 30 Years of Practice in CFD Towards Aircraft Design and Analysis. Keynote presentation
at CHIUW 2021. Link to Video.
[2] Jan Gmys, Tiago Carneiro, Nouredine Melab, El-Ghazali Talbi, Daniel Tuyttens. A comparative study of high-productivity high-
performance programming languages for parallel metaheuristics. Swarm and Evolutionary Computation, 2020.. Link to PDF.
[3] Diehl, P., Morris, M., Brandt, S.R., Gupta, N., Kaiser, H. Benchmarking the Parallel 1D Heat Equation Solver in Chapel, Charm++,
C++, HPX, Go, Julia, Python, Rust, Swift, and Java. Euro-Par 2023: Parallel Processing Workshops. Available at Link to PDF.
[4] Computer Languages Benchmarks Game website and link to a post summarizing the Chapel results
[5] Performance Highlights page on the Chapel website
[6] Blog post: Comparing Standard Library Sorts: The Impact of Parallelism
[7] Scaling results from the Arkouda Sort described in Chapel 2.0: Scalable and Productive Computing for All
[8] Dias, Nelson. From C and Python to Chapel as My Main Programming Language. CHIUW 2022 talk. Link to Slides.. Link to
Video.
[9] Scott Bachman, Rebecca Green, Anna Bakker, Helen Fox, Sam Purkis and Ben Harshbarger. High-Performance Programming
and Execution of a Coral Biodiversity Mapping Algorithm Using Chapel. Link to Slides. Link to Video.
[10] Arkouda See specifically this section of Bill Reus’s NJIT Data Science talk.
[11] The CHAMPS team has published many papers based on their multi-physics software written in Chapel . Advancements in
CHAMPS for Multi-Layer Ice Accretion on Aircraft is one recent example.

7

REFERENCES

https://youtu.be/wD-a_KyB8aI?t=1904
https://inria.hal.science/hal-02879767
https://arxiv.org/abs/2307.01117
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://hachyderm.io/@mppf/112292649313277588
https://chapel-lang.org/performance.html
https://chapel-lang.org/blog/posts/std-sort-performance/
https://chapel-lang.org/blog/posts/announcing-chapel-2.0/
https://chapel-lang.org/CHIUW/2022/DiasSlides.pdf
https://www.youtube.com/watch?v=400jmMzdzHQ&t=348s
https://www.youtube.com/watch?v=400jmMzdzHQ&t=348s
https://chapel-lang.org/CHIUW/2023/BachmanSlides.pdf
https://youtu.be/lJhh9KLL2X0
https://github.com/Bears-R-Us/arkouda/
https://www.youtube.com/watch?v=hzLbJF-fvjQ&t=1505s
https://publications.polymtl.ca/56024/
https://publications.polymtl.ca/56024/

• Modeling heat diffusion is an important problem in physical modeling
• The goal is to determine how heat propagates through a material

• This is determined by the laws of physics
• Modeled by a differential equation

• There are many different ways to solve differential equations
• We will take the straightforward approach: direct simulation
• Techniques similar to direct simulation are used in

production-grade Chapel software like CHAMPS
• CHAMPS is a 3D Multi-Physics Simulation written in Chapel

8

PROBLEM INTRODUCTION: HEAT DIFFUSION

Image Credit: https://commons.wikimedia.org/wiki/File:Blacksmith_working.jpg

Differential equation:
!"
!#
= 𝛼 !!"

!$!

Discretized (finite difference) equation: 𝑢%&'(= 𝑢%& + 	𝛼 𝑢%)(& − 2𝑢%& + 𝑢%'(&

Implementation:
• For each point, apply a “stencil” to the previous state (can be done in parallel!)
• Store the result separately to avoid changing the outcome for other points

9

1D HEAT EQUATION EXAMPLE

𝑡 = 0 𝑡 = 𝑇

𝑛 = 0 𝑛 = 𝑁

𝑛 = 0

𝑛 = 1
𝑖 𝑖 +
1

𝑖 −
1

𝑖

𝑢"#$% = 𝑢"# + 	𝛼 𝑢"&%# − 2𝑢"# + 𝑢"$%#

"stencil"

Discretized (finite difference) equation: 𝑢%&'(= 𝑢%& + 	𝛼 𝑢%)(& − 2𝑢%& + 𝑢%'(&

• where 𝑖 ∈ Ω ⊂ ℝ! are discrete points in space, and 𝑛, 𝑛 + 1,… are discrete instances in time

