
Enabling CHIP-SPV in Chapel GPUAPI Module
Jisheng Zhao

jisheng.zhao@cc.gatech.edu

Georgia Institute of Technology

Atlanta, Georgia, USA

Akihiro Hayashi

ahayashi@gatech.edu

Georgia Institute of Technology

Atlanta, Georgia, USA

Brice Videau

bvideau@anl.gov

Argonne National Laboratory

Argonne, Illinois, USA

Vivek Sarkar

vsarkar@gatech.edu

Georgia Institute of Technology

Atlanta, Georgia, USA

KEYWORDS
Chapel, GPUs, GPUIterator, GPUAPI, CHIP-SPV

ACM Reference Format:
Jisheng Zhao, Akihiro Hayashi, Brice Videau, and Vivek Sarkar. 2022. En-

abling CHIP-SPV in Chapel GPUAPI Module. In Proceedings of CHIUW ’23:
The 10th Annual Chapel Implementers and Users Workshop (CHIUW ’23).
ACM, New York, NY, USA, 4 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
There has been a growing interest in utilizing GPUs in large-scale

systems. While we believe PGAS languages such as Chapel [2] are

suitable not only for homogeneous nodes but also for heterogeneous

nodes, GPU programming with PGAS languages in practice is still

limited since there is still a big performance gap between compiler-

generated GPU code and hand-tuned GPU code. Additionally, hand-

optimization of CPU-GPU data transfers is an important contributor

to this performance gap.

In our past work, we proposed the GPUAPI module [5, 7], which

includes a wide variety of Chapel-level GPU API that allows the

user to write device memory (de)allocation and device-to-host/host-

to-device data transfer in Chapel. While the user still has to write

a GPU kernel manually, once the user writes a working Chapel

program with the GPUAPI module and their GPU kernel on one

platform, the Chapel+GPU program should run on another plat-

form without any further modifications. We demonstrated that the

module can be utilized in real-world Chapel applications such as

ChOp [1] and CHAMPS [11] across multiple CPU-GPU platforms

and it facilitates hand-optimization of CPU-GPU data transfers in

CHAMPS [8].

Also, the GPUAPI module is designed to comply with Chapel’s

multi-resolution concept, where the user has the option of provid-

ing a high-level specification and also of diving into lower-level

details to incrementally evolve their implementations for improved

performance on multiple CPUs+GPUs nodes particularly when it is

used with the GPUIterator module [4]. Specifically, we proposed

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CHIUW ’23, June 1, 2023, Virtual Format
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

to introduce the following spectrum of GPU programming abstrac-

tion in Chapel [6] and the GPUAPI module is mainly responsible for

the MID-level/MID-LOW-level part:

• HIGH-level/HIGH-MID-level: The compiler compiles forall
/ reduce constructs to GPUs and generates all the host part

required for GPU execution (HIGH). For the host part, the

user has the option of using our GPUAPI to optimize device

memory allocation and data transfer (HIGH-MID).

• MID-level/MID-LOW-level: The user writes 1) GPU ker-

nels in a low-level GPU language, and 2) the host part in

Chapel in either/both of two levels of abstraction: a Chapel

programmer-friendly version (MID), and a thin wrapper ver-

sion of raw GPU API routines (MID-LOW).

• LOW-level: The user writes a full GPU program in a low-

level GPU language and call it from Chapel using the C

interoperability feature.

In this talk, we focus on enhancing our support for Intel GPUs

in the GPUAPI module. Essentially, we introduce the CHIP-SPV

framework [3] as a backend for the module, which not only allows

the user to run their hand-written CUDA/HIP kernels on Intel GPUs

as-is, but also allows the runtime to perform finer-grain control of

Intel GPUs through Intel Level Zero runtime.

Our key contributions include:

(1) Design and Implementation of our CHIP-SPV backend in

the GPUAPI module.

(2) Preliminary Evaluation of the backend on two Intel GPU

platforms.

