Too Big to Fail:

Massive Scale Linear Algebra
with Chapel and Arkouda

Chris Hollis

Software Engineer — Department of Defense
CHIUW 2023

June 2

Objective

® Exploratory data analysis (EDA) requires open-ended and frictionless interaction with data

® Pandas -> NumPy/SciPy -> Linear algebra -> Pandas
®* Arkouda allows interactive EDA at scale
® 10's of TBs of data

® Distributed memory allows for large array allocation

@ ﬁ’f: NumPy\

1
#Sy SciPy ek

Arkouda Overview e

® Whatis Arkouda?

® A NumPy-like Python app that utilizes Chapel for its
backend server

® Abstracts powerful Chapel functions with a familiar
Python interface

® Prioritizes compatibility with existing data science
workloads

® Jupyter notebooks

® Mirrors Pandas/NumPy usage

® Open-scource and can be found at:

https://github.com/Bears-R-Us/arkouda

AkSparse Overview

® Whatis AkSparse?
® Sparse linear algebra library built with Arkouda

® Emulates SciPy's ".sparse" library
® Supports COO, CSR, and CSC formats

® Basic matrix arithmetic
® Matrix-Vector multiplication

® Sparse General Matrix Multiplication (SpGeMM)

S 2 5 Sparse General Matrix

Aksparse Aksparse.coo_matrix() A.tocsc() C=A.spgemm(B)

scipy scipy.coo_matrix() A.tocsr() C=A.dot(B)

Algorithm

® Sparse matrix multiplication is hard

* No way to know how large solution
will be beforehand

* Load balancing
* Communication cost

® Focus on large unstructured data
® Need distributed-scale computing

®* Communication cost is a bottleneck

Algorithm

® Sparse matrix multiplication is hard ® How is AkSparse's SpGeMM different?
= No way to know how large solution ® Leverage Arkouda's optimized sorting and
pillbebeforehand groupby capabilities on HPC hardware
* Loadbalancing ® Interactive manipulation of TB scale data
* Communication cost 5

“Outer product” formulation of SpGeMM

L
fatus on large unstructured data ® Reveals size of work needed before any
® Need distributed-scale computing computations

® Minimize communication cost through
Arkouda's message aggregation

®* Communication cost is a bottleneck

Algorithm

Algorithm

Algorithm

Algorithm

Algorithm

Algorithm

/

\

Algorithm

/‘

\

Algorithm
/‘

\

Algorithm

* SpGeMM in Aksparse (A.spgemm(B))
® ConvertAto(CSC
® Convert B toCSR

® Find all 'hits' between nonzero entries in the
columns of A and corresponding rows of B

® Generate a single Arkouda array for all the
multiplications of A.spgemm(B)

Perform a GroupBy on the matrix indices implied
by the full multiplication array

® Perform a sum aggregate on the full
multiplication array results to yield the final
matrix C

def spgemm(self: CSC. other: CSR):

#Identify number of multiplications needed
starts = other.indptr[self._gb_col_row.unique_keys[0]]
ends = other.indptr[self._gb_col_row.unique_keys[0] + 1]
lengths = (ends - starts)
fullsize = lengths.sum()
segs = ak.cumsum(lengths) - lengths
slices = ak.ones(fullsize, dtype=ak.akint64)
diffs = ak.concatenate((ak.array([starts[0]]),
starts[1:] - ends[:-1] + 1))

#Set up arrays for multiplication

slices[segs] = diffs

nonzero = (ends > starts)

fullsegs, ranges = segs, ak.cumsum(slices)

fullBdom = other._gb_row_col.unique_keys|[1][ranges]

fullAdom = ak.broadcast(fullsegs,
self._gb_col_row.unique_keys[1][nonzero],
fullsize)

fullBval = other.data[ranges]

fullAval = ak.broadcast(fullsegs, self.data[nonzero], fullsize)

fullprod = fullAval * fullBval

#GroupBy indices and perform aggregate sum
proddomGB = ak.GroupBy([fullAdom, fullBdom])
result = proddomGB.sum(fullprod)
return Csr{result[1],

result[0][1],

result[0][0],

shape = (self.shape[0], other.shape[1]))

Algorithm

® SpGeMM in Aksparse [A.spgemm(B)]

* ConvertAtoCSC Why it's an outer product

® Convert B toCSR

® Find all ‘hits' between nonzero entries in the — This is easy!

columns of A and corresponding rows of B

® Generate a single Arkouda array for all the — Effectively yields N rank 1 COO matrices

multiplications of A.spgemm(B)

®* Perform a GroupBy on the matrix indices implied _ ThIS is hardl

by the full multiplication array

Perform an aggregate on the full multiplication
array results to yield the final matrix C

Algorithm
/‘

\

Algorithm
/‘

\

Algorithm

Y

|l
.\

4
I \&

L]
" /
@ N
L]

L]

Algorithm

® Only "difficult" computation: O(# mults) groupby
® O(# mults) in general is much bigger than nnz
® Arkouda is tuned to handle large sorts

® Counting # of mults needed is easy
® (Can be done without forming the array

® This means we know if splitting the problem is necessary
before attempting the calc

® Avoids the load balancing issue
® Recursive splitting
® Runs on large distributed memory system

® Multiple 2TB nodes with dual-socket
InfiniBand interconnect

Can handle MUCH larger nnz amounts in the output

Results/Benchmarks
NZPacto aook Jaml aoml wemd

*Results in seconds

SciPy on home computer amil 034 0:35 0.46 s
2omil 311.14 11.64 6.28 4.97
1200mil X X X X
bil X X X X
N
2.52
amil 0.28 0.23 0.53 3.07
aomil 24.57 6.59 4.56 6.8z
1comil X X 101.50 55.68
abil X X X X
Final Test case:
3.19 310 3.03 OUtpl:Jt
b i 8 ~10bil
Arkouda on HPC ami 3.22 32 3.19 3321 multiplications
aomil 7.51 3.46 3.22 3.14
100mil 41.79 42.01 7.25 3.50

abil X X X 44.99

Results/Benchmarks

® Adjacency matrix A for a "small world" graph
® #rows = #columns = ~77 mil
® NNZ =~620 mil

® Computing A*AT

® 4o compute nodes

® ~440 billion multiplies
® ~300 billion NNZ in C

® ~22TB of memory to compute and store
solution

~4 mins

Future Work

® AkSparse is open source and available here:

https://github.com/Bears-R-Us/arkouda-contrib/tree/main/aksparse

® Additional linear algebra functionality
® Optimization
® Improved load balancing
* Implement outerproduct SpGemm Chapel kernel
* Problems too big to store in memory (write to disk)
® Target "big" problem:
® #edges=0(abil)
® NNZ = (200 bil)

® # multiplies = O(a00 trillion)

