Hewlett Packard
Enterprise

ChapelCon 2024:
State of the Chapel Project

Brad Chamberlain
June 7, 2024

What is Chapel?

Chapel: A modern parallel programming language
« Portable & scalable
e Open-source & collaborative

Goals:
e Support general parallel programming
« Make parallel programming at scale far more productive

Chapel 2.0

Chapel 2.0 has been released!

What is Chapel 2.0?
o A milestone release!

« Stabilizes core language and library features
—these features should not have breaking changes in the future

e Released: March 21, 2024
e Chapel 1.32/1.33 served as release candidates

Table of Contents

What Are People Doing With Chapel?
Arkouda: Interactive Data Analysis
at Scale
CHAMPS: A Framework for
Computational Fluid Dynamics
Coral Biodiversity Computation
A Language Built with Scalable
Parallel Computing in Mind
Rich Tooling Support
Conclusion and Looking Forward

(_, Chapel Language Blog

About Chapel Website Featured Series Tags Authors All Posts

Chapel 2.0: Scalable and Productive Computing for All
Posted on March 21, 2024.
Tags: Chapel2.0 Release Announcements

By: Daniel Fedorin

Today. the Chapel team is excited to announce the release of Chapel version 2.0. After years of
hard work and continuous improvements, Chapel shines as an enjoyable and productive
programming language for distributed and parallel computing. People with diverse application
goals are leveraging Chapel to quickly develop fast and scalable software, including physical
simulations, massive data and graph analytics, portions of machine learning pipelines, and more.
The 2.0 release brings stability guarantees to Chapels battle-tested features, making it possible
to write performant and elegant code for laptops, GPU workstations, and supercomputers with
confidence and convenience.

In addition to numerous usability and performance improvements — including many over the
previous rel candidate — the 2.0 release of Chapel is stable: the core language and library
features are designed to be backwards-compatible from here on. As Chapel continues to grow
and evolve, additions or changes to the language should not require adjusting any existing code.

Chapel 1.32 Chapel 1.33

Chapel 1.31 (RC1)
cmuwzozﬁi i\zl L) ill?

June September
2023

(RC2)

W
| |

December

https://chapel-lang.org/blog/posts/announcing-chapel-2.0/

Chapel 2.0

*
| |

March
2024

https://chapel-lang.org/blog/posts/announcing-chapel-2.0/

Chapel 2.0 Library Stabilization: Status as of CHIUW 2023

SOIWOLY
9|buIS/OUAS
S9|ed07 | \
SAONWIN |
S10443
PaumQ / paleys

sAely N
sulewo(

sabuey
salAg / bulils

UOISISA |
oWl]
X269y N

10413sAS

oI1segsAg N

S N

ssado.dgns
sadA)
SOAILI9||0D
wopuey
Yieoiny/yle

1abatu|big

sadA | N

TIREITEN

biyuod|dyd
suljing '

1.30

Review Started

Progress

Chapel 2.0 Library Stabilization: Progress since CHIUW 2023

3
=
L
U

sdog

2023

4/

SOIWOLY

SO
= NS
S|BUIS/OUAS R S 1S
S9IBIOTT [N« Y !“
CUINIVIEIN] A" > !“
sioli3 B N [y
pauMO / paleys I N [|
sAelly SOS !!
sulewoq S !!
sabuey m !!
saiAg / 6utiis IR N [|
UOISIBA '\«) !“
swil BEEE N [y
xabay N\ !H
lou3sAS N N !!
dIsegsAS N\ !“
SASISUS IS S|
§5920JdqNS % H | H (D |
sadA) X !H
S9AI109]|0D uzz
WOPUEBY =
YiBNOINY /YIBIN m
1abaju|big m
sedAl NN
uond33ay [IE
yied S-S
0]
ETE]E

Complete

132
4

13S
de

11
byuodidyd
sulying

1.31 |4

20 VI AAAZ

1.30 04

Review Started

Progress

Chapel 2.0 Language Stabilization: Highlights Since CHIUW 2023

Language:
o Visibility of generic types
« Handling of numeric types, including generics
e ‘range’/ ‘domain’/array/distribution improvements
e ‘string’/‘bytes’/‘c_string’ stabilization
e ‘sync’/‘single’ stabilization
 Intents: defaults for arrays, return/yield intents, ...
« Protection of special method names
o Lifetimes of temporaries
 Classes: casting, lifetime management, ...
o Implicit ‘param’ to ‘const ref’ conversions
e Made ‘serial’ statements unstable
e Marked ‘local’ statements unstable

—

Chapel 2.0: What’s Nex1?

e Chapel 2.1: scheduled for June 27

e Continue stabilizing features

 Prioritize those identified by users / developers
—e.g., ‘Sort’ module, ‘dmapped’ keyword, ...
—use ‘--warn-unstable’ to identify unstable features

» Establish means of making future changes
e e.g, create a Chapel language advisory board?

Community Focus

Focus on the Chapel Community

e With 2.0 wrapped up, we have shifted focus toward nurturing the Chapel community
e Supporting existing users
» Seeking out new use-cases and users
o Amplifying our message about Chapel

e This has become our new “all-hands” activity
e Since CHIUW 2023, we have hired our first-ever community manager, Sarah Coghlan

e We've also kicked off several initiatives with this community focus in mind:
« Rebranding CHIUW to ChapelCon, expanding its scope and format
« Renewed focus on resolving user GitHub issues

- 140 closed since CHIUW 2023
— 88 closed the year prior to that

e Plus...

—

10

Chapel Blog: Articles prior to CHIUW 2023

Welcome to the Chapel Blog (Nov 2022)
14-part “12 Days of Chapel” Series (Dec 2022)
Announcing Chapel 1.29.0! (Dec 2022)
Announcing Chapel 1.30.0! (Mar 2023)
Ve 2-part “NetCDF in Chapel” Series (Apr-May 2023)

' A

N U R N (NN NN N G NN DN NN N DN N NN N B N N B
December March June September December March June
2022 2023 2024

: | 11

Chapel Blog: Articles since CHIUW 2023

Generic Linear Multistep Method Evaluator using Chapel (May)

Doing Science in Python? Wishing for more speed or scalability? (Apr)
Chapel's High-Level Support for CPU-GPU Data Transfers and Multi-GPU Programming (Apr) \\

Navier-Stokes in Chapel — Introduction (Apr)
Supercharged Chapel Editor Support (Apr)
Introducing ChapelCon ’24: The Chapel Event of the Year (Apr)
Chapel 2.0: Scalable and Productive Computing for All (Mar)
Changes to Chapel 2.0 Since its First Release Candidate (Feb)

Comparing Standard Library Sorts: The Impact of Parallelism (Jan)
Introduction to GPU Programming in Chapel (Jan)
Announcing Chapel 1.33! (Dec)
SC23 from the Chapel Language Perspective (Dec)

Announcing Chapel 1.32! (Sept) \
P 11 1r1+r<trttP>P>PbP b1 1 11|

Announcing Chapel 1.31! (June) \
December March June September December March June
2022 2023 2024

: | 12

Chapel Social Media

e As with the blog, we’re striving to improve the frequency of our social media posts

o Goal: a tweet every day or two during the work-week

e Recently launched LinkedIn and Mastadon project accounts—follow us there!

