
ChapelCon’24, June 7, 2024
Brad Chamberlain

The Computer Language Benchmarks Game
and Chapel 2.0

• A website comparing a few dozen languages using 10 benchmarks
• Benchmarks exercise useful things like:

– floating point performance
– IO
– vectorization
– bigints
– …

• Supports comparisons in terms of:
– wallclock time
– memory usage
– code compactness
– CPU time
– CPU load
– browsing the source code (encouraged, but obvs. requires effort)

• Accepts new code submissions of the same algorithm

2

What is the Computer Language Benchmarks Game (CLBG)?

https://benchmarksgame-team.pages.debian.net/benchmarksgame/

https://benchmarksgame-team.pages.debian.net/benchmarksgame/

• Our Goal: Submit versions that are fast but clear
• Strive for versions that would be great to learn from

• Use results to understand where Chapel falls short
• in terms of performance
• in terms of expressiveness / capabilities

3

Chapel’s approach to the CLBG

https://benchmarksgame-team.pages.debian.net/benchmarksgame/measurements/chapel.html

https://benchmarksgame-team.pages.debian.net/benchmarksgame/measurements/chapel.html

• Each benchmark has its own results page:
• Here, we’re looking at spectral-norm
• Click on “description” to learn about it

• Starts with a few simple/clear versions:
• (good ones to learn the algorithm from)

• Then, the pack of main contenders:

4

Reading a Benchmark’s Results

https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/spectralnorm.html

https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/spectralnorm.html

• By default, entries are sorted by ‘secs’
• (wall-clock time)

• This Chapel #2 entry took 0.73 seconds
• and essentially runs in 1.0x of the baseline

– (the Rust #5 version at the top)

• Click on a heading to change the sort…
• e.g., ’gz’ (code compactness)

5

Reading a Benchmark’s Results

https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/spectralnorm.html

https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/spectralnorm.html

• Sorting by code compactness…

• We see another Chapel version that’s 1.1x
as compact as the baseline Ruby version

• Our Chapel #2 entry is 1.2x as compact
• Demonstrating a speed::code size tension

6

Reading a Benchmark’s Results

https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/spectralnorm.html

https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/spectralnorm.html

• Sorting by wall-clock time again…
• Scrolling down, at the end…

…we find hand-written… / “unsafe” versions
• I refer to these as “heroic” for brevity
• Note these can outperform the baseline…

7

Reading a Benchmark’s Results

https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/spectralnorm.html

https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/spectralnorm.html

• Scolling back up…
• Let’s find the other Chapel version’s timings

• Here it is… So we have…
• …2.0 slower than the Rust baseline: So, we have: …Chapel: 2.0x slower, 1.1x less compact
 …Chapel #2: 1.0x slower, 1.2x less compact
 Let’s plot this tension!

8

Reading a Benchmark’s Results

https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/spectralnorm.html

https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/spectralnorm.html

9

CLBG: Scatter Plot of Chapel’s fastest/most-compact benchmarks (Apr 5, 2024)

smaller

fa
st

er

Compressed Code Size (normalized to smallest non-heroic entry)

Ex
ec

ut
io

n
T

im
e

(n
or

m
al

iz
ed

 to
 fa

st
es

t n
on

-h
er

oi
c

en
tr

y)

10

CLBG: Chapel’s fastest/most-compact versions of spectral norm (Apr 5, 2024)

smaller

fa
st

er

Compressed Code Size (normalized to smallest non-heroic entry)

Ex
ec

ut
io

n
T

im
e

(n
or

m
al

iz
ed

 to
 fa

st
es

t n
on

-h
er

oi
c

en
tr

y)

Chapel spectralnorm

Chapel #2 spectralnorm

11

CLBG: Chapel’s fastest/most-compact versions of all benchmarks (Apr 5, 2024)

smaller

fa
st

er

Compressed Code Size (normalized to smallest non-heroic entry)

Ex
ec

ut
io

n
T

im
e

(n
or

m
al

iz
ed

 to
 fa

st
es

t n
on

-h
er

oi
c

en
tr

y)
binary-trees

regex-redux (fast)

k-nucleotide (fast)

fannkuchmandelbrot (fast)
n-body

spectralnorm (compact)

revcomp (compact)

pidigitsspectralnorm (fast)

regex-redux (compact)

k-nucleotide (compact)

fasta

mandelbrot (compact)

revcomp (fast)

(1.9x slower than fastest
4.8x bigger than smallest)

12

CLBG: Geometric Means of Chapel’s fastest/most-compact versions (Apr 5, 2024)

smaller

fa
st

er

Compressed Code Size (normalized to smallest non-heroic entry)

