Accelerating Data Analytics with Arkouda on GPUs
Chapel Implementers and Users Workshop, 2 June 2023

Josh Milthorpe, Brett Eiffert, and Jeffrey S. Vetter
ORNL Advanced Computing Systems Research, milthorpejj@ornl.gov

This research used resources of the Experimental Computing Laboratory (ExCL) at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.
Accelerating Arkouda with GPUs

• Arkouda promises 'HPC-enabled exploratory data analytics'

• Compute on large data → memory bandwidth

<table>
<thead>
<tr>
<th></th>
<th>CPU-DRAM</th>
<th>GPU-HBM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summit (2018)</td>
<td>340 GB/s</td>
<td>2,700 GB/s</td>
</tr>
<tr>
<td>Frontier (2022)</td>
<td>205 GB/s</td>
<td>13,080 GB/s</td>
</tr>
</tbody>
</table>

• Challenges:
 - algorithmic portability
 - memory management
 - programmability

https://github.com/Bears-R-Us/arkouda
Arkouda Architecture

Python3 Client

ZMQ Socket

Chapel Server

Code Modules

Dispatcher

Indexing

Arithmetic

Sorting

Generation

I/O

GPU-specific code (generated or GPUAPI)

Distributed Array

Meta

MPP, SMP, Cluster, Laptop, etc.

Platform

Accelerator devices (GPUs)

Develop semantic mapping between Chapel abstractions and accelerators
Chapel GPUAPI

- Georgia Tech-developed framework abstracting over GPU programming models (CUDA, HIP, DPC++, SYCL)

- GPUIterator: exposing parallelism for kernel launch

- GPUAPI: device and memory management
 - low-level: C-interoperability wrappers around device functions
 - mid-level: GPUArray to manage memory allocation, transfer
 - there is no high-level
Example: Sum on GPU (mid-level GPUAPI)

```plaintext
use GPUIterator;
use GPUAPI;

extern proc launchSum(devInPtr: c_void_ptr, devOutPtr: c_void_ptr, n: int): etype;

proc sum(A: [?aDom] ?etype) {
  var deviceSum: [0..#nGPUs] etype;
  var sumCallback = lambda(lo: int, hi: int, n: int) {
    var devA = new GPUArray(A.localSlice(lo .. hi));
    var devOut = new GPUArray(deviceSum[deviceId]);
    var deviceId: int(32);
    GetDevice(deviceId);
    devA.toDevice();
    devA.toDevice();
    launchSum(devA.dPtr(), devOut.dPtr(), n);
    DeviceSynchronize();
    devOut.fromDevice();
  };
  forall i in GPU(A.localSubdomain(), sumCallback) { };
  return (+ reduce deviceSum);
}
```

CUDA / OpenCL
Arkouda GPU Device Cache

- **Common pattern**
 - new GPUArray for local chunk
 - copy host-to-device
 - kernel launch[es]
 - [copy device-to-host]

- **Where possible, leave arrays on GPU between operations**

```
class SymEntry : GenSymEntry {
    proc createDeviceCache() {
        class DeviceCache {
            var isCurrent = false;
            var deviceChunks: [gpuDevices] range;
            var deviceArrays: [gpuDevices] shared GPUArray?;
            proc toDevice(deviceId) {
                if (!isCurrent) {
                    deviceArrays[deviceId]!.toDevice();
                    isCurrent = true;
                }
            }
            proc fromDevice(deviceId) { ... }
        }
    }
}
```
Example: Histogram on GPU (Device Cache)

\[
\sum_{i=0}^{n-1} A_i
\]

```ghci
use GPUIterator;
use GPUAPI;

extern proc launchSum(devInPtr: c_void_ptr, devOutPtr: c_void_ptr, n: int): etype;

proc sum(e: SymEntry) {
  e.createDeviceCache(); // idempotent
  var deviceSum: [0..#nGPUs] e.etype;
  var sumCallback = lambda(lo: int, hi: int, n: int) {
    var devOut = new GPUArray(deviceSum[deviceId]);
    var deviceId: int(32);
    GetDevice(deviceId);
    e.toDevice(deviceId); // idempotent
    launchSum(e.getDeviceArray(deviceId).dPtr(), devOut.dPtr(), n);
    DeviceSynchronize();
    devOut.fromDevice();
  }; 
  forall i in GPU(e.a.localSubdomain(), sumCallback) {
    return (+ reduce deviceSum);
  }
}
```