Linked T 8 &

Chapel Programming Language
Software Development

Chapel is a modern parallel programming language designed for productivity, performance, and portability
(P
| Follow)

. L
About us
Chapel is a programming language designed for productive parallel computing on large-scale
systems.

end supercomputers for which it was designed.

by the Chapel team at Hewlett Packard Enterprise (HPE).

Website https://chapel-lang.org/ &

Chapel's design and implementation have been undertaken with portability in mind, permitting Chapel
to run on multicore desktops and laptops, commodity clusters, and the cloud, in addition to the high-

Chapel's design and development were kicked off at Cray Inc. in collaboration with contributors from
academia, computing centers, industry, and the open-source community. Ongoing development is led

—

€ Back

pelprogl 9
@chapelprogramminglanguage mastodon.social

JOINED
Mar 28, 2024

24 Posts 6 Following 14 Followers

Posts Posts and replies Media
];1 Pinned post
/" chapelprogramminglanguage ®© Apr5*

‘\“\\—« @chapelprogramminglanguage

Upgrade your Chapel development with improved editor support! Chapel 2.0 includes
an official VSCode extension with smart editing functi ity, as well as a Languag
Server that integrates with your favorite editor.

For more information, see this post: chapel-lang.ora/blog/pos:

Qastodon

@ Explore

@ Live feeds

Login to follow profiles or hashtags, favorite,
share and reply to posts. You can also
interact from your account on a different
server.

Login

X
in
W

14

Website Redesign

Home

What is Chapel?
What's New?

Blog

Upcoming Events
Job Opportunities

How Can | Learn Chapel?

Contributing to Chapel
Community

Download Chapel
Try Chapel Online

Documentation
Release Notes

Performance
Powered by Chapel
Presentations
Papers / Publications
Tutorials

ChapelCon
CHUG

Contributors / Credits

chapel+info@discoursemail.com

O:mEo
Y XPrHDMN

N° The Chapel Parallel Programming Language
GHAﬁEL
=)

What is Chapel?

Chapel is a programming language designed for productive parallel computing at scale.
Why Chapel? Because it simplifies parallel programming through elegant support for:

« data parallelism to trivially use the cores of a laptop, cluster, or supercomputer
« task parallelism to create concurrency within a node or across the system

« a global namespace supporting direct access to local or remote variables

* GPU programming in a vendor-neutral manner using the same features as above
« distributed arrays that can leverage thousands of nodes' memories and cores

Chapel Characteristics

productive: code tends to be similarly readable/writable as Python

scalable: runs on laptops, clusters, the cloud, and HPC systems

fast: performance competes with or beats conventional HPC programming models
portable: compiles and runs in virtually any *nix environment

open-source: hosted on GitHub, permissively licensed

production-ready: used in real-world applications spanning diverse fields

New to Chapel?

As an introduction to Chapel, you may want to...

watch an overview talk or browse its slides
read a chapter-length introduction to Chapel
learn about projects powered by Chapel
check out performance highlights like these:

PRK Stencil Performance (Gfiop/s) NPB-FT Performance (Gop's)

MP1eOperip —=-
Crapst —-

Gflop's.
Gop's

Locales (x 36 cores / locale) Locales (x 36 cores / locale;

—

Arkouda github documentation gitter discourse community about

Massive scale data science,
from the comfort of your laptop

Arkouda » NumPy
Ready for supercomputers Industry-standard

import arkouda as ak
ak.startup('localhost’', 5555)

Generate two large arrays
ak.randint (0,2%%*32,2**10)
ak.randint(0,2**32,2**10)

add them
=a+b

Sort the array and print first 10 elements
ak.sort(c)
print(c(0:10))

Get Started [3 Chat on Gitter

Other Community-Oriented Things That Are Cooking

o Uptick in talks, tutorials, outreach
 Diversifying modes of obtaining Chapel
o GitHub Codespaces (already available)
o Ubuntu and Enterprise 9 packages (already available)
« deb/rpm packages
» Spack package
« AWS AMIs (Amazon Machine Images)?
e Applying to HPSF (High Performance Software Foundation)
e “How-t0” YouTube videos
e Chapel educators’ forum
e Quarterly newsletter?
e Community office hours?
e [..Your ideas here...] Luca speaking today @ 12:00 PT
o And your help in growing awareness of Chapel is always appreciated!

—

16

Chapel Community Survey

» We launched our first-ever Chapel Community Survey
« We would appreciate if everyone attending ChapelCon were to fill it out
o (Note that there is also a survey about ChapelCon itself—both would be ideal)

Chapel Community Survey

Whether you are a seasoned Chapel veteran or new the language, we would like to hear
from you!

What do you view as Chapel's biggest strengths?
Please share this link with others on your team or community that are interested in

Chapel.

Note that all questions are optional and that we appreciate any information you share with

us
Thank you!
y What sorts of improvements would you like to see take place in Chapel or its
C leto 0100 community? (e.g., new features, libraries, performance or portability improvements,

events, ..)

Name
In what situations would you be most likely to recommend a colleague try using
Chapel?

Email

Is there anything else you want share with us?

Affiliation / Home Institution

m Clear form

: | 17

GPUs

GPU Highlights Since CHIUW 2023

e Improved AMD support
e multi-locale + multi-GPU runs now supported
 features are in parity with NVIDIA

o CPU-as-device mode
o develop CPU+GPU computations without access to a GPU

» Improved integration with Chapel language
 ‘reduce’ expressions and intents
 ‘foreach’ intents

 greater use of ‘@atfribute’ syntax

 Plus, performance, scaling, and significant increases in community usage...

