Runtime comparison between Chapel and Fortran

Willian. C. Lesinhovski1 Nelson. L. Dias1 Livia. S. Freire2 Anna. C. F. S. de Jesus2

1Department of Environmental Engineering
Federal University of Paraná

2Instituto de Ciências Matemáticas e de Computação
University of São Paulo

June 2023
Objective

Compare the performance of Chapel and Fortran on a single core when running some classic algorithms in numerical analysis.

- Matrix vector multiplication;
- Lax-Friedrichs method for kinematic wave equation;
- SOR method for Poisson equation.
Objective

Compare the performance of Chapel and Fortran on a single core when running some classic algorithms in numerical analysis.

- Matrix vector multiplication;
- Lax-Friedrichs method for kinematic wave equation;
- SOR method for Poisson equation.

Motivation

Develop a code in Chapel for fluid mechanic simulations.
Matrix vector multiplication

Let x, y be real vectors of size $n \in \mathbb{N}$ and A a real matrix of size $n \times n$ with elements a_{ij}. The product $y = Ax$ is defined by

$$y_i = \sum_{j=1}^{n} a_{ij} x_j, \ i \in \{1, \ldots, n\}. \quad (1)$$

On the other hand, $y = x^T A$ is defined as

$$y_i = \sum_{j=1}^{n} x_j a_{ji}, \ i \in \{1, \ldots, n\}, \quad (2)$$

- $y = Ax$ is more efficient in programming languages that store arrays considering row-major order (Chapel).
- $y = x^T A$ is more efficient in programming languages that use column-major order (Fortran).

The runtime of the Ax product can be improved using low-level routines and advanced matrix multiplication algorithms.
Chapel ($y = Ax$)

```chapel
for i in 1..n do {
    var sum = 0.0;
    for j in 1..n do {
        sum += A[i, j] * x[j];
    }
    y[i] = sum;
}
```

Fortran ($y = x^T A$)

```fortran
do i = 1, n
    sum = 0.0
    do j = 1, n
        sum = sum + x(j) * A(j, i)
    end do
    y(i) = sum
end do
```

Low level functions for $y = Ax$

- `gemv` (Chapel)
- `matmul` (Fortran)
Results for matrix vector multiplication

- \(A \) is a real \(n \times n \) matrix with \(n = 10000 \);
- \(A \) and \(x \) were filled with random values.
Results for matrix vector multiplication

- A is a real $n \times n$ matrix with $n = 10000$;
- A and x were filled with random values.

<table>
<thead>
<tr>
<th>Language</th>
<th>Ax</th>
<th>x^TA</th>
<th>Ax (gemv/matmul)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapel</td>
<td>0.0820</td>
<td>0.5541</td>
<td>0.0278</td>
</tr>
<tr>
<td>Fortran</td>
<td>0.3625</td>
<td>0.0523</td>
<td>0.0340</td>
</tr>
</tbody>
</table>

Table: Runtime of matrix vector multiplication.
Kinematic wave equation

\[
\frac{\partial}{\partial t} u(x, t) + c \frac{\partial}{\partial x} u(x, t) = 0,
\]

with domain \(x \in [0, 10], t \in [0, 1] \).

The grid \((x_i, t_n)\) is defined by

- \(x_i = i \Delta x \) where \(i \in \{0, 1, \ldots N_x\} \) with \(\Delta x = 10/N_x \);
- \(t_n = n \Delta t \) where \(n \in \{0, 1, \ldots N_t\} \) with \(\Delta t = 1/N_t \).

The approximate solution \(u_i^n \approx u(i\Delta x, n\Delta t) \) is calculated using the relation:

\[
 u_i^{n+1} = \frac{1}{2} \left[u_{i+1}^n + u_{i-1}^n - \sigma (u_{i+1}^n - u_{i-1}^n) \right],
\]

where

\[
 \sigma = \frac{c \Delta t}{\Delta x}.
\]
Chapel

var nold = 0;
var nnew = 1;
for n in 1..Nt do {
 for i in 1..Nx−1 do {
 u[nnew,i] = 0.5*((u[nold,i+1] + u[nold,i−1])-cour*(u[nold,i+1]−u[nold,i−1]));
 }
 u[nnew,0] = 0.0;
 u[nnew,Nx] = 0.0;
 nnew <=> nold;
}

Fortran

nold = 0
nnew = 1
do n = 1,Nt
 do j = 1,Nx−1
 u(j,nnew) = 0.5*((u(j+1,nold)+u(j−1,nold))−&
 cour*(u(j+1,nold)−u(j−1,nold)))
 end do
 u(0,nnew) = 0.0
 u(Nx,nnew) = 0.0
 nk = nnew
 nnew = nold
 nold = nk
end do
Results for kinematic wave equation

Boundary conditions

\[u(x, 0) = \begin{cases}
2x(1 - x), & \text{if } 0 \leq x \leq 1, \\
0, & \text{if } 1 < x \leq 10,
\end{cases} \]

\[u(0, t) = u(10, t) = 0, \quad 0 \leq t \leq 1. \]