- Device memory allocation
- Data transfer
- Synchronization
GPUUnifiedDist: Arkouda Arrays in Shared Virtual Memory

- Host and device(s) share pointers to a single unified memory space
- Any access to memory that is currently in a different physical memory will result in a page fault, handled transparently with hardware support
- User-defined Chapel distribution GPUUnifiedDist
 - based on BlockDist
 - allocates memory for LocGPUUnifiedArr using makeArrayFromPtr(umemPtr, ...)

```chapel
module SymArrayDmap ...
proc makeDistDom(size:int, param GPU:bool = false) where GPU == true {
  select MyDmap {
    when Dmap.blockDist {
      return {0..#size} dmapped GPUUnified(...);
    }
    ...
  }
}
```

https://github.com/milthorpe/chapel-gpu
https://github.com/milthorpe/arkouda
Example: Histogram on GPU (unified memory)

\[\sum_{i=0}^{n-1} A_i \]

use GPUIterator;
use GPUAPI;

extern proc launchSum(devInPtr: c_void_ptr, devOutPtr: c_void_ptr, n: int): etype;

proc cubSum(ref e: SymEntry), where e.GPU == true {
var deviceSum: [0..#nGPUs] e.etype;
var sumCallback = lambda(lo: int, hi: int, n: int) {
 var devOut = new GPUArray(deviceSum[deviceId]);
 var deviceId: int(32);
 GetDevice(deviceId);
 e.prefetchLocalDataToDevice(lo, hi, deviceId);
 launchSum(e.c_ptrToLocalData(lo), devOut.dPtr(), n);
 DeviceSynchronize();
 devOut.fromDevice;
};
forall i in GPU(e.a.localSubdomain(), sumCallback) {
 return (+ reduce deviceSum);
}
Experimental Evaluation

- Evaluation platform: NVIDIA DGX workstation
 - 2 × 20-core Intel Xeon E5-2698s @ 2.2GHz
 - 256GiB of DRAM
 - 4 × Tesla V100 GPUs with 32 GiB HBM
 - Chapel 1.30
 - NVHPC toolkit v22.11 (CUDA v11.8)
 - CUDA driver version 530.30.02

- Timing server-side Arkouda Chapel code directly (not from Python client)
 - Doesn't allow batching of communications
Reduction

- **GPUArray**
 - DeviceCache

- **umem**
 - GPUUnifiedDist

- **Kernel:**
 - CUB library
 - DeviceReduce::Sum
 - NCCL
 - ncclReduce

```
ak_arr.sum()
```
Histogram

• Arkouda (CPU)
 `histogramGlobalAtomic`

• Kernel:
 - CUB library
 `DeviceHistogram::HistogramEven`
 - NCCL
 `ncclAllReduce`

```python
ak.histogram(A, sqrt(A.size))
```
Chained Operations

• DeviceCache / Unified Memory avoids multiple host-device transfers

A.sum()
A.min()
A.max()

ak.histogram(A, sqrt(A.size))
Sort

- **Arkouda (CPU)**
 - `radixSortLSD_keys`

- **Kernel:**
 - CUB library
 - `DeviceRadixSort::SortKeys`
 - merge on CPU:
 - K-way merge
 - GPU merge:
 - peer-to-peer swap and merge

Tobias Maltenberger, Ivan Ilic, Ilin Tolovski, and Tilmann Rabl.
https://doi.org/10.1145/3514221.3517842

```
ak_df.sort_values()
```
Summary and Future Work

• Chapel GPUAPI combined with unified memory can support productive, high-performance development of GPU-accelerated data analytics
 – algorithmic portability still a challenge

• Future:
 – Application Workflows: real data analytics pipelines
 • e.g. astronomical image/spectroscopic post-processing and analysis
 – Port to AMD GPUs (HIP/ROCm)
 – Chapel GPU code generation

This research used resources of the Experimental Computing Laboratory (ExCL) at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.