10

1D HEAT EQUATION EXAMPLE

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

const omega = {0..<nx},

 omegaHat = omega.expand(-1);

var u: [omega] real = 1.0;

u[nx/4..3*nx/4] = 2.0;

var un = u;

for 1..N {

 un <=> u;

 for i in omegaHat do

 u[i] = un[i] + alpha *

 (un[i-1] – 2*un[i] + un[i+1]);

}

01-heat-1D-serial.chpl

Discretized (finite difference) equation: 𝑢%&'(= 𝑢%& + 	𝛼 𝑢%)(& − 2𝑢%& + 𝑢%'(&

• where 𝑖 ∈ Ω ⊂ ℝ! are discrete points in space, and 𝑛, 𝑛 + 1,… are discrete instances in time

Finite difference algorithm:
Declare ranges that correspond to # of discrete pieces
• ‘nx’ is the number of such pieces
• We don’t have to name the ranges, but it helps

11

1D HEAT EQUATION EXAMPLE

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

const omega = {0..<nx},

 omegaHat = omega.expand(-1);

var u: [omega] real = 1.0;

u[nx/4..3*nx/4] = 2.0;

var un = u;

for 1..N {

 un <=> u;

 for i in omegaHat do

 u[i] = un[i] + alpha *

 (un[i-1] – 2*un[i] + un[i+1]);

}

01-heat-1D-serial.chpl

omega

omegaHat

Discretized (finite difference) equation: 𝑢%&'(= 𝑢%& + 	𝛼 𝑢%)(& − 2𝑢%& + 𝑢%'(&

• where 𝑖 ∈ Ω ⊂ ℝ! are discrete points in space, and 𝑛, 𝑛 + 1,… are discrete instances in time

Finite difference algorithm:
Define arrays for current time step and next time step
• ‘omega’ determines indices we can access in ‘u’

• ‘u[i]’ is good if 0 <= i < nx
• Otherwise, access is out of bounds

• Array value at each index determines temperature

12

1D HEAT EQUATION EXAMPLE

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

const omega = {0..<nx},

 omegaHat = omega.expand(-1);

var u: [omega] real = 1.0;

u[nx/4..3*nx/4] = 2.0;

var un = u;

for 1..N {

 un <=> u;

 for i in omegaHat do

 u[i] = un[i] + alpha *

 (un[i-1] – 2*un[i] + un[i+1]);

}

01-heat-1D-serial.chpl

u

un

Discretized (finite difference) equation: 𝑢%&'(= 𝑢%& + 	𝛼 𝑢%)(& − 2𝑢%& + 𝑢%'(&

• where 𝑖 ∈ Ω ⊂ ℝ! are discrete points in space, and 𝑛, 𝑛 + 1,… are discrete instances in time

Finite difference algorithm:
For each time step, apply discretized equation
• Use ‘omegaHat’ to exclude boundaries
• Between each time step, swap arrays

• ‘next’ array becomes ‘current’ array
• previous ‘current’ array now scratch space for ‘next’ one

13

1D HEAT EQUATION EXAMPLE

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

const omega = {0..<nx},

 omegaHat = omega.expand(-1);

var u: [omega] real = 1.0;

u[nx/4..3*nx/4] = 2.0;

var un = u;

for 1..N {

 un <=> u;

 for i in omegaHat do

 u[i] = un[i] + alpha *

 (un[i-1] – 2*un[i] + un[i+1]);

}

01-heat-1D-serial.chpl

u

un

Discretized (finite difference) equation: 𝑢%&'(= 𝑢%& + 	𝛼 𝑢%)(& − 2𝑢%& + 𝑢%'(&

• where 𝑖 ∈ Ω ⊂ ℝ! are discrete points in space, and 𝑛, 𝑛 + 1,… are discrete instances in time

Finite difference algorithm:
For each time step, apply discretized equation
• Use ‘omegaHat’ to exclude boundaries
• Between each time step, swap arrays

• ‘next’ array becomes ‘current’ array
• ‘previous’ current array now scratch space for ‘next’ one

14

1D HEAT EQUATION EXAMPLE

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

const omega = {0..<nx},

 omegaHat = omega.expand(-1);

var u: [omega] real = 1.0;

u[nx/4..3*nx/4] = 2.0;

var un = u;

for 1..N {

 un <=> u;

 for i in omega do

 u[i] = un[i] + alpha *

 (un[i-1] – 2*un[i] + un[i+1]);

}

01-heat-1D-serial.chpl

u

un

• Go to: https://github.com/DanilaFe/chapelcon-2024-tutorial
• Click Use this template, then Open in a codespace

• After some time, this will load a Visual Studio Code Environment
• The file is called ‘01-serial-heat-diffusion.chpl’, and should open by default
• Use the following commands in Terminal to compile & run the program, and open the generated image

