
Compiler Optimization for Irregular
Memory Accesses in Chapel

Thomas B. Rolinger (UMD/LPS), Alan Sussman (UMD)

CHIUW 2022
Contact: tbrolin@cs.umd.edu

2

Motivation: Why target irregular memory accesses?

Distributed Sparse Matrix-Vector Multiply (SpMV)

3

Motivation: Why target irregular memory accesses?

Distributed Sparse Matrix-Vector Multiply (SpMV)

Rows is a distributed array

4

Motivation: Why target irregular memory accesses?

Distributed Sparse Matrix-Vector Multiply (SpMV)

Rows is a distributed array

Irregular memory access
x is a distributed array

5

0.0625
0.125

0.25
0.5

1
2
4
8

16

2 4 8 16 32

sp
ee

d-
up

of locales

NAS-CG (Conjugate Gradient)
Problem Size D (73 million non-zeros)

linear scaling

NOT linear scaling

Motivation: Why target irregular memory accesses?

Distributed Sparse Matrix-Vector Multiply (SpMV)

High Productivity does not always lead to High
Performance

6

0.0625
0.125

0.25
0.5

1
2
4
8

16

2 4 8 16 32

sp
ee

d-
up

of locales

NAS-CG (Conjugate Gradient)
Problem Size D (73 million non-zeros)

linear scaling

NOT linear scaling

Motivation: Why target irregular memory accesses?

Distributed Sparse Matrix-Vector Multiply (SpMV)

High Productivity does not always lead to
High Performance

How can we get better performance
for these types of codes in Chapel?

7

Just a simple transformation…

Motivation: Why target irregular memory accesses?

0.0625
0.125

0.25
0.5

1
2
4
8

16
32

2 4 8 16 32

sp
ee

d-
up

locales

NAS-CG (Conjugate Gradient)
Problem Size D (73 million non-zeros)

8

Manual optimizations can
drastically improve performance

original code

new code

linear scaling

Motivation: Why target irregular memory accesses?

0.0625
0.125

0.25
0.5

1
2
4
8

16
32

2 4 8 16 32

sp
ee

d-
up

locales

NAS-CG (Conjugate Gradient)
Problem Size D (73 million non-zeros)

9

Manual optimizations can
drastically improve performance

original code

new code

linear scaling

Motivation: Why target irregular memory accesses?

In this talk:
We can achieve this performance from the original

“nice” code without modifying the code at all

Outline

• Optimization: selective data replication
• Implementation within compiler:
• Code transformations
• Static analysis

• Performance evaluation:
• NAS-CG
• PageRank

10

• We focus on accesses of the form A[B[i]] in forall loops
• A is a distributed array
• the values in B are not known until runtime

• Goal: replicate remotely accessed elements of A so they can be used
locally in the forall
• inspector: runtime analysis that determines remote accesses
• executor: optimized version of the forall that redirects remote accesses to the

replicated copies
• both generated by the compiler without user intervention

• Requirements:
• the forall executes many times with the same access pattern
• A[B[i]] is on the RHS of an operation (i.e., read-only)

11

Selective Data Replication

• We focus on accesses of the form A[B[i]] in forall loops
• A is a distributed array
• the values in B are not known until runtime

• Goal: replicate remotely accessed elements of A so they can be used
locally in the forall
• inspector: runtime analysis that determines remote accesses
• executor: optimized version of the forall that redirects remote accesses to the

replicated copies
• both generated by the compiler without user intervention

• Requirements:
• the forall executes many times with the same access pattern
• A[B[i]] is on the RHS of an operation (i.e., read-only)

12

Selective Data Replication

• We focus on accesses of the form A[B[i]] in forall loops
• A is a distributed array
• the values in B are not known until runtime

• Goal: replicate remotely accessed elements of A so they can be used
locally in the forall
• inspector: runtime analysis that determines remote accesses
• executor: optimized version of the forall that redirects remote accesses to the

replicated copies
• both generated by the compiler without user intervention

• Requirements:
• the forall executes many times with the same access pattern
• A[B[i]] is on the RHS of an operation (i.e., read-only)

13

Selective Data Replication

• We focus on accesses of the form A[B[i]] in forall loops
• A is a distributed array
• the values in B are not known until runtime

• Goal: replicate remotely accessed elements of A so they can be used
locally in the forall
• inspector: runtime analysis that determines remote accesses
• executor: optimized version of the forall that redirects remote accesses to the

replicated copies
• both generated by the compiler without user intervention

• Requirements:
• the forall executes many times with the same access pattern
• A[B[i]] is on the RHS of an operation (i.e., read-only)

14

Selective Data Replication

We manually implemented this optimization in prior work:
• https://chapel-lang.org/CHIUW/2021/Rolinger.pdf

The optimization is influenced by other prior works:
• “Communication Optimizations for Irregular Scientific

Computations on Distributed Memory Architectures”, Das et al.