2 GPUAPI
The GPUAPI [5, 7] module is a standalone Chapel module, which

includes a wide variety of platform-independent Chapel-level GPU

routines, including device memory (de)allocation routines and

device-to-host/host-to-device data transfer routines, which can

run on different GPU platforms.

The module mainly supports NVIDIA CUDA-supported GPUs,

AMDROCm-supportedGPUs, and Intel Level Zero-supportedGPUs

(and FPGAs) through different vendor-provided libraries/frame-

works as shown in Figure 1.

Runtime implementation: One of the interesting aspects of our

implementation is that there is only a CUDA implementation of

the GPUAPI module. We utilize the hipify from AMD and dpct
from Intel to convert the CUDA implementation to a HIP and

DPC++ version respectively. Additionally, on Intel platforms, we

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

CHIUW ’23, June 1, 2023, Virtual Format Zhao, Hayashi, Videau, Sarkar

CUDA HIP SYCL

NVIDIA ✓ ✓ ✓
AMD ✓(via hipify) ✓ ✓
Intel ✓(via CHIP-SPV or dpct) ✓(via CHIP-SPV) ✓

Table 1: How user-written kernels work on different GPU
platforms.

CUDA

NVIDIA
GPUs

HIP

AMD
GPUs

SYCL

Intel
GPUs FPGAs

GPUAPI

CHIP-SPV

Figure 1: Multi-platform support in the GPUAPImodule.

GPUAPI.chpl

GPUAPI module

GPUAPI.cu Binary for
NVIDIA GPUs

Binary for
AMD GPUs

nvcc

hipify hipcc

dpct
Binary for
Intel GPUs

CHIP-SPV

Figure 2: The implementation of the GPUAPI module.

used to provide another way to run the hipifyed runtime code

with HIPLZ [12] and we have updated our Intel backend implemen-

tation as HIPLZ transitions to CHIP-SPV, which is the main topic

of this work.

More specifically, at the time of installation, our cmake-based

build system identifies installed GPUs and generates an appropriate

static (.a) and/or shared (.so) library with the conversion - e.g.,

libGPUAPICUDA.so for NVIDIA GPUs (Figure 2).

User-written GPU kernels: The user is supposed to write the

kernel part using vendor-provided GPU libraries/frameworks such

as CUDA, HIP, SYCL, and so on. The user can simply write their

kernels using their favorite framework and link it with the cor-

responding version of GPUAPI library (e.g., libGPUAPICUDA.so).
If there is any conversion required, the user can also utilize our

cmake-based build system. Table 1 summarizes how user-written

kernels work on different GPU platforms.

The general applicability of this auto-conversion approach:
It is also worth noting that this auto-conversion approach works

very well even with real-world applications. For example, while the

kernel part of ChOp and CHAMPS are originally implemented in

CUDA, the hipify tool is able to produce the HIP version and run

it on an AMD GPU flawlessly [5, 7, 8].

Clang/LLVM Compiler

CUDA source .cu

Host LLVM IR

X86 Target

Device LLVM IR

SPIR-V Target

X86 ELF
SPIR-V IL

LLVM Linker

CUDA APIs implemented via Intel
Level Zero Runtime APIs

Figure 3: CHIP-SPV Code Generation.

3 CHIP-SPV
The design goal of CHIP-SPV [3] is to connect the heterogeneous

programming model with low-level runtime library, especially

for Intel Level Zero. CHIP-SPV is extended from an early work

HIPLZ [12] that bridges the HIP programming model to Intel Level

Zero. To support CUDA programming model, there should be 1) a

compiler that takes CUDA source code to generate an executable

binary and 2) a runtime library that implements CUDA API rou-

tines to support target CUDA GPUs. As shown in Figure 3, CHIP-

SPV employs a CUDA-compatible compiler frontend based on the

LLVM/Clang [10] that translates CUDA source code to two parts of

LLVM intermediate representation: host IR and device IR (generated

from CUDA kernel functions). The host part is processed via the

legacy LLVM x86 backend to produce an x86 binary, and the device

part is processed via the LLVM SPIR-V backend to produce SPIR-V

IR. The x86 binary and the SPIR-V IR are then linked together to

make an x86 executable binary (or shared library) that is embedded

with SPIR-V (a fat binary). The linked binary interacts with a GPU

via CUDA API routines that are implemented by Intel Level Zero

runtime routines. The SPIR-V IR is translated GPU binary via the

JIT compiler in the vendor driver (i.e., Intel GPU driver).