Ex
ec

ut
io

n
T

im
e

(n
or

m
al

iz
ed

 to
 fa

st
es

t n
on

-h
er

oi
c

en
tr

y)
binary-trees

regex-redux (fast)

k-nucleotide (fast)

fannkuchmandelbrot (fast)
n-body

spectralnorm (compact)

revcomp (compact)

pidigitsspectralnorm (fast)

regex-redux (compact)

k-nucleotide (compact)

fasta

mandelbrot (compact)

Geometric Mean of most compact programs

Geometric Mean of fastest programs revcomp (fast)

(1.9x slower than fastest
4.8x bigger than smallest)

We can then use these geometric
means to summarize each
language compactly…

13

CLBG Summary, Apr 12, 2024 (selected languages, w/ heroic versions)

Ex
ec

ut
io

n
T

im
e

(n
or

m
al

iz
ed

 to
 fa

st
es

t e
nt

ry
)

Compressed Code Size (normalized to smallest entry)

fa
st

er

smaller

14

Perl

Julia

Ruby

Swift Fortran

Note: Regrettably, the version of this chart presented at ChapelCon ‘24 included incorrect summary results for C, C#, Go, Java, Perl, Python, and Ruby due to a bug in our scripts; this is the corrected version

15

CLBG Summary, Apr 12, 2024 (selected languages, w/ heroic versions, zoomed-in)

Ex
ec

ut
io

n
T

im
e

(n
or

m
al

iz
ed

 to
 fa

st
es

t e
nt

ry
)

Compressed Code Size (normalized to smallest entry)

Julia

C#

Java

Swift

Fortran

RustC

fa
st

er

smaller

C++

Note: Regrettably, the version of this chart presented at ChapelCon ‘24 included incorrect summary results for C, C#, Go, and Java due to a bug in our scripts; this is the corrected version

Those graphs included the heroic
versions; removing those…

16

18

CLBG Summary, Apr 12, 2024 (selected languages, no heroic versions, zoomed-in)

Ex
ec

ut
io

n
T

im
e

(n
or

m
al

iz
ed

 to
 fa

st
es

t n
on

-h
er

oi
c

en
tr

y)

Compressed Code Size (normalized to smallest entry)

Julia C#
Java

Swift

Fortran

RustC

fa
st

er

smaller

C++

Note: Regrettably, the version of this chart presented at ChapelCon ‘24 included incorrect summary results for C, C#, Go, and Java due to a bug in our scripts; this is the corrected version

19

CLBG: Often, a single version is both Chapel’s fastest and most compact

Compressed Code Size (normalized to smallest non-heroic entry)

Ex
ec

ut
io

n
T

im
e

(n
or

m
al

iz
ed

 to
 fa

st
es

t n
on

-h
er

oi
c

en
tr

y)

pidigits

20

CLBG: As of Chapel 2.0, our #3 n-body is the baseline for both speed and size!

Compressed Code Size (normalized to smallest non-heroic entry)

Ex
ec

ut
io

n
T

im
e

(n
or

m
al

iz
ed

 to
 fa

st
es

t n
on

-h
er

oi
c

en
tr

y)

n-body

fasta knucl mandelbrot pidigits2 regexredux revcomp spectralnorm

explicit ‘ref’ for passing arrays X X X

reader()/writer() signature updates X X X

read/writeBinary() updates X X

readline() -> readLine() changes X

zip(keys, vals) instead of map.items() X

sorted() iterator deprecated X

need to declare record ‘hashable’ X

divCeilPos module/naming change X

bigint operator signature changes X

read(string) -> readAll() X

compile(regex) -> new regex() X

sub() -> replace() on regex X

change to lo..<hi type inference X

stricter C pointer aliasing rules #8 only

22

Benchmark updates required by Chapel 2.0

23

Unstable Features the current Chapel entries still rely on

binarytrees fannkuch2 knucleotide mandelbrot pidigits4 revcomp8

‘serial’ statement X

divCeilPos() X

‘DynamicIters’ module X X X

‘Sort’ module X

‘GMP’ module X

• binary-trees: Our worst outlier, due to lack of memory arenas / object pools / similar memory abstraction

• regex-redux:
• Michael has already optimized some things in Chapel 2.1, so this should improve after it’s released
• Fastest entries use PCRE2, we use RE2…

– should we switch?

• revcomp, k-nucleotide:
• not doing great in either dimension…
• I/O could be a place for improvement

• nbody, others…?:
• written long ago
• can be rewritten using modern Chapel

Caution: CLBG can be very addictive!

24

Opportunities for Future Improvement

Thank you
https://chapel-lang.org
@ChapelLanguage