15

HANDS-ON: GET THE CODE

chpl 01-heat-1D-serial.chpl --fast
./01-heat-1D-serial
./01-heat-1D-serial --image=true --N=1000 --nx=256

https://github.com/DanilaFe/chapelcon-2024-tutorial

• Previously, you used the following commands in Terminal to compile & run the program

• How does this scale to larger problem sizes?
• The ‘config’ keyword on ‘nx’, ‘n’, and ‘alpha’ allows these constants to be specified from the command line.
• To do so, simply pass ‘--nx <size>’ to adjust the number of elements in the simulation array.
• Try running with various problem sizes:

16

HANDS-ON: RUN HEAT DIFFUSION

chpl 01-heat-1D-serial.chpl --fast
./01-heat-1D-serial≈

time ./01-heat-1D-serial --nx 100
time ./01-heat-1D-serial --nx 1000
time ./01-heat-1D-serial --nx 10000

• Among other things, ‘--fast’ disables various runtime checks.
• These checks make it easier to diagnose bugs. Let’s introduce a bug:

• Compile and run with ’--fast’:

• Compile without ‘--fast’:

17

HANDS-ON: WHAT DOES ‘--FAST’ DO?

-7

 +7

for i in omegaHat do

 for i in omega do

chpl 02-heat-1D-buggy.chpl --fast
./02-heat-1D-buggy

chpl 02-heat-1D-buggy.chpl
./02-heat-1D-buggy

halt reached - array index out of bounds
note: index was -1 but array bounds are 0..99999

(???) doesn’t even report an error, just accesses
undefined memory!

02-heat-1D-buggy.chpl

18

1D HEAT EQUATION EXAMPLE: VARIABLES

★1
★2
★3
 4
★5
 6
 7
 8
 9
10
11

const omega = {0..<nx},
 omegaHat = omega.expand(-1);
var u: [omega] real = 1.0;
u[nx/4..3*nx/4] = 2.0;
var un = u;
for 1..N {
 un <=> u;
 for i in omegaHat do
 u[i] = un[i] + alpha *
 (un[i-1] – 2*un[i] + un[i+1]);
}

Meaning
• var/const: execution-time variable/constant
• param: compile-time constant
• No init-expr Þ initial value is the type’s default
• No type Þ type is taken from init-expr

01-heat-1D-serial.chpl

19

1D HEAT EQUATION EXAMPLE: RANGES

★1
 2
 3
★4
 5
★6
 7
 8
 9
10
11

const omega = {0..<nx},
 omegaHat = omega.expand(-1);
var u: [omega] real = 1.0;
u[nx/4..3*nx/4] = 2.0;
var un = u;
for 1..N {
 un <=> u;
 for i in omegaHat do
 u[i] = un[i] + alpha *
 (un[i-1] – 2*un[i] + un[i+1]);
}

Meaning
• Regular sequence of integers
 low <= high: low, low+1, low+2, …, high
 low > high: degenerate (an empty range)
 low or high unspecified: unbounded in that direction

Examples

1..6 // 1, 2, 3, 4, 5, 6
6..1 // empty
3.. // 3, 4, 5, 6, 7, …
1..<6 // 1, 2, 3, 4, 5
1..6 by -1 // 6, 5, 4, 3, 2, 1

01-heat-1D-serial.chpl

20

1D HEAT EQUATION EXAMPLE: ARRAY

1
 2
★3
 4
 5
 6
 7
 8
 9
10
11

const omega = {0..<nx},
 omegaHat = omega.expand(-1);
var u: [omega] real = 1.0;
u[nx/4..3*nx/4] = 2.0;
var un = u;
for 1..N {
 un <=> u;
 for i in omegaHat do
 u[i] = un[i] + alpha *
 (un[i-1] – 2*un[i] + un[i+1]);
}

Meaning
• ‘[D] t’: stores an element of type ‘t’ for each index in domain ‘D’

• E.g., ‘[omega] real’
• The domain defines valid indices into array (and more)

• Chapel has array literals, too (not in code block)
• ‘[5, 3, 9]’: represent the array with elements 5, 3, and 9

01-heat-1D-serial.chpl

21

1D HEAT EQUATION EXAMPLE: FOR LOOPS

1
 2
 3
 4
 5
★6
 7
★8
 9
10
11

const omega = {0..<nx},
 omegaHat = omega.expand(-1);
var u: [omega] real = 1.0;
u[nx/4..3*nx/4] = 2.0;
var un = u;
for 1..N {
 un <=> u;
 for i in omegaHat do
 u[i] = un[i] + alpha *
 (un[i-1] – 2*un[i] + un[i+1]);
}

Meaning
• Executes loop body serially, once per loop iteration
• An example is ‘for i in 1..10’
• Declares a new variable ‘i’

• ‘i’ is an ‘int’ because ‘1..10’ is a range of ‘int’s.
• You can loop over a range, array, iterator, iterable

object, …
• ‘do’ is a cleaner syntax for single-statement loops

01-heat-1D-serial.chpl

22

1D HEAT EQUATION EXAMPLE: WHAT’S NEXT?