—

19

GPU Performance Improvements Since CHIUW 2023

|
Stream (using AMD Instinct MI1100) - -
—a Core 0 Per-task GPU Corel
s 800 Streams

Time (s) 3. copy out . e worker=1

cwnm 600 3 i i

Significantly improved (RTX A2000) o) £ H i

CPU array initialization Unified Aaven 20 400 - C+HIP = kernel i

~Memory Device £ 200 ~@- Chapel 1.31 : copy in
. -#- Chapel 1.30 : :
var CpuArr: [l..n] int; 012 0.18 0 1 1 1 c°p.y L

. 0038 0018 37 o 128 M :
on here.gpus[0] { : ' Number of Elements (M)
var GpuArr: [l..n] int;

SHOC Triad - Kernel Time - 64KB

Unified Array on .
Memory Device - m"
GpuArr = CpuArr; 0.25 0.033 L e e =
L 0.2
Y N SHOC Triad kernel o kernel kernel
0.05
Throughpu‘l’ (GiB/s) 1:Aug 20 Aug 22 Aug 24 Aug 26 Aug 28 Aug 30 Aug
enableGpuP2P=true needup
Radix Sort - 1M elements
0 1 2 3 036 n AMD
03
0 86.2 86.3 86.3 0.25 s UU U
1 86.1 86.4 86.3 z 02 5x faster to sort 1M 64-bit ints
: ' : £ o = = coral 1.80x 1.25x
2 86.6 86.5 86.1 041 X . .
005 \ miniBUDE* 1.82x 1.92x
3 866 865 865 Dec 2023 Jan 2024

: | 20

GPU Highlights Since CHIUW 2023: Community Papers at IPDPS Workshops

Performance Portability of the Chapel Language on
Heterogeneous Architectures,

Josh Milthorpe, Xianghao Wang, Ahmad Azizi (ORNL / ANU),
HCW 2024

Performance Portability of the Chapel Language on
Heterogeneous Architectures

Josh Milthorpe Xianghao Wang Ahmad Azizi
Oak Ridge National Laboratory Australian National University Australian National University
Oak Ridge, Tennessee, USA Canberra, Australia Canberra, Australia

Australian National University
Canberra, Australia
ORCID: 0000-0002-3588-9896

development of high-performance scientific applications and has

recently added support for GPU architectures through native Milan
code generation. ppﬂ % ThunderX2 246 ThunderX
Using three mini-apps - BabelStream, miniBUDE, and TeaLeaf POWER9 = C 4
- we evaluate the Chapel language’s performance portability PI00
across various CPU and GPU platforms. In our evaluation, we VIoo
replicate and build on previous studies of performance portability A100
using mini-apps, comparing Chapel against OpenMP, Kokkos, MI60 ran
and the vendor programming models CUDA and HIP. We find MI100
that Chapel achieves performance y to
OpenMP and Kokkos and identify several implementation issues PO P
that limit Chapel’s portability on certain & & ¢
Q
Index Tepms—pexformance portsbilty, Chapel language, mind- (@) Effective GFLOP /. higher is better (b) Architectural efficiency, higher is better

app, parallel p general-purpose GPU

Fig. 2: miniBUDE results for small deck bm1

Abst A per portable ication can run on a other heterogeneous programming models that allow single-
variety of different achieving an source programming for diverse hardware platforms.
level of performance without requiring significant rewriting
for cach platform. Several performance-portable programming Skylake Skylake »
models are now suitable for high-performance scientific appli- Cascade Lake . Cascade Lake
cation development, i.nrluding OpenMP and Kokkos. (‘hnpd_ is Sapphire Rapids Sapphire Rapids bad
a parallel programming language that supports the productive Rome . . s Rome

CUDA, and HIP programming models across of diverse set of
L. INTRODUCTION g

Chapel is a parallel programming language that supports

s e s e | Josh speaking today @ 9:40 PT

GPU-Accelerated Tree-Search in Chapel: Comparing
Against CUDA and HIP on Nvidia and AMD GPUs,

Guillaume Helbecque, Ezhilmathi Krishnasamy, Nouredine
Melab, Pascal Bouvry (U. Luxembourg / U. Lille),
PDCO 2024

GPU-Accelerated Tree-Search in Chapel versus
CUDA and HIP

Guillaume Helbecque*!, Ezhilmathi Krish y*, Nouredine Melab' and Pascal Bouvry*
*University of Luxembourg, DCS-FSTM/SnT, Luxembourg
Université de Lille, CNRS/CRIStAL UMR 9189, Centre Inria de 1'Université de Lille, France

Abstract—In the context of exascale programming, the PGAS- using a bination of a low-level GPU p ing model,
based Chapel is among the rare languages targeting the holistic gych -
handling of high-perfc ing issues including the ming
productivity-aware harnessing of Nvidia and AMD GPUs. In this The

paper, we propose a pioneering proof-of-concept dealing with
this latter issue in the context of tree-based exact optimization. MeEMY
Actually, we revisit the design and implementation of a generic GPU
multi-pool GPU t h using Chapel. grchi
This algorithm is instantiated on the backtracking method and M
experimented on the N-Queens problem. For performance evalu- odel
ation, the Chapel-based approach is compared to Nvidia CUDA ™

and AMD HIP low-level counterparts. The reported results show ~ With
that in a single-GPU setting, the high GPU abstraction of Chapel in th
results in a loss of only 8% (resp. 16%) compared to CUDA reago
(resp. HIP). In a multi-GPU setting, up to 80% (resp. 71%)

of the baseline speed-up is achieved for coarse-grained problem warc
instances on Nvidia (resp. AMD) GPUs. Initia
Index Terms—Chapel, Tree-Search, GPU computing, CUDA, mode]
HIP, N-Queens, AMD, Nvidia In
based|

1. INTRODUCTION UPC||

Graphics Processing Units (GPUs) have emerged as building S“PP{
blocks in modern supercomputerd!) reshaping the landscape of 12— -
high-performance computing (HPC). Their parallel processing In this wor.k.. we foc'us “ the Chapel programming lf”'"
capabilities accelerate computations, making them inval i ! . ascd nara
in i plex applications across diverse dos

sy e e o Guillaume speaking today @ 12:45 PT

http://www.milthorpe.org/pubs/performance-portability-of-the-chapel-language-on-heterogeneous-architectures/
http://www.milthorpe.org/pubs/performance-portability-of-the-chapel-language-on-heterogeneous-architectures/
https://hcw-ipdps.org/
https://hal.science/hal-04551856
https://hal.science/hal-04551856
https://pdco2024.sciencesconf.org/

GPU Highlights Since CHIUW 2023: GPUs and User Codes

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Coté, Parenteau, Plante, et al.
Ecole Polytechnique Montréal

Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng.