Parameters: \(N_x = 20000\), \(N_t = 10000\) and \(c = 2\).
Boundary conditions

\[u(x, 0) = \begin{cases}
2x(1 - x), & \text{if } 0 \leq x \leq 1, \\
0, & \text{if } 1 < x \leq 10,
\end{cases} \]

\[u(0, t) = u(10, t) = 0, \quad 0 \leq t \leq 1. \]

Parameters: \(N_x = 20000, \) \(N_t = 10000 \) and \(c = 2. \)

<table>
<thead>
<tr>
<th>Language</th>
<th>Rows</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapel</td>
<td>0.0971</td>
<td>0.2286</td>
</tr>
<tr>
<td>Fortran</td>
<td>0.3492</td>
<td>0.1893</td>
</tr>
</tbody>
</table>

Table: Runtime of Lax method in Chapel
The Poisson equation

$$
\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = f,
$$

with domain $D = [0, 1] \times [0, 1]$.

The grid (x_i, y_j) is defined by $x_i = i \Delta l$ and $y_j = j \Delta l$ where $i, j \in \{0, 1, \ldots N\}$ with $\Delta l = 1/N$.

Considering a central finite difference scheme for the second order derivatives and applying the SOR method with parameter ω we have the following iterative algorithm to solve the Poisson equation

$$
\begin{align*}
\delta u_{i,j}^k &= \omega \left((u_{i+1,j}^k + u_{i-1,j}^k + u_{i,j+1}^k + u_{i,j-1}^k - \Delta l^2 f_{i,j})/4 - u_{i,j}^k \right), \\
u_{i,j}^{k+1} &= u_{i,j}^k + \delta u_{i,j}^k.
\end{align*}
$$

The stopping criteria is:

$$
\frac{1}{(N - 1)^2} \sum_{i,j=1}^{N-1} |\delta u_{i,j}^k| < \epsilon.
$$
Chapel

```chapel
var err = 2.0*epsilon;
var k = 0;
while err >= epsilon do {
  err = 0.0;
  for i in 1..N-1 do {
    for j in 1..N-1 do {
      var um = (u[i+1,j]+u[i-1,j]+u[i,j-1]+u[i,j+1]+h2*f[i,j])/4.0;
      var du = omega*(um - u[i,j]);
      u[i,j] += du;
      err += abs(du);
    }
  }
  k += 1;
  err /= N2;
}
```

Fortran

```fortran
error = 2*eps
k = 0
do while (error >= eps)
  error = 0.0
  do j = 1,N-1
    do i = 1,N-1
      um = (u(i+1,j)+u(i-1,j)+u(i,j-1)+u(i,j+1)-h2*f(i,j))/4.0
      du = omega*(um - u(i,j))
      u(i,j) = u(i,j) + du
      error = error + abs(du)
    end do
  end do
  k = k+1
  error = error/N2
end do
```
Results for SOR method

Source term

\[f(x, y) = -(\pi^2)(x^2 + y^2) \sin(\pi xy). \]

Boundary conditions

\[
\begin{align*}
 u(x, 1) &= \sin(\pi x), \\
 u(1, y) &= \sin(\pi y), \\
 u(x, 0) &= u(0, y) = 0.
\end{align*}
\]

Parameters: \(N = 512, \omega = 1.95 \) and \(\epsilon = 10^{-8} \).
Initial guess in the internal points: \(u_{i,j}^0 = 0 \).
Results for SOR method

Source term

\[f(x, y) = -(\pi^2)(x^2 + y^2) \sin(\pi xy). \]

Boundary conditions

\[
\begin{align*}
 u(x, 1) &= \sin(\pi x), \\
 u(1, y) &= \sin(\pi y), \\
 u(x, 0) &= u(0, y) = 0.
\end{align*}
\]

Parameters: \(N = 512, \omega = 1.95 \) and \(\epsilon = 10^{-8} \).

Initial guess in the internal points: \(u^0_{i,j} = 0 \).

<table>
<thead>
<tr>
<th>Language</th>
<th>Runtime</th>
<th>Iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapel</td>
<td>7.4721</td>
<td>7507</td>
</tr>
<tr>
<td>Fortran</td>
<td>8.3910</td>
<td>7507</td>
</tr>
</tbody>
</table>

Table: Runtime of SOR method
Conclusions

- The codes in Chapel are very similar to those in Fortran allowing a direct comparison of performance between the two languages.
- Chapel can be somewhat faster than Fortran in a single core.
- We decided to use Chapel for the implementation of our fluid mechanics model due to its competitive performance compared to Fortran.
- Our target programs will require parallel processing which is much easier to do in Chapel than in Fortran.
- Chapel has some interesting features and advantages over Fortran.
 - Swapping values between two variables in Chapel is done with one line of code using the command `<=`, on the other hand in Fortran three lines of code and an auxiliary variable are required.
 - In Chapel is not necessary to declare the loop variables.
Thank you for your attention!