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

const omega = {0..<nx},
 omegaHat = omega.expand(-1);
var u: [omega] real = 1.0;
u[nx/4..3*nx/4] = 2.0;
var un = u;
for 1..N {
 un <=> u;
 for i in omegaHat do
 u[i] = un[i] + alpha *
 (un[i-1] – 2*un[i] + un[i+1]);
}

Next Steps
• We now have a working implementation of heat diffusion
• Does it make the most out of a modern computer?

• No!

• Parallelism can lead to significant perf improvements
• Most modern CPUs have more than one processor core
• To fully leverage your CPU — and go fast — you need to

use all its cores in parallel!

• How do we make use of Chapel’s parallel programming
support?

USING
PARALLELISM TO
IMPROVE
PERFORMANCE

Image Credit: https://commons.wikimedia.org/wiki/File:Pouring_Liquid_Gold.jpg

• Note that in this case, the stencil can be applied to the entire array in parallel
– each value in 𝑢#$% (the ‘u’ array in the code) depends strictly on values in 𝑢# (the ‘un’ array in the code)

• Chapel’s ‘forall’ loops are a quick, high-level way to get data parallelism

24

1D HEAT EQUATION EXAMPLE

1
 2
 3
 4
 5
 6
 7
★8
 9
10
11

const omega = {0..<nx},
 omegaHat = omega.expand(-1);
var u: [omega] real = 1.0;
u[nx/4..3*nx/4] = 2.0;
var un = u;
for 1..N {
 un <=> u;
 forall i in omegaHat do
 u[i] = un[i] + alpha *
 (un[i-1] – 2*un[i] + un[i+1]);
}

𝑖 𝑖 +
1

𝑖 −
1

𝑛 = 0

𝑛 = 1
𝑖

𝑢

𝑢𝑛

Switched the inner ‘for’ loop to a ‘forall’, which
automatically runs the loop in parallel when possible.

The rest of the code is unchanged!

03-heat-1D.chpl

• We provide a different version of the program that can do either serial or parallel execution

• How does this scale to larger problem sizes?
• The ‘config’ keyword on ‘nx’, ‘n’, and ‘alpha’ allows these constants to be specified from the command line.
• To do so, simply pass ‘--nx <size>’ to adjust the number of elements in the simulation array.
• Measure the execution times from the previous, serial version:

• Then, compare them to the parallel execution times with the ‘forall’ loop

25

HANDS-ON: RUN HEAT DIFFUSION

chpl 03-heat-1D.chpl --fast

time ./01-heat-1D-serial --nx 100
time ./01-heat-1D-serial --nx 1000
time ./01-heat-1D-serial --nx 10000

time ./03-heat-1D --nx 100
time ./03-heat-1D --nx 1000
time ./03-heat-1D --nx 10000

26

1D HEAT EQUATION EXAMPLE: FORALL LOOPS

1
 2
 3
 4
 5
 6
 7
★8
 9
10
11

const omega = {0..<nx},
 omegaHat = omega.expand(-1);
var u: [omega] real = 1.0;
u[nx/4..3*nx/4] = 2.0;
var un = u;
for 1..N {
 un <=> u;
 forall i in omegaHat do
 u[i] = un[i] + alpha *
 (un[i-1] – 2*un[i] + un[i+1]);
}

Forall loops: Central concept for data parallel computation
• Like for-loops, but parallel
• Implementation details determined by iterand (e.g., ‘1..N’)

– specifies number of tasks, which tasks run which iterations, …
– in practice, typically uses a number of tasks appropriate for

target hardware
• In essence: ‘forall’ runs the parallel iterator of the iterand.