Tom Westerhout
Radboud University

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.

University of Guelph

—

Chapel Server

Code Modules E I

Distributed

Object Store |8
Platform

Python3 Client ma
S Socket

7 | Acithmetic

Arkouda: Interactive Data Science at Massive Scale

Mike Merrill, Bill Reus, et al.
U.S. DoD

Low-pass filer with LOWESS (intrinsically parallel)
100

80

0

at Lake Mecad

40

A it ol

0
2010 2011 2012 2013 2014 2018
date

RH (%)

20

Nelson Luis Dias
The Federal University of Parana, Brazil

FEATURES ENSEMBLES
EXPLORATIONuPARAMETEMAHONALE

CrayAl HyperParameter Optimization (HPO)
Ben Albrecht et al.
Cray Inc. / HPE

(images provided by their respective teams and used with permission)

ChOp: Chapel-based Optimization

T. Carneiro, G. Helbecque, N. Melab, et al.
INRIA, IMEC, et al.

R

RapidQ: Mapping Coral Biodiversity

Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance

CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.
PNNL

Active GPU efforts |

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.
Yale University et al.

ChapQG: Layered Quasigeostrophic CFD
lan Grooms and Scott Bachman
University of Colorado, Boulder et al.

?

Your Application Here?

22

GPU Highlights Since CHIUW 2023: Scaling on DOE Systems

Investigating Portability in Chapel for Tree-based Optimization on GPU-powered Clusters,
Tiago Carneiro, Engin Kayraklioglu, Guillaume Helbecque, Nouredine Melab (IMEC / HPE / U. Luxembourg, U. Lille),

Euro-Par 2024

Investigating Portability in Chapel for Tree-based
Optimization on GPU-powered Clusters

Tiago Carneiro 1{0000—-0002—-6145—8352) . Engin Kayraklioglu2 [0000—-0002—-4966—3812] :

Guillaume Helbecque“[0000_0602_8697_372”, and Nouredine Melab*

! Interuniversity Microelectronics Centre (IMEC), Belgium
tiago.carneiropessoa@imec.be
2 Hewlett Packard Enterprise, USA
engin@hpe.com
3 University of Luxembourg, Luxembourg
guillaume.helbecque@uni.lu
4 Université de Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL - Centre de
Recherche en Informatique Signal et Automatique de Lille, France
nouredine.melab@univ-lille.fr

Abstract. The Top500 list features supercomputers powered by accel-
erators from different vendors. This variety brings, along with the hetero-
geneity challenge, both the code and performance portability challenges.
In this context, Chapel’s native GPU support comes as a solution for
code portability between different vendors. In this paper, we investigate
the viability of using the Chapel high-productivity language as a tool to
achieve both code and performance portability in large-scale tree-based
search. As a case study, we implemented a distributed backtracking for
solving permutation combinatorial problems. Extensive experiments con-
ducted on big N-Queens problem instances, using up to 512 NVIDIA
GPUs and 1024 AMD GPUs on Top500 supercomputers, reveal that it
is possible to scale on the two different systems using the same tree-
based search written in Chapel. This trade-off results in a performance
decrease of less than 10% for the biggest problem instances.

—

Frontier (ORNL)

128 nodes x 8 GPUs = 1024 GPUs
GPUs: AMD Instinct MI250X

Perlmutter (NERSC)

128 nodes x 4 GPUs = 512 GPUs
GPUs: NVIDIA A100

Tiago speaking today @ 10:00 PT

Linear — CUDA-22 & Chpl-22 -4~ Chpl-21 - CUDA-21 —*-

120

100

Speed-up

40

20

T

80

60

L L

48 16 32 64 128

120

100

Speed-up

also see Brett’s talk @ 10:10 PT

Number of Nodes

Linear — HIP-21 -8~ Chpl-21 &

32 64 128
Number of Nodes

https://2024.euro-par.org/

Additional GPU Resources

GPU Programming in Chapel blog series HPE Developer Meetup:
e Vendor-Neutral GPU Programming in Chapel

e July 31, Free and online

(C Chapel Language Blog il i

About Chapel Website Featured Series Tags Authors All Posts

GPU Programming in Chapel

This series showcases Chapel's support for vendor-neutral GPU programming.

* Introduction to GPU Programming in Chapel

Posted on January 10, 2024

This post gives a beginner's introduction to Chapel's GPU programming features
Vendor-Neutral GPU Programming in Chapel

Chapel's High—Level SllppOl"t for CPU-GPU Data Transfers and Date & Time Jul 31, 2024 08:00 AM in Pacific Time (US and Canada)
Mu1ti_GPU Programming Description Speakers:
Posted on April 25, 2024 é::?:;::;’:;;:EHPE
This post covers how Chapels arrays, parallelism, and locality features enable moving data bR
between CPUs and GPUs. Writing programs on modern computers requires

parallelism to achieve maximum performance. This is

—

https://chapel-lang.org/blog/series/gpu-programming-in-chapel/
https://developer.hpe.com/campaign/meetups/
https://hpe.zoom.us/webinar/register/3117139444656/WN_ojVy9LR_QHSCGxeg21rj7A

GPU Highlights: ChapelCon 2024 Keynote
A Case for Parallel-First Languages in a Post-Serial, Accelerated World

Paul Sathre (Virginia Tech) Abstract: Parallel processors have finally dominated all scales of computing hardware,

from the personal and portable to the ivory tower datacenters of yore. However,
dominant programming models and pedagogy haven't kept pace, and languish in a post-
serial mix of libraries and language extensions. Further, heterogeneity in the form of
GPUs has dominated the performance landscape of the last decade, penetrating casual
user markets thanks to data science, crypto and Al booms. Unfortunately GPUs'
performance remains largely constrained to expert users by the lack of more productive
and portable programming abstractions. This talk will probe questions about how to
rethink and democratize parallel programming for the masses. By reflecting on
lessons learned from a decade and a half of accelerated computing, I'll show where
Chapel 2.0 fits into the lineage of GPU computing, can capitalize on GPU momentum,
and lead a path forward.

Bio: Paul Sathre is a Research Software Engineer in the Synergy Lab and NSF Center for
Space, High-performance, and Resilient Computing (SHREC) at Virginia Tech. His
research interests encompass systems software and tools and programming systems,
particularly with respect to democratizing access to high-performance computing. More
recently, his work has focused on the intersection of computational co-design with
portable and productive languages, tools, and libraries for heterogeneous computing.