4 USING CHIP-SPV AS CUDA/HIP BACKEND
As mentioned in Section 2, user-written GPU kernels in user’s

program and device-related routines in GPUAPI.cu are supposed to
be compiled by the nvcc compiler. This is where CHIP-SPV comes

into play. Specifically, CHIP-SPV compiles those CUDA programs

to a binary that targets an Intel GPU or any other Intel Level Zero

compatible GPU. Figure 4 presents the workflow that builds the

Enabling CHIP-SPV in Chapel GPUAPI Module CHIUW ’23, June 1, 2023, Virtual Format

GPUAPI module

GPUAPI chpl GPUAPI cu

Chapel Compiler Clang/LLVM

Chapel Host Binary Library
SPIR-V IL

CUDA APIs
implemented via
Intel Level Zero
Runtime APIs

Chapel Runtime
Library

Figure 4: CHIP-SPV Code Generation.

GPUAPI module (GPUAPI.chpl and GPUAPI.cu) to Intel GPUs. As

with the other existing backends in Figure 2, the Chapel part is

compiled via the Chapel compiler and the CUDA part is compiled

to a shared library via Clang/LLVM. At runtime, the Chapel host

binary invokes the library to execute the GPU part on the target

Intel GPU.

5 EVALUATION
We implemented a CHIP-SPV-based GPUAPI backend and validated

the GPUIterator+GPUAPI version of different benchmarks worked

on the following two Intel-integrated GPU platforms:

• Intel Gen 9: which is composed of a 4-Core Intel Xeon Proces-

sor E3-1585 v5 CPU running at 3.5GHz and Iris Pro Graphics

P580 (GT4e) Gen9 GPU with a peak clock rate at 1.15GHz

and 72 execution units;

• Intel UHD Graphics 770: which is composed of a 12-Core

Intel i7-12700 CPU running at 2.1GHz and UHD770 with a

peak clock rate of 1.45GHz and 96 execution units.

The driver libraries used in this experiment are Intel Compute

Runtime NEO version: driver version 22.02 for Gen9 and 23.09 for

UHD Graphic 770.

We used Chapel version 1.29 and employed five benchmarks

(shown in Table 2) to evaluate the performance of the GPUIterator
module and the GPUAPI module with the CHIP-SPV backend en-

abled. In each benchmark, the iteration spaces of forall loops

are divided between CPU and GPU in different percentages (CPU

X% and GPU Y%, where 𝑋 + 𝑌 = 100). It is worth noting that it

is safe to assume that the performance of CPU100%+GPU0% is

equivalent to that of the original Chapel forall version as the

GPUIterator module internally uses the same parallel iteration

mechanism as the original one [4]. Also, in all the five benchmarks,

we verified that the GPU variants produce the same output as what

the CPU100%+GPU0% variant produces.

The experimental results obtained on Gen9 (see Figure 5) and

UHD Graphics 770 (see Figure 6) show that BlackScholes, Logistic

Table 2: Benchmarks and input data size used in our evalua-
tion .

Benchmark Description Data Size

Vector Copy A simple vector kernel n = 200 × 2
20

Stream A simple vector kernel n = 200 × 2
20

BlackScholes The Black-Scholes equation n = 200 × 2
20

Logistic Regression A classification algorithm f = 2
16

s = 32

Matrix Multiplication Matrix-Matrix multiply n = 2
11

Regression andMatrix Multiplication gain performance enhance-

ment when increasing GPU workload on the Gen9 GPU. However,

due to the restriction of the integrated GPU (i.e., built on the same

chip with CPU and share memory channel and processing power),

the performance enhancement is limited in general.