– Chapel’s built-In arrays, ranges, etc. all have parallel iterators

Forall loops assert…
…parallel is allowed: OK to execute iterations simultaneously
…order independence: iterations could occur in any order
…serializability: all iterations could be executed by one task
– e.g., can’t have synchronization dependences between

iterations

03-heat-1D.chpl

• Chapel allows data races
• ‘forall’ loops assert order independence, so writes to ‘u’ can happen in any order
• For synchronization, Chapel provides ‘atomic’ and ‘sync’ types, as well as barriers

• We will not be covering these in this tutorial

Safe: all writes are to different elements of ‘u’

Unsafe: all writes are to the same index. Final value determined by order of writes (tasks are racing)

27

RACE CONDITIONS

forall i in omegaHat do
 u[i] = un[i] + alpha *
 (un[i-1] – 2*un[i] + un[i+1]);

forall i in omegaHat do
u[1] = un[i] + alpha *

 (un[i-1] – 2*un[i] + un[i+1]);

• Our implementation is parallel, making full use the CPU cores
• To get more computing power, we might want to use more hardware, or different types of hardware

• Both personal computers and high-scale supercomputers increasingly ship with GPUs
• GPUs excel at certain forms of parallel programming, and can lead to a significant speedup
• To make the most use of your whole computer, you might want to use CPUs and GPUs

• An alternative approach to solving larger problems is to connect more computers together
• This can help divide-and-conquer work to solve problems faster, or to tackle larger problems

– If one computer can go fast, can 20 computers go 20x faster?
– Some problems are so big they simply can’t fit in a single computer’s memory!

• Chapel can support both GPU and multi-node programming using a single shared concept: locales

28

1D HEAT EQUATION: WHAT’S NEXT, AGAIN?

In Chapel, a locale refers to a compute resource with…
• processors, so it can run tasks
• memory, so it can store variables

For now, think of each locale as a compute node or a GPU

So far, we’ve only executed on one locale

29

INTRODUCTION TO LOCALES

Processor Core

Memory

Compute
Node

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

Locale 0 Locale 1 Locale 2 Locale 3

30

Processor Core

Memory

Chapel provides built-in locale variables

Locale methods support queries about the target system:

31

GETTING STARTED WITH LOCALES

config const numLocales: int = …;
const Locales: [0..#numLocales] locale = …;

proc locale.physicalMemory(…) { … }
proc locale.maxTaskPar { … }
proc locale.id { … }
proc locale.name { … }

BASIC FEATURES FOR LOCALITY

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

on Locales[1] {
 var B: [1..2, 1..2] real;

 B = 2 * A;
}

04-basics-on.chpl

32

All Chapel programs begin running
as a single task on locale 0

Locale 0 Locale 1 Locale 2 Locale 3

Variables are stored using the
memory local to the current task

on-clauses move tasks
to other locales

remote variables can be
 accessed directlyThis is a serial, but distributed computation

04-basic-on.chpl

Serial ‘for’ loops do not bring in additional locales or cores.

33

INTRODUCTION TO LOCALES

Processor Core

Memory

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

const omega = {0..<nx},
 omegaHat = omega.expand(-1);
var u: [omega] real = 1.0;
u[nx/4..3*nx/4] = 2.0;
var un = u;
for 1..N {
 un <=> u;
 for i in omegaHat do
 u[i] = un[i] + alpha *
 (un[i-1] – 2*un[i] + un[i+1]);
}

This is a serial, local computation

Locale 0

01-heat-1D-serial.chpl

By switching to a ‘forall’ loop, we made use of all available CPU cores

34

INTRODUCTION TO LOCALES

Processor Core

Memory

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

const omega = {0..<nx},
 omegaHat = omega.expand(-1);
var u: [omega] real = 1.0;
u[nx/4..3*nx/4] = 2.0;
var un = u;
for 1..N {
 un <=> u;
 forall i in omegaHat do
 u[i] = un[i] + alpha *
 (un[i-1] – 2*un[i] + un[i+1]);
}

Locale 0

This is a parallel, but still local computation

03-heat-1D.chpl

35

INTRODUCTION TO LOCALES

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

const omega = {0..<nx},
 omegaHat = omega.expand(-1);
var u: [omega] real = 1.0;
u[nx/4..3*nx/4] = 2.0;
var un = u;
for 1..N {
 un <=> u;
 forall i in omegaHat do
 u[i] = un[i] + alpha *
 (un[i-1] – 2*un[i] + un[i+1]);
}

03-heat-1D.chpl

• So far, both the serial and parallel version use only
the starting locale.
• The ‘for’ loop uses only one core on the locale
• The ‘forall’ loop uses all cores on the locale

• How are the concepts of locales and ‘on’ statements
used to program GPUs and multi-node systems?

