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Figure 1: Creation of an UltraLight Dark Matter halo through collisions of solitons in cHPLULTRA.
The density is presented in solar masses per kiloparsec cubed [Mg/kpc?], and the snapshot times are given in terms of gigayears

(Gyr) from the initial conditions.
ABSTRACT

A large outstanding problem in astrophysics is the nature of dark
matter—the mass in the Universe which interacts gravitationally
but does not couple to light. One compelling theory of dark matter
is called UltraLight Dark Matter (ULDM), describing a particle with
a mass m ~ 10722 electron volts which could form so-called ‘halos’
of dark matter around galaxies. In this talk, we will present (1)
the ULDM halos we create and evolve with our Chapel-powered
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simulator CHPLULTRA, (2) how we use Chapel to calculate the eigen-
states of a given ULDM halo, and (3) one application for using these
techniques to advance ULDM research. The performance of our
solver is particularly boosted by the ease of performing slab and
pencil decompositions within Chapel, enabling us to run higher
resolution simulations than an equivalent solver in Python.
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1 EXTENDED ABSTRACT
1.1 The Physical Background

The story of the structures that make up our Universe is primar-
ily told by gravity; gravity, in turn, is driven by mass. Despite its
crucial role, about 80% of the mass in the cosmos cannot be ob-
served directly as it does not interact with the light. Currently,
most popular explanations for this so-called ‘dark matter’ rely on
new types of particles; of those, one family of particles that has
recently been gaining traction are axions and axion-like particles
[7]. Axions could be easily created in the early Universe and offer
a wide range of behavior depending on the particles’ mass. In the
case of low-particle masses, it becomes burdensome and inefficient
to track individual particles; instead, the wavefunction description
used in quantum mechanics is favored. This family of axions with
m < 30 eV (electon volts) is often called wave dark matter, with the
very low mass extreme known as fuzzy or ultralight dark matter
(ULDM)[3]. The low mass and wavefunction description of ULDM
results in intriguing phenomenology of this dark matter candidate
and its structures, which is the main topic of this talk.

Numerically simulating ULDM and its behavior requires solving
the Schrodinger-Poisson system

if =5V ay o)
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presented here in dimensionless code units. The first line is the
Schrodinger equation, which governs the evolution of the dark mat-
ter’s wavefunction 1. While ¢ is the fundamental building block of
ULDM, the related observable quantity is actually the dark matter’s
density, p = |1/|. The second line is known as the Poisson equation,
and it describes the evolution of the dark matter’s gravitational
potential, ®, which depends only on the density |i/|2. We solve this
system of equations using our Chapel-powered pseudo-spectral
fixed grid code CHPLULTRA, described in Ref. [6] and based on the
algorithm described in Ref. [1].

1.2 Simulating Halos with capLULTRA

A ULDM halo itself is not an eigenstate solution to the Schrédinger-
Poisson system; instead, the system’s ground state is a spherically
symmetric mass with a known density distribution, known as a
“soliton". One method of forming ULDM halos relies on merging
multiple solitons. Their collisions will excite higher-order eigen-
states of the system, resulting in a density profile which can be
approximated as [4]
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where pg1(r) is a soliton profile forming a “core”, ry is a transition
radius equal to a few times the full width half maximum (FWHM)
of the soliton core, and pNpw is the Navarro-Frenk-White[5] profile
which falls off as r=3 at large radial distances.

A radial cross-section of a cHPLULTRA simulation depicting four
merging solitons and the resultant dark matter halo is shown in
the teaser figure, Fig. 1. This simulation was run on a Cray system
with 44 cores per locale. The ran it in a numerical box of grid-
size Ng3 = 5123 using 16 locales, which took under 4 hours. This
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Figure 2: Evolution of the spherically averaged halo profile,
p(r), in solar masses per kiloparsec cubed [Mg/kpc?]. The
instantaneous profiles at each saved timestep are shown in
color. The time average of those profiles (p) is shown in
black.

is representative of our typical simulation, though sometimes we
need to evolve our systems significantly longer; this still takes less
than 12 hours. We also occasionally use a finer grid of 768> or 10243;
using 64 locales, these simulations will take about 5 and 13 hours,
respectively, which is very tractable for our purposes. See Ref. [6]
for more details on cHPLULTRA scaling.

The radially averaged density profile p(r) at each timestep after
the merger shown in that middle panel (T = 1.41 Gyr) are shown
in color in Fig. 2. Averaging those profiles together (equivalent to
averaging over time), we recover the black line in Fig. 2. This type of
time- and radially-averaged profile (p) is crucial for our eigenstate
analysis in the following subsections.

1.3 ULDM Halo Eigenstates

Having defined a time-averaged density profile (p), we can use the
Poisson equation to calculate the corresponding gravitational po-
tential (®). We can then write the decoupled Schrédinger equation
as

if == V3 + (@) @

We are now able to calculate the eigenstates of the above formula-
tion of the Schrodinger seeded by a spherically symmetric potential
(®@). We perform this calculation by assuming the eigenstates ¢,¢m
are separable as
Snem = fue(r) Y(m(ga #), 5
as described in Ref. [8]. The radial piece f¢(r) varies based on the
exact shape of (®), and is calculated in Mathematica; the angular
piece is represented by well-known spherical harmonics Y;" (0, #).
As a post-processing step of our cHPLULTRA simulations, we use
Chapel to decompose each saved wavefunction grid of dimension
Ny x Ny X Ny (stored as an HDF5 array) into spherical components
up to fmax = 10, |[Mmax| < fmax. It is convenient to perform this
step separately from the radial calculation because it is indepen-
dent of the exact system being evolved, so long as the eigenstates
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Figure 3: ULDM core formation is evident when observing
the contribution of the ground state to the wavefunction of
a forming halo. Note that for each collision of N solitons
the final value stays approximately constant, providing an
estimate of relative mass M. /M-

remain separable; thus, there is no need to analyze the profile of the
wavefunction before performing the spherical decomposition. Fur-
thermore, we leverage the ability of Chapel to call external libraries
such as the GNU Scientific Library (GSL)[2], which includes infor-
mation on spherical harmonics. Thus, we are able to both process
large amounts of data in a fast parallel process, as well as avoiding
having to hand-type the forms of the spherical harmonics. For our
canonical example of a 5123 grid with 301 save points, this analysis
takes less than 2 hours when using 16 locales.

1.4 Example Application

Precisely isolating eigenstates from high-resolution dark matter
simulations has given us a new perspective on existing problems
in the ULDM literature. One important application deals with the
relative size of a ULDM halo’s core and the halo itself, M./ M-
The core corresponds exactly to the ground eigenstate ¢ggo; conse-
quently, the relative contribution of the ground state to the properly
normalized wavefunction, |co|, is directly related to the relative
core-halo mass as

lcol® = Me/Mpalo - (6)

We repeated our procedure on halos formed in cHPLULTRA through
the simultaneous collisions of 2 < N < 15 equal mass solitons,
as shown in Fig. 3. Studying our results, we were able to directly
observe the core formation. Furthermore, this approach enabled
us to analyze how M. /My, scales with other parameters of the
system, like total energy and mass. We also explore the heretofore
neglected effects of the order in which solitons merge, which we
have found to have a noticeable effect on our results. We expect to
submit these results for publication in the late summer of 2022, and
we will share our preliminary findings at CHIUW 2022 as a real
world example of how the scalability and performance of Chapel
powers ongoing scientific reserach.
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