Although the performance improvement is not significant enough

on the integrated GPU, it is important to note that 1) we were able to

verify the end-to-end compilation and execution flow of the CHIP-

SPV backend using five different applications on the Intel GPU and

2) we believe employing CHIP-SPV as a backend for GPUAPI is a

reasonable way to help target GPUAPI to different GPU platforms, in

particular Intel GPU platforms. Additionally, one inherent benefit of

using GPUIterator + GPUAPI is that this allows the user to explore
the best performing CPU-GPU ratio easily even when another GPU

platform is used.

6 CONCLUSIONS
In this talk, we present the work that employs CHIP-SPV as a

backend for Chapel GPUAPI module to support compiling and ex-

ecuting CUDA/HIP code on Intel Level Zero runtime-compatible

GPU systems. We evaluate our prototype on two Intel-integrated

GPU platforms: Gen9 and UHD. The experimental results show

that using CHIP-SPV helps target GPUAPI to more GPU platforms.

Our further plan is to evaluate our module on a discrete Intel

GPU (e.g. XE), on which we anticipate such a GPU gives more

performance improvements over CPUs as in our previous work [4].

Also, since CHIP-SPV is extended to support OpenCL runtime in

addition to Intel Level Zero runtime, we also plan to use other

OpenCL-supported GPU platforms.

Furthermore, we plan to discuss the possibility of using CHIP-

SPV as a general code generation target in Chapel’s GPU code

generator [9] to enhance its portability. In that case, the Chapel

compiler translates Chapel’s GPU loops as device-specific LLVM

IR, and lets CHIP-SPV’s compiler toolchain translate them into a

fat binary that can run on various GPU architectures that supports

either Intel GPUs or OpenCL.

7 ACKNOWLEDGEMENTS
This work was supported by the Argonne Leadership Computing

Facility, which is a DOEOffice of Science User Facility supported un-

der Contract DE-AC02-06CH11357, and by the Exascale Computing

Project (17-SC-20-SC), a collaborative effort of two U.S. Department

of Energy organizations (Office of Science and the National Nuclear

Security Administration). We also gratefully acknowledge the com-

puting resources provided and operated by the Joint Laboratory for

System Evaluation (JLSE) at Argonne National Laboratory.

CHIUW ’23, June 1, 2023, Virtual Format Zhao, Hayashi, Videau, Sarkar

0
0.2
0.4
0.6
0.8

1
1.2
1.4

C1
00

%
+G

0%

C7
5%

+G
25

%

C5
0%

+G
50

%

C2
5%

+G
75

%

C0
%

+G
10

0%

C1
00

%
+G

0%

C7
5%

+G
25

%

C5
0%

+G
50

%

C2
5%

+G
75

%

C0
%

+G
10

0%

C1
00

%
+G

0%

C7
5%

+G
25

%

C5
0%

+G
50

%

C2
5%

+G
75

%

C0
%

+G
10

0%

C1
00

%
+G

0%

C7
5%

+G
25

%

C5
0%

+G
50

%

C2
5%

+G
75

%

C0
%

+G
10

0%

C1
00

%
+G

0%

C7
5%

+G
25

%

C5
0%

+G
50

%

C2
5%

+G
75

%

C0
%

+G
10

0%

Vector Copy Stream BlackScholes LogisticReg MatrixMul

Figure 5: Performance evaluation over the original forall (4 workers) on the Intel Xeon E3-1585 v5 CPU + Gen9 GPU.

Figure 6: Performance evaluation over the original forall (12 workers) on the Intel i7-12700 CPU + UHD Graphics GPU.

REFERENCES
[1] Tiago Carneiro, Nouredine Melab, Akihiro Hayashi, and Vivek Sarkar. 2021.