— | 25

https://chapel-lang.org/ChapelCon24.html

Scalability and Performance

Bale IndexGather in Chapel vs. SHMEM on HPE Cray EX

Bale Indexgather Performance
HPE Cray EX (Slingshot-11)

Chapel —
- SHMEM Exstack
SHMEM Convey = =% -

GB/s

512 1024 2048 4096

Number of Locales

Network Performance Evaluation

Since CHIUW 2023, we have evaluated performance of various communication patterns x networks
« For example, ISx on Slingshot-11, InfiniBand, and AWS:

HPE Cray EX

ISx Time
64 GiB/node

Chapel 1 LPN —+—
- Chapel 2 LPN - -+ -
SHMEM

Time (sec)
O - NN W » 00 O

4 8 16 32
Nodes (128 cores / node)

Network: Slingshot-11 (single NIC)
Processor: Dual-socket AMD Milan

Notes:

o These AWS results should be considered preliminary and have almost certainly improved since this study

Time (sec)

HPE Apollo

ISx Time
64 GiB/node

70

Dynamic Reg 1 LPN —#—
60 |~ Dynamic Reg 2 LPN - -= -

Static Reg 1 LPN —&—
50 |+ static Reg 2 LPN - -» -
OF - AT
30
20
10 pa— " T
o Br———+1-

4 8 16 32 64
Nodes (128 cores / node)

Network: InfiniBand HDR-200 (single NIC)
Processor: Dual-socket AMD Milan

» We also looked briefly at RDMA-enabled Ethernet (not shown here)

—

AWS

isx-hand-optimized
locales-per-node=1 threads-per-node=24

- -
g
——

oo

%
I | A 1 J
2 - 8

Number of Nodes

Network: AWS (Ethernet and EFA)
Processor: AWS Graviton3

29

Chapel Co-Locales

e A locale in Chapel is a part of the target system that can run tasks and store variables
o Traditionally, each compute node has been a locale

» We've recently added support for multiple co-locales per compute node:
NS UINERGET IR S ./myChplProg —nl 8x2 # use 8 nodes w/ 2 locales each...

e Typical cases:
—locale per NIC

—locale per socket Stream TRIAD on dual-socket node, Milan CPUs, 64 cores/CPU
—locale per NUMA domain

Configuration GB/s Improvement Feature
—locale per L3 cache
-nl 2 357 N/A N/A
e Co-locales can improve performance via: -nl 2x2 460 28.9% Socket
« better network utilization -nl 2x8 456 30.5% NUMA
o better memory locality and affinity -l 2x16 470 31.7% L3 cache
“first touch” 470 31.7% N/A

: | 30

We’ve also improved serial/vector performance this year

e In 2023, our fastest CLBG n-body lagged the baseline by 1.4x e This year, we became the baseline after the 2.0 release
« Rust, Julia, Fortran, and C++ versions all outperformed it « With no source changes!

The Computer Language The Computer Language

23.03 Benchmarks Game 24.04 Benchmarks Game

n-body n-body
description description
First a few simple programs. First a few simple programs.
Then optimisations, multicore parallelism, [pdf] vector Then optimisations, multicore parallelism, [pdf] vector
parallelism. parallelism. T
Last hand-written vector instructions and "unsafe" programs. Last hand-written vector instructions and "unsafe" programs.
source secs mem 9z source secs mem gz
Chapel #3 5.60 10,940 960 Chapel #3 E 19@ 95_7
Cclang 5.98 11,392 1173 C clang 5.65 19,684 1179
Java 7.76 40,724 1430 Java 7.85 41,512 1437
X source secs mem 9z Cpu secs cpu load X source secs mem gz cpu secs cpu load
1.0 Rust #6 3.92 11,068 1790 3.92 0% 0% 0% 100% 1.0 Chapel #3 3.89 19,648 967 3.90 100% 0% 0% 0%
1.0 Julia #8 4.11 226,264 1111 4.38 2% 2% 2% 100% 1.0 Rust #2 3.92 19,660 1809 3.92 0% 100% 0% 1%
1.1 Classic Fortran #6 4.20 10,960 1524 4.20 0% 0% 100% 0% 1.0 Rust #6 3.95 19,788 1796 I,“ speak briefly
1.2 CH+ g+t #9 4.88 10,960 1530 4.88 0% 0% 0% 100% 1.1 Julia #8 4.16 272,512 1129
1.4 Classic Fortran #2 5.37 10,960 1500 5.36 100% 0% 0% 0% 11 ClassicFortran #6421 10,856 1530, On the CLBG today @ 9:30 PT
1.4 Classic Fortran .48 10,960 1393 548 0% 0% 0% 99% 1.2 Rust #8 451 19,788 1774 4.50 100% 0% 0% 1%
1.4 Chapel #3 5.60 10,940 960 5.61 99% 0% 0% 0% 1.3 Cgcc #6 4,96 19,520 1186 4.96 0% 0% 100% 0%

: | 31

Tool Improvements

Chapel Tools: Background

e Tools have been a classic chicken-and-egg problem for Chapel
« Users don’t want to use a new language without tools
e Tools teams don’t want to support a new language until it has users

« Meanwhile, our team has traditionally had trouble prioritizing tools work

Happily, this has started to
change through our Dyno

compiler re-work effort

» What tools we have typically come from the open-source community

see Henry, Drake, and Cole’s talk @ 8:35 PT

Three New Tools Since CHIUW 2023

chpl-language-server (CLS):
» Enables features within editors that support the Language Server Protocol (LSP) — VSCode, vim, emacs, ...
» Provides real-time features to navigate, query, and refactor Chapel code

chplicheck:

o A Chapel linter that provides style checks and helps prevent common errors

e Can be run from the command-line or an editor (via LSP)
see Daniel and Jade’s talk @ 8:55 PT

VSCode extension for Chapel:
« Supports the two tools above, along with syntax highlighting, autofill, GUI breakpoints, ...

FiULLLIypCOynivu Liav L,
MultiTypeSymEntry;

ServerEr
Reflecti

/** This is a very important variable. */
var x = 42;

module ServerConfig
for i in 1..108 do MmLint: rule [DoKeywordAndBlock] violated

Flatten; arkouda server config param and config const

writeln(i, ¥); Not Committed Yet
} var x = 42

ServerConfig;
SegmentedString;
L ogaing:

This is a very important variable.

CLS in VSCode CLS in Neovim

Time’s running short...
Yet there’s so much | could cover!