IMPROVING
PERFORMANCE
USING MULTIPLE
LOCALES

Image Credit: https://www.flickr.com/photos/mualphachi/12242256733

Complicating matters, compute nodes now often have GPUs with their own processors and memory

We represent these as sub-locales in Chapel

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

Locale 0 Locale 1 Locale 2 Locale 3

37

CPU Core

Memory

GPU Core

38

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

Locale 0

GPU 0

GPU 1

Execution/allocation
moves to the sublocale

A

x

GPU Core MemoryCPU Core

1
 2
 3
 4
 5
 6
 7
 8
 9

var x = 10;

on here.gpus[0] {
 var A = [1, 2, 3, 4, 5, ...];
 forall a in A do a += 1;
}

writeln(x);

05-gpus.chpl

Putting the problem into an ‘on’ clause for GPUs is enough to make it run on the GPU

39

THE 1D HEAT DIFFUSION PROBLEM ON GPUS

Processor Core

Memory

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

on here.gpus[0] {
 const omega = {0..<nx},
 omegaHat = omega.expand(-1);
 var u: [omega] real = 1.0;
 u[nx/4..3*nx/4] = 2.0;
 var un = u;
 for 1..N {
 un <=> u;
 forall i in omegaHat do
 u[i] = un[i] + alpha *
 (un[i-1] – 2*un[i] + un[i+1]);
 }
}

Parallel, performs N GPU kernel launches

Locale 0

GPU 0
u
un

06-heat-1D-gpu.chpl

40

THE 1D HEAT DIFFUSION PROBLEM ON GPUS

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

on here.gpus[0] {
 const omega = {0..<nx},
 omegaHat = omega.expand(-1);
 var u: [omega] real = 1.0;
 u[nx/4..3*nx/4] = 2.0;
 var un = u;
 for 1..N {
 un <=> u;
 forall i in omegaHat do
 u[i] = un[i] + alpha *
 (un[i-1] – 2*un[i] + un[i+1]);
 }
}

06-heat-1D-gpu.chpl

• Now, we’ve used a sub-locale that represents a GPU
• However, we still only used a single locale at a time
• How can we make use of multiple locales to divide-

and-conquer the heat diffusion problem?

41

1D HEAT EQUATION EXAMPLE: DOMAINS

★1
★2
 3
 4
 5
 6
 7
 8
 9
10
11

const omega = {0..<nx},
 omegaHat = omega.expand(-1);
var u: [omega] real = 1.0;
u[nx/4..3*nx/4] = 2.0;
var un = u;
for 1..N {
 un <=> u;
 for i in omegaHat do
 u[i] = un[i] + alpha *
 (un[i-1] – 2*un[i] + un[i+1]);
}

Meaning
• Domains are first-class index sets
• They are the fundamental Chapel concept for data parallelism
• Useful for declaring arrays and computing with them

Examples

const omega = {0..<nx};

const m = 4, n = 8;
const D = {1..m, 1..n};
const Inner = D.expand(-1);

01-heat-1D-serial.chpl

42

1D HEAT EQUATION EXAMPLE: DOMAINS

Meaning
• Domains are first-class index sets
• They are the fundamental Chapel concept for data parallelism
• Useful for declaring arrays and computing with them

Examples

const omega = {0..<nx};

const m = 4, n = 8;
const D = {1..m, 1..n};
const Inner = D.expand(-1);A

B
C

D

Inner

var A, B, C: [D] real;

43

1D HEAT EQUATION EXAMPLE: DOMAINS

★1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

const omega = {0..<nx},
 omegaHat = omega.expand(-1);
var u: [omega] real = 1.0;
u[nx/4..3*nx/4] = 2.0;
var un = u;
for 1..N {
 un <=> u;
 for i in omegaHat do
 u[i] = un[i] + alpha *
 (un[i-1] – 2*un[i] + un[i+1]);
}

Meaning
• ‘omega’ is the array size
• ‘omegaHat’ excludes the boundaries to avoid OOB access
• ‘u’ has domain ‘omega’, ‘un’ inherits it

omega

omegaHat

u
un

01-heat-1D-serial.chpl

To use multiple locales, we could distribute 𝑢 and 𝑢𝑛 in chunks across multiple locales
– taking advantage of their memory and compute resources

44

DISTRIBUTING THE 1D HEAT EQUATION

u

un

Locale 0 Locale 1 Locale 2 Locale 3

const omega = blockDist.createDomain({0..<nx});

07-heat-1D-block.chpl

45

1D HEAT EQUATION EXAMPLE: BLOCKDIST

1
★2
 3
 4
 5
 6
 7
 8
 9
10
11
12

const omega =
 blockDist.createDomain({0..<nx}),
 omegaHat = omega.expand(-1);
var u: [omega] real = 1.0;
u[nx/4..3*nx/4] = 2.0;
var un = u;
for 1..N {
 un <=> u;
 forall i in omegaHat do
 u[i] = un[i] + alpha *
 (un[i-1] – 2*un[i] + un[i+1]);
}