• “Automatic Support for Irregular Computations in a High-Level
Language”, Su and Yelick

• “ Improving Communication in PGAS Environments: Static and
Dynamic Coalescing in UPC”, Alvanos et al.

https://chapel-lang.org/CHIUW/2021/Rolinger.pdf

Code Transformations

15

Compiler Optimization: Code Transformations

16

Inspector: performs memory access analysis

Key points:
• inspector should only be performed (1) the first

time we encounter the loop and (2) anytime
the access pattern A[B[i]] could have changed

• inspectAccess() does not issue the remote
access to A; it just “queries” whether index B[i]
will be a remote access to A

Compiler Optimization: Code Transformations

17

Executor: executes the loop but redirects remote
accesses to the replicated copies

Key points:
• executorPreamble() initializes replicated

elements of A with values from original array
• we only replicate an element once,

regardless of how many times it is accessed
à amortizes the cost of the remote read
over multiple local accesses

• executeAccess() checks if index B[i] will be a
remote access to A, and if so, returns the local
copy.

Compiler Optimization: Code Transformations

18

May find later in Chapel’s compilation process
that the optimization cannot be applied

In this case, doOptimization is set to false and
dead-code elimination will “undo” our
transformations and fall back to the original
forall loop.

Static Analysis

• Everything just discussed for code transformations only holds if the
optimization CAN and SHOULD be applied
• We need to maintain correct program results
• detect when A[B[i]] access pattern changes so we can re-run the inspector

• We should improve program performance
• ensure that the forall is nested in an outer loop, so it is likely to be executed

multiple times à amortizes the cost of the inspector over multiple iterations
• also need to ensure that the inspector will not have to run EVERY time we

execute the forall

19

Static Analysis

• Everything just mentioned for code transformations only holds if the
optimization CAN and SHOULD be applied
• We need to maintain correct program results
• detect when A[B[i]] access pattern changed so we can re-run the inspector

• We should improve program performance
• ensure that the forall is nested in an outer loop, so it is likely to be executed

multiple times à amortizes the inspector over multiple iterations
• also need to ensure that the inspector will not have to run EVERY time we

execute the forall

20

Static analysis and code transformations are performed automatically

The user does not add pragmas, code annotations, hints or anything to
their code. They turn on a compiler flag

Performance Evaluation

• Applications:
• NAS-CG (conjugate gradient)
• PageRank (iterative SpMV-like operations)

• Systems:
• FDR Infiniband, 20 cores per node, 512 GB of memory per node
• Cray XC, Aries interconnect, 44 cores per node, 128 GB of memory per node

• Experiments:
• measured runtime speed-ups achieved by optimization relative to the original

code
• includes any overhead incurred by the inspector

21

22

17.5 36.7 22.5 34 16.7

357 345 364

258
195

0
50

100
150
200
250
300
350
400

2 4 8 16 32 64

sp
ee

d-
up

 o
ve

r b
as

el
in

es

locales

NAS-CG Problem Size E
Optimization Runtime Speed-ups

NAS-CG Data sets
NAS-CG Optimization Speed-ups

Take-aways:
• “—” means not enough memory, “NA” means not

enough nodes
• lots of data reuse in the kernel, so the optimization

performs very well
• inspector overhead is small due to many iterations w/o

the access pattern changing
• optimization provides larger gains on Infiniband

• higher latency for small messages than Aries

23

PageRank Data sets

PageRank Optimization Speed-ups

Take-aways:
• smaller speed-ups overall due to fewer iterations

than NAS-CG and less data reuse
• because of both the algorithm and the graphs

• speed-ups on the Cray can be negative when the
data reuse is low (webbase-2001)

• nevertheless, still significant speed-ups overall

Conclusions
• Optimization is producing promising results: runtimes improved from

hours/days to minutes
• Limitations exists for this type of data replication
• forall must execute multiple times without the memory access pattern changing
• could use a lot of memory for the replication
• currently limited to read-only data

• Not covered in this talk:
• handling foralls in procedures with multiple call sites
• special handling for arrays/domains that are fields in a record
• inter-procedural analysis to detect modifications to arrays/domains across calls
• alias analysis to detect modifications to arrays/domains

24

Future Work
• Use this framework to implement other optimizations
• prefetching for Chapel’s remote cache
• more generalized aggregation for remote writes than CopyAggregation
• end goal is a single framework that can apply all these optimizations

automatically, deciding which one to apply considering the specific scenario

• Acknowledgements:
• Chapel team: extremely helpful and responsive to questions, and facilitated

access to the Cray system
• Specific shout outs to Engin K., Vass L., Elliot R., Brad C., Michelle S.

25

Bonus: BFS Results
• Implemented Breadth First Search (BFS) as a series of SpMV-like

operations
• Not necessarily the best approach for raw performance but provides an

interesting experiment
• relatively few iterations are performed, so the cost of the inspector becomes

more prominent

26

27

BFS Data sets BFS Optimization Speed-ups

Take-aways:
• poor performance on the Cray

• not enough iterations to amortize the cost of the
inspector

• positive gains on the Infiniband system despite the few
number of iterations
• performance increases dwindle as we increase the

number of locales (inspector runtime does not
scale as well as the runtime of each iteration)