There Are Many Other Exciting Talks Today (that | couldn’t weave into this talk)

12:20-12:30 Exploring Machine Learning Capabilities in Chapel: An Internship
Journey
Iain Moncrief (Oregon State University)
Abstract: This talk recounts a 12:55-1:15

Arrays as Arguments in First-Class Functions: the Levenberg-

U U poUaee Gra Tan g ud Nelson Dias, Débora Roberti and Vanessa Arruda Dias (Federal University of Parana,
experience with learning Chape Federal University of Santa Maria)
1:15-1:35 On the Design of Graph Analytical Software in Chapel F Nelson speaking today @ 12:55 PT
Oliver Alvarado Rodriguez, David L af O RIS TION F=TR 1 |
Technology) 1:35-1:45 Impl ting Imaginary El tary Mathematical Functi
plementing Imaginary Elementary Mathematical Functions
Oliver speakmg today @ 1:15 PT ' Damian McGuckin, Peter Harding (Pacific ESI)
= — Abokvoskilosiolicmtiomattloo e 1511 rare HPC Ianguages in Wthh the |mag|nary
2:00-2:10 Chapel ina Petabyte Scale GPU Database Engine with Voltron U
Data’s Theseus ' Damian speaking today @ 1:35 PT
Trent Nelson and Fernanda Foertter (Voltron Data) T | T TR A T T

%21 2:10-2:20 Chplx: an HPX Foundation for Chapel

i o rt
Trent sPeakmg TOday @ 2:00 PT Shreyas Atre, Chris Taylor, Patrick Diehl and Hartmut Kaiser (Louisiana State University,

i s N O _ _
as a first-class citizen. Specifically. Tactical Computing Labs, LLC)

e performance vs cade comnlexitv of A 1

2:20-2:40 Follow-Up on Chapel-Powered HPC Workflows for Python . .
g -ABpet . L . HPX € Chris speaking today @ 2:10 PT
John Byrne, Harumi Kuno, Chinmay Ghosh, Porno Shome, Amitha C, Sharad Singhal, d Chg, .
Clarete Riana Crasta, David Emberson and Abhishek Dwaraki (Hewlett Packard aper investigates the performance and code
Enterprise)

: Harumi speaking today @ 2:20 PT —

Updates from other CHIUW Alumni

CHAMPS: 3D Unstructured CFD
CHIUW 2021 CHIUW 2022

Python3 Client m™ma Chapel Server
& g Socket

Dispatcher

£ §
e
Code Modules 3 =
£ < $
< 3

3 Meta Distributed Array
Distributed

ﬁ Object Store
Platform MPP, SMP, Cluster, Laptop, etc.

Arkouda: Interactive Data Science at Massive Scale

CHIUW 2020 CHIUW 2023

Low-pass filter with LOWESS (intrinsically parallel)
100

80
60

40

RH (%) at Lake Mcad

20

0L— . . - -
2010 201 2012 2013 2014 2015
date

Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng.

CHIUW 2022

Chapel-based Hydrological Model Calibration

CHIUW 2023

—

CHIUW 2022

FEATURES ENSEMBLES
EXPLORATIONUPARAMETEMATIONALE

CrayAl HyperParameter Optimization (HPO)
CHIUW 2021

.z:j; ﬂ/l M) (1-5)

q

7/
23] 2-a] 3-2-5]

ChOp: Chapel-based Optimization

CHIUW 2021 CHIUW 2023

CHIUW 2023

CHGL: Chapel Hypergraph Library
CHIUW 2020

(images provided by their respective teams and used with permission)

xs:;/lij\.x4

?

Your Application Here?

ChplUltra: Simulating Ultralight Dark Matter
CHIUW 2020 CHIUW 2022

ChapQG: Layered Quasigeostrophic CFD

37

https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2020.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2020.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2020.html

Update from the CHAMPS Team

CHAMPS status update

* CHAMPS has seen very rapid development progress since its initiation, in many
ways due to the efficiency of Chapel. Alongside the technical developments of our \
Computational Fluid Dynamics (CFD) capabilities, scientific progress has been very \

) .
fruitful. \ Q': =

* Theresearch group is now into more holistic research, slowing down production
quantity to examine more fundamental, high-impact research of similar high quality
but with computational breath that is one-order of magnitude more complex.

For instance: Bombardier Eco-jet
- problem size has now reached 2 Billion unknowns Blended Wing Body
- Reynolds-Averaged Navier-Stokes has moved from steady to unsteady flow
analysis, requiring 1000x more calculations/solutions.

-

* Thisis due to the industrial pull, which requires very advanced computational
workflows to examine novel aircraft configurations to attain environmental
targets such as Bombardier Eco-Jet or NASA/Boeing Truss-Braced Wing concepts.

* Important advances will be presented at the American Institute of Aeronautics =

and Astronautics AVIATION conference in late July 2024. Stay tuned!
NASA/Boeing

Truss-Braced Wing

: (slide provided by Eric Laurendeau and used with permission)

Updates from other CHIUW Alumni

CHAMPS: 3D Unstructured CFD
CHIUW 2021 CHIUW 2022

Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng.

CHIUW 2022

Chapel-based“-l-rlydrologica:lwr;lodel Calib
CHIUW 2023

—

Python3 Client m™ma Chapel Server
& g Socket

Dispatcher

t Distributed

<
2
E]
Code Modules 1
- - S
3

Meta Distributed Array

7/
ﬁ Object Store o
Platform MPP, SMP, Cluster, Laptop, etc. 23] 2-a] [3-2-5]

Arkouda: Interactive Data Science at Massive Scale

CHIUW 2020 CHIUW 2023

Low-pass filter with LOWESS (intrinsically parallel)
100

RH (%) at Lake Mcad
2

0L - - - - -
2010 201 2012 2013 2014

CHIUW 2022

FEATURES ENSEMBLES

EXPI.ORATIONUPARAMETEMATIONALE

CrayAl HyperParameter Optimization (HPO)

CHIUW 2021

[/12;)
& TN

I

ChOp: Chapel-based Optimization

CHIUW 2021 CHIUW 2023

oy Yy

-

RapidQ: Mapping Coral Biodiversity

CHIUW 2023

CHGL: Chapel Hypergraph Library
CHIUW 2020

(images provided by their respective teams and used with permission)

HIKi:x‘

ChplUltra: Simulating Ultralight Dark Matter

CHIUW 2020 CHIUW 2022

(54

ChapQG: Layered Quasigeostrophic CFD

?

Your Application Here?