Processor Core

Memory

Locale 0

Locale N

07-heat-1D-block.chpl

46

1D HEAT EQUATION EXAMPLE: BLOCKDIST

1
★2
 3
 4
 5
 6
 7
 8
 9
10
11
12

const omega =
 blockDist.createDomain({0..<nx}),
 omegaHat = omega.expand(-1);
var u: [omega] real = 1.0;
u[nx/4..3*nx/4] = 2.0;
var un = u;
for 1..N {
 un <=> u;
 forall i in omegaHat do
 u[i] = un[i] + alpha *
 (un[i-1] – 2*un[i] + un[i+1]);
}

Why does this work?
• ‘omega’ is block-distributed
• 'omegaHat' inherits 'omega's distribution
• Thus, 'u' is block-distributed
• 'un' inherits 'u's domain (and distribution)
• 'omegaHat' invokes 'blockDist's parallel/distr. iterator

• the body of the loop is automatically split across multiple
tasks on each locale

• Communication occurs automatically when a loop references a
value stored on a remote locale

u[i+1]

u

un

07-heat-1D-block.chpl

Domain distributions are “recipes” that instruct the compiler how to map the global view of a
computation…

…to the target locales’ memory and processors:

47

MORE ON DISTRIBUTIONS

u

un

u

un

Locale 0 Locale 1 Locale 2 Locale 3

Domain Distributions specify…
…mapping of indices to locales
…layout of domains / arrays in memory
…parallel iteration strategies
…other core operations on arrays / domains

07-heat-1D-block.chpl

1

48

SAMPLE DOMAIN DISTRIBUTIONS: BLOCK AND CYCLIC

var Dom = blockDist.createDomain({1..4, 1..8});

1 8

4

distributed to

var Dom = cyclicDist.createDomain({1..4, 1..8});

L0 L1 L2 L3

L4 L5 L6 L7

1
1

8

4

L0 L1 L2 L3

L4 L5 L6 L7
distributed to

1

2D and 3D stencil codes are more common and practical
• They also present more interesting considerations for parallelization and distribution

2D heat / diffusion PDE:

Discretized (finite-difference) form:

49

2D HEAT EQUATION EXAMPLE

𝜕𝑢
𝜕𝑡

= 𝛼∆𝑢 = 𝛼
𝜕"𝑢
𝜕𝑥"

+
𝜕"𝑢
𝜕𝑦"

𝑢",(#$% = 𝑢",(# + 𝛼 𝑢"$%,(# + 𝑢"&%,(# − 4𝑢",(# + 𝑢",($%# + 𝑢",(&%#

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

const omega = {0..<nx, 0..<ny},
 omegaHat = omega.expand(-1);
var u: [omega] real = 1.0;
u[nx/4..nx/2, ny/4..ny/2] = 2.0;
var un = u;
for 1..N {
 un <=> u;
 forall (i, j) in omegaHat do
 u[i, j] = un[i, j] + alpha * (

 un[i-1, j] + un[i, j-1] +
 un[i+1, j] + un[i, j+1] –
 4 * un[i, j]);

}

𝑛 = 0 𝑛 = 𝑁

08-heat-2D.chpl

• This computation uses a "5 point stencil"
• Each point in 'u' can be computed in parallel

• this is accomplished using a 'forall' loop

50

PARALLEL 2D HEAT EQUATION

𝑢",(#$% = 𝑢",(# + 𝛼 𝑢"&%,(# + 𝑢",(&%# + 𝑢"$%,(# + 𝑢",($%# − 4𝑢",(#

𝑢# 𝑢#$%

Stored in uStored in un

Fixed
boundary

values

7
 8
 9
10
11
12
13

...
 forall (i, j) in omegaHat do
 u[i, j] = un[i, j] + alpha * (

 un[i-1, j] + un[i, j-1] +
 un[i+1, j] + un[i, j+1] –
 4 * un[i, j]);

...

08-heat-2D.chpl

• Declaring distributed domains with the block distribution

• Distributed & Parallel loop over 'OmegaHat'

51

BLOCK DISTRIBUTED & PARALLEL 2D HEAT EQUATION

𝑢# 𝑢#$%
Stored in uStored in un

const Omega = blockDist.createDomain(0..<nx, 0..<ny),
 OmegaHat = Omega.expand(-1);

for 1..nt {
 u <=> un;

 forall (i, j) in OmegaHat do
 u[i, j] = un[i, j] + alpha * (

 un[i-1, j] + un[i, j-1] +
 un[i+1, j] + un[i, j+1] –
 4 * un[i, j]);

}

Array access across locale
boundaries automatically
invokes communication

un[i-1, j]