Towards Chapel-based Exascale Tree Search Algorithms: dealing with multiple

GPU accelerators. In HPCS 2020 - The 18th International Conference on High
Performance Computing & Simulation. Barcelona / Virtual, Spain. https://hal.

archives-ouvertes.fr/hal-03149394

[2] Bradford L. Chamberlain. 2011. Chapel (Cray Inc. HPCS Language). In Encyclo-
pedia of Parallel Computing. 249–256. https://doi.org/10.1007/978-0-387-09766-

4_54

[3] CHIP-SPV. 2023. chip-spv. https://github.com/CHIP-SPV/chip-spv.

[4] Akihiro Hayashi, Sri Raj Paul, and Vivek Sarkar. 2019. GPUIterator: Bridging

the Gap between Chapel and GPU Platforms (CHIUW 2019). Association for

Computing Machinery, New York, NY, USA, 2–11. https://doi.org/10.1145/

3329722.3330142

[5] Akihiro Hayashi, Sri Raj Paul, and Vivek Sarkar. 2022. A Multi-Level Platform-

Independent GPU API for High-Level Programming Models. In High Performance
Computing. ISC High Performance 2022 International Workshops, Hartwig Anzt,
Amanda Bienz, Piotr Luszczek, and Marc Baboulin (Eds.). Springer International

Publishing, Cham, 90–107.

[6] A. Hayashi, S. Raj Paul, and V. Sarkar. 2020. Exploring a multi-resolution GPU

programmingmodel for Chapel. In 2020 IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW). 675–675. https://doi.org/10.1109/

IPDPSW50202.2020.00117

[7] A. Hayashi, S. Raj Paul, and V. Sarkar. 2021. GPUAPI: Multi-level Chapel Run-

time API for GPUs. In The 8th Annual Chapel Implementers and Users Work-
shop(CHIUW).

[8] A. Hayashi, S. Raj Paul, and V. Sarkar. 2022. Accelerating CHAMPS on GPUs. In

The 9th Annual Chapel Implementers and Users Workshop(CHIUW).
[9] Engin Kayraklioglu, Andy Stone, David Iten, Sarah Nguyen, Michael Fergu-

son, and Michelle Strout. 2022. Targeting GPUs Using Chapel’s Locality and

Parallelism Features. In The 9th Annual Chapel Implementers and Users Work-
shop(CHIUW).

[10] LLVM.org. 2023. Clang: a C language family frontend for LLVM. http://clang.

llvm.org/.

[11] Matthieu Parenteau, Simon Bourgault-Cote, Frédéric Plante, Engin Kayraklioglu,

and Eric Laurendeau. 2021. Development of Parallel CFD Applications with the

Chapel Programming Language. In AIAA Scitech 2021 Forum. https://doi.org/10.

2514/6.2021-0749

[12] Jisheng Zhao, Colleen Bertoni, Jeffrey Young, Kevin Harms, Vivek Sarkar, and

Brice Videau. 2022. HIPLZ: Enabling Performance Portability for Exascale

Systems. In HeteroPar 2022: Euro-Par Workshop, August, 2022, Proceedings (Lec-
ture Notes in Computer Science), Maciej Malawski and Krzysztof Rzadca (Eds.).

Springer.

https://hal.archives-ouvertes.fr/hal-03149394
https://hal.archives-ouvertes.fr/hal-03149394
https://doi.org/10.1007/978-0-387-09766-4_54
https://doi.org/10.1007/978-0-387-09766-4_54
https://github.com/CHIP-SPV/chip-spv
https://doi.org/10.1145/3329722.3330142
https://doi.org/10.1145/3329722.3330142
https://doi.org/10.1109/IPDPSW50202.2020.00117
https://doi.org/10.1109/IPDPSW50202.2020.00117
http://clang.llvm.org/
http://clang.llvm.org/
https://doi.org/10.2514/6.2021-0749
https://doi.org/10.2514/6.2021-0749

	1 Introduction
	2 GPUAPI
	3 CHIP-SPV
	4 Using CHIP-SPV as CUDA/HIP Backend
	5 Evaluation
	6 Conclusions
	7 Acknowledgements
	References