39

https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2020.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2020.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2020.html

Publications at PAW-ATM 2023 (an SC23 workshop)

High-Performance Programming and Execution of a Coral

Implementing Scalable Matrix-Vector Products for the

Biodiversity Mapping Algorithm Using Chapel,
Scott Bachman (NCAR) et al.

Exact Diagonalization Methods in Quantum Many-Body

Physics, Tom Westerhout (Radboud University) et al.

Coral Reef Biodiversity (image analysis)

Performance
Land [re— ACA geomorphic categories
B Reef Slope B small Reef
Bl Sheltered Reef Slope Patch Reefs
B Reef Crest Back Reef Slope

B Outer Reef Flat
| Inner Reef Flat
Terrestrial Reef Flat

Shallow Lagoon
I Deep Lagoon

Habitat heterogeneity
-
0 03 0.6

0 5 10 km

Previous performance (serial, MATLAB): ~ Multiple days
Current performance (360x cores, Chapel): ~ 2 seconds

Roughly 5 orders of magnitude improvement 2

Diagonalization Methods in

Tom Westerhout
tom.westerhout@ru.nl
Institute for Molecules and Materials, Radboud University

Implementing Scalable Matrix-Vector Products for the Exact

Quantum Many-Body Physics

Bradford L. Chamberlain
bradford.chamberlain@hpe.com
Hewlett Packard Enterprise

Nijmegen, The Netherlands

ABSTRACT

Exact diagonalization is a well-established method for simulati
small quantum systems. Its applicability is limited by the expong
tial growth of the Hamiltonian matrix that needs to be diagonaliz4
Physical symmetries are usually utilized to reduce the matrix dimg
sion, and distributed-memory parallelism is employed to expl
larger systems. This paper focuses on an implementation of the ¢
distributed algorithms, with a special emphasis on the matrix-vec

Package Spins | Generic Matrix-free Lattice Distributed-memory | Software lines of
sy i ‘ parallel code (ding tests)

lattice-symmetries [30] | 8500
SPINPACK (23] v X v v v 26000
QuSpin [28, 29] v v v v | X 26000
quantum_basis [27] v X X v | X 12500
Hydra [24) v v v either one, but not both 18000
libcommute [15) v v v X | X 4500
HO [13) v v v X v 29000
Pomerol [3] X v X X v 5000
EDLib [11) X X X X v 4000
EDipack [2] X X X X v 11000

product. Instead of the conventional MPI+X paradigm, Chapel is
chosen as the language in this work.

We provide a comprehensive description of the algorithms and
present performance and scalability tests. Our implementation out-
performs the state-of-the-art MPI-based solution by a factor of 7-8
on 32 compute nodes or 4096 cores and scales well through 256
nodes or 32 768 cores. The implementation has 3 times fewer soft-
ware lines of code than the current state of the art, but is still able
to handle generic Hamiltonians.

CCS CONCEPTS

« Computing methodologies — Parallel computing method-
ologies; « Applied computing — Physics; « Theory of compu-
tation — Distributed algorithms.

the Hamiltonian, researchers have emploved two kev techniane I

First, various symmetries of| 32 T T T T T T T
form the Hamiltonian into a - LS (42 spins) W
the problem into multiple o ¥ § > LS (40 spion) .. &8

oD pleon 2 % . L SPINPACK (s2 spins) @
distributed-memory paralleli “*| SPINPACK (40 spins) @

the system size that can be |
techniques, systems of aboy
called spins) can be studied
dimension of 2*¥ ~ 3 x 10",
can be reduced to about 10!
research groups have been 4
SPINPACK code (23] is the ¢
to exploit both symmetries
but its complexity has limite]

In an endeavor to demo

Speedup over the fastest 1-node run
(90 spins LS 124.6 5; 42 spins LS.

1 i 8 12 16 20 24 28 32
Number of nodes

(128 cores per node)

40

https://dl.acm.org/doi/abs/10.1145/3624062.3624599
https://dl.acm.org/doi/abs/10.1145/3624062.3624599

Consider submitting work on
applications in Chapel to:

The 7th Annual
Parallel Applications Workshop,
Alternatives To MPI+X

November 17 | 18, 2024

Held in conjunction with SC24 Deadline: JuIy 24 2024

\
by L2

Submission Styles: Papers / Talks

Updates from other CHIUW Alumni

CHAMPS: 3D Unstructured CFD
CHIUW 2021 CHIUW 2022

Python3 Client m™ma Chapel Server
& g Socket

Dispatcher

£ §
e
Code Modules 3 =
£ < $
< 3

3 Meta Distributed Array
Distributed

ﬁ Object Store
Platform MPP, SMP, Cluster, Laptop, etc.

Arkouda: Interactive Data Science at Massive Scale

CHIUW 2020 CHIUW 2023

Low-pass filter with LOWESS (intrinsically parallel)
100

80
60

40

RH (%) at Lake Mcad

20

0L— . . - -
2010 201 2012 2013 2014 2015
date

Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng.

CHIUW 2022

Chapel-based“-l-rlydrologicailﬂr;lod;[;;i;;ation
CHIUW 2023

—

CHIUW 2022

FEATURES ENSEMBLES
EXPLORATIONUPARAMETEMATIONALE

CrayAl HyperParameter Optimization (HPO)
CHIUW 2021

.z:j; ﬂ/l M) (1-5)

q

7/
23] 2-a] 3-2-5]

ChOp: Chapel-based Optimization

CHIUW 2021 CHIUW 2023

CHIUW 2023

CHGL: Chapel Hypergraph Library
CHIUW 2020

(images provided by their respective teams and used with permission)

xs:;/lij\.x4

?

Your Application Here?

ChplUltra: Simulating Ultralight Dark Matter
CHIUW 2020 CHIUW 2022

ChapQG: Layered Quasigeostrophic CFD

42

https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2020.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2020.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2020.html

Newly Minted PhDs

e Since her CHIUW 2023 talk, Marjan Asgari...

« Defended her Ph.D. on parallel computing for calibrating hydrological models
— Her software is still in use by her former research group at University of Guelph
« Now works for Natural Resources Canada focused on parallel computing

e Since his CHIUW 2023 talk, Thomas Rolinger...

« Defended his Ph.D. on compiler optimizations for irregular memory access patterns in PGAS languages
—Published a paper on his work at IPDPS 2024
« Now works on NVIDIA’s back-end compiler feam

Congratulations, Marjan and Thomas!!!