09-heat-2D-block.chpl

The 'CommDiagnostics' module provides functions for tracking comm between locales
• the following is a common pattern:

• which results in a table summarizing comm counts between the start and stop calls, e.g.,
| locale | get | put | execute_on | execute_on_nb |

| -----: | --: | --: | ---------: | ------------: |
| 0 | 10 | 0 | 6 | 12 |
| 1 | 105 | 5 | 0 | 0 |
| 2 | 105 | 4 | 0 | 0 |
| 3 | 105 | 7 | 0 | 0 |

• Compiling with '--no-cache-remote' before collecting comm diagnostics is recommended

52

COMM DIAGNOSTICS

use CommDiagnostics;
...
startCommDiagnostics();
potentiallyCommHeavyOperation();
stopCommDiagnostics();
...
printCommDiagnosticsTable();

• Gather comm diagnostics for 2D block dist.
• 09-heat-2D-block.chpl

• Compilation:

• Execution:

• Block: number of gets scales with size
• But communication is slow!

53

HANDS ON: HEAT 2D COMM DIAGNOSTICS RESULTS

0

5000

10000

15000

20000

25000

30000

Locale 0 Locale 1 Locale 2 Locale 3

Number of Gets on 4 Locales – Block vs. Stencil

Block (256x256) Block (512x512)

number of remote gets doubles
with quadrupled problem size

CHPL_COMM=gasnet
 chpl 09-heat-2D-block.chpl --fast
 --no-cache-remote

./09-heat-2D-block -nl4 --N=100
 --RunCommDiag=true --nx=256 --ny=256
./09-heat-2D-block -nl4 --N=100
 --RunCommDiag=true --nx=512 --ny=512

09-heat-2D-block.chpl

• Declaring distributed domains with the stencil distribution

• Distributed & Parallel loop including buffer updates

54

STENCIL DISTRIBUTED & PARALLEL 2D HEAT EQUATION

𝑢# 𝑢#$%
Stored in uStored in un

const Omega = stencilDist.createDomain(
 {0..<nx, 0..<ny}, fluff=(1,1)),
 OmegaHat = Omega.expand(-1);

Array access across locale
boundaries (within the fluff

region) results in a local
buffer access — no

communication is required

The buffers must be updated
explicitly during each time

step by calling 'updateFluff'

for 1..nt {
 u <=> un;

un.updateFluff();
 forall (i, j) in OmegaHat do
 u[i, j] = un[i, j] + alpha * (

 un[i-1, j] + un[i, j-1] +
 un[i+1, j] + un[i, j+1] –
 4 * un[i, j]);

}

10-heat-2D-stencil.chpl

• Each locale owns a region of the array
surrounded by a "fluff" (buffer) region

• Calling 'updateFluff' copies values from
neighboring regions of the array into
the local buffered region

• Subsequent accesses of those values
result in a local memory access, rather
than a remote communication

55

STENCIL DISTRIBUTED & PARALLEL 2D HEAT EQUATION

𝑢# 𝑢#$%

10-heat-2D-stencil.chpl

• Comparing comm diagnostics for:
• 09-heat-2D-block.chpl
• 10-heat-2D-stencil.chpl

• Compilation:

• Execution:

• Block: number of gets scales with size
• Stencil: static number of gets per iteration

56

HANDS ON: HEAT 2D COMM DIAGNOSTICS RESULTS

0

5000

10000

15000

20000

25000

30000

Locale 0 Locale 1 Locale 2 Locale 3

Number of Gets on 4 Locales – Block vs. Stencil

Stencil (256x256) Stencil (512x512) Block (256x256) Block (512x512)

number of remote gets stays the
same across problem sizes

CHPL_COMM=gasnet
 chpl 10-heat-2D-stencil.chpl --fast
 --no-cache-remote

./09-heat-2D-block -nl4 --N=100
 --RunCommDiag=true --nx=512 --ny=512

./10-heat-2D-stencil -nl4 --N=100
 --RunCommDiag=true --nx=512 --ny=512

We’ve used direct simulation of a heat diffusion problem to introduce parallel computing in Chapel

Key ideas:
• Parallel computing is key to performance on modern hardware
• Chapel has powerful language features to make parallel computing more user-friendly

• ‘forall’ supports easy expression of data parallelism and even distributed execution
• ‘on’ supports moving execution to a different ‘locale’
• distributed domains and arrays make it easy to use storage across many locales (compute nodes)

• Chapel supports parallelism across a spectrum of hardware: laptops, GPUs, supercomputers

See https://github.com/DanilaFe/chapelcon-2024-tutorial for more resources

57

SUMMARY

https://github.com/DanilaFe/chapelcon-2024-tutorial