43

Wrapping Up

The Chapel Team at HPE

45

State of the Chapel Project: Summary

As a team and community, we have accomplished a ton since CHIUW 2023

Released Chapel 2.0 and made ongoing improvements
Accomplished and published great scientific results
Improved GPU, tool, and performance features

Got a great start on renewed focus on community

GPU Highlights Since CHIUW 2023: Uses by Users / User Codes

—

GPU Highlights Since CHIUW 2023: Community Papers at IPDPS Workshops

Performance Portability of the Chapel Language on GPU-Accelerated Tree-Search in Chapel: Comparing
Heterogeneous Architectures, Against CUDA and HIP on Nvidia and AMD GPUs,
Josh Milthorpe, Xianghao Wang, Ahmad Azizi (ORNL / ANU), Guillaume Helbecque, Ezhilmathi Krishnasamy, Nouredine
Melab, Pascal Bouvry (U. Luxembourg / U Lille),
PDCO 2026

ol oyt e

(@

RNelo/
LAUAI A

Performance Porability of the Chapel Langusge on

ncous Archiectures

(GPU-Accelersed Tree-Search in Chapel versus
CUDA and HIP

Chapel 2.0 Library Stabilization: Progress since CHIUW 2023

Complete Progress Review Started

Chapel Blog: Articles since CHIUW 2023

Generic Li

Python? " V2 Apr
Transfers and

Navier-Stokes in Chapel — Introduction (Apr)
Supercharged Chapel Editor Support (Ap)
Introducing ChapelCon "24: The Chapel Event of the Year (Apr)
Chapel 2.0: Scalable and Productive Computing for All (Mar)

9 el 2.
i i The Imp lism CJan)
Introduction to GPU Programming in Chapel (Jan)
Announcing Chapel 1.33! (Dec)
" .
Announcing Chapel 1.32! (Sept)
Announcing Chapel 1.311 (June) \
| N T O N G Y A N O A BN |

LI I I B |
» J

December March June September ber Marc une
2022 2023 2024

Tools: Three New Tools Since CHIUW 2023

chpl-language-server (CLS):
+ Enables features within editors that support the Language Server Profocol (LSP) — VSCode, vim, emacs,
+ Provides real-fime features fo navigate, query, and refactor Chapel code

Stay tuned to today’s talks to

« A Chapel linter that provides style checks and helps prevent common errors

« Can be run from the command-line or an editor (via LSP)
see Daniel and Jade's talk @ 8:55 PT

VSCode extension for Chapel:
« Supports the two tools above, along with syntax highlighting, autofill, GUI breakpoints,

riteinti b
I

CLS in VSCode CLS in Neovim

Bale IG in Chapel vs. SHMEM on HPE Cray EX

Bale Indexgather Performance
HPE Cray EX (Singshot-11)

I
Chapel —
20000 [SEN Eovey -
@ 15000 .
@
S 10000 .
5000 [- - 2gm? -
)
512 1024 2048 4096
Number of Locales
—

hear more detail about many of these efforts!

We look forward to working with you all in the year to come!

Update from the CHAMPS Team

CHAMPS status update

\
fruitfl, \

For nstance: Bombardier Eco-jet

~problem size has now reached 2 Billion unknowns Blendaa Wing Sody

analysis, requiring 1000 more calulations/solutions.
tuned! o
NASA/Boeing
Trues Braced Wi,

46

Chapel Resources

Chapel homepage: hTTps://chaDeI-lanQ.Orq The Chapel Parallel Programming Language
« (points to all other resources)

What is Chapel?

Chapel is a programming language designed for productive parallel computing at scale.

What is Chapel? Why Chapel? Because it simplifies parallel programming through elegant support for:
° o — What's New?
BlogO h TT D S o//C h a De I | a n q .O rq / b | O Q/ « data parallelism to trivially use the cores of a laptop, cluster, or supercomputer
T T < = < Blog « task parallelism to create concurrency within a node or across the system

« a global namespace supporting direct access to local or remote variables
* GPU programming in a vendor-neutral manner using the same features as above
« distributed arrays that can leverage thousands of nodes' memories and cores

SOCiaI Media: low Con L Ssem Chapeit. Chapel Characteristics

Contributing to Chapel
Community « productive: code tends to be similarly readable/writable as Python
« scalable: runs on laptops, clusters, the cloud, and HPC systems

° Fa Ce boo k: @C h a De | La n q u a q e m‘;‘;:‘:l%";m « fast: performance competes with or beats conventional HPC programming models

* portable: compiles and runs in virtually any *nix environment

Upcoming Events
Job Opportunities

o Li n ked I n: @C h a De | _ D rog ra m m i n g . | a n g u a g e ;;;;;;':;:m ' Neo;rto:lz:t;:::dv: used in real-world applications spanning diverse fields
° Mas-l-adon: @Cha DelProg ramming La nguage E&:i';zg::;°"l°"' As an introduction to Chapel, you may want to...

* watch an overview talk or browse its slides
ChapelCon « read a chapter-length introduction to Chapel

X/ Twitter: @ChapellLanguage s e tes

e YouTube: @Chapellanguage = m} :}
yXenom 8 ‘ § == J |

Community Discussion / Support: e T T -

« read about GPU programming in Chapel, or watch a recent talk about it
* browse sample programs or learn how to write distributed programs like this one:

o Discourse: https://chapel.discourse.group/
o Gitter: https://gitter.im/chapel-lang/chapel SR s

writeln("Hello from iteration ", i, of ", n, " running on node ", here.

use CyclicDist; // use the Cyclic distribution library

e Stack Overflow: https://stackoverflow.com/questions/tagged/chapel What's Hot?

+ ChapelCon '24 is coming in June (online)—Read about it and register today

L GiTHUb |Ssues: hTTDS://giThUb-Com/Cha Del_la ng/Cha Del/issues * Doing science in Python and needing more speed/scale? Maybe we can help?

: | 47

https://chapel-lang.org/
https://chapel-lang.org/blog/
https://www.facebook.com/ChapelLanguage/
https://www.linkedin.com/company/chapel-programming-language/
https://mastodon.social/@chapelprogramminglanguage
https://twitter.com/ChapelLanguage
https://www.youtube.com/@chapellanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

Consider submitting work on
applications in Chapel to:

The 7th Annual
Parallel Applications Workshop,
Alternatives To MPI+X

November 17 | 18, 2024

Held in conjunction with SC24 Deadline: JuIy 24 2024

\
by L2

Submission Styles: Papers / Talks

Thank you

https://chapel-lang.org
@ChapelLanguage

