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Distributed Sparse Matrix-Vector Multiply (SpMV)

Rows is a distributed array

Irregular memory access
x is a distributed array
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Motivation: Why target irregular memory accesses?

Distributed Sparse Matrix-Vector Multiply (SpMV)

High Productivity does not always lead to 
High Performance

How can we get better performance 
for these types of codes in Chapel?
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Just a simple transformation…

Motivation: Why target irregular memory accesses?
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Manual optimizations can 
drastically improve performance

original code

new code

linear scaling

Motivation: Why target irregular memory accesses?
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Manual optimizations can 
drastically improve performance

original code

new code

linear scaling

Motivation: Why target irregular memory accesses?

In this talk: 
We can achieve this performance from the original 

“nice” code without modifying the code at all



Outline

• Optimization: selective data replication
• Implementation within compiler:
• Code transformations
• Static analysis

• Performance evaluation:
• NAS-CG
• PageRank
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• We focus on accesses of the form A[B[i]] in forall loops
• A is a distributed array
• the values in B are not known until runtime

• Goal: replicate remotely accessed elements of A so they can be used 
locally in the forall
• inspector: runtime analysis that determines remote accesses
• executor: optimized version of the forall that redirects remote accesses to the 

replicated copies
• both generated by the compiler without user intervention

• Requirements:
• the forall executes many times with the same access pattern 
• A[B[i]] is on the RHS of an operation (i.e., read-only)
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Selective Data Replication

We manually implemented this optimization in prior work:
• https://chapel-lang.org/CHIUW/2021/Rolinger.pdf

The optimization is influenced by other prior works:
• “Communication Optimizations for Irregular Scientific 

Computations on Distributed Memory Architectures”, Das et al.

• “Automatic Support for Irregular Computations in a High-Level 
Language”, Su and Yelick

• “ Improving Communication in PGAS Environments: Static and 
Dynamic Coalescing in UPC”, Alvanos et al.

https://chapel-lang.org/CHIUW/2021/Rolinger.pdf


Code Transformations
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Compiler Optimization: Code Transformations
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Inspector: performs memory access analysis

Key points:
• inspector should only be performed (1) the first 

time we encounter the loop and (2) anytime 
the access pattern A[B[i]] could have changed

• inspectAccess() does not issue the remote 
access to A; it just “queries” whether index B[i]
will be a remote access to A



Compiler Optimization: Code Transformations
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Executor: executes the loop but redirects remote 
accesses to the replicated copies

Key points:
• executorPreamble() initializes replicated 

elements of A with values from original array
• we only replicate an element once, 

regardless of how many times it is accessed 
à amortizes the cost of the remote read 
over multiple local accesses

• executeAccess() checks if index B[i] will be a 
remote access to A, and if so, returns the local 
copy.



Compiler Optimization: Code Transformations
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May find later in Chapel’s compilation process 
that the optimization cannot be applied

In this case, doOptimization is set to false and 
dead-code elimination will “undo” our 
transformations and fall back to the original 
forall loop.



Static Analysis

• Everything just discussed for code transformations only holds if the 
optimization CAN and SHOULD be applied
• We need to maintain correct program results
• detect when A[B[i]] access pattern changes so we can re-run the inspector

• We should improve program performance
• ensure that the forall is nested in an outer loop, so it is likely to be executed 

multiple times à amortizes the cost of the inspector over multiple iterations
• also need to ensure that the inspector will not have to run EVERY time we 

execute the forall
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Static analysis and code transformations are performed automatically

The user does not add pragmas, code annotations, hints or anything to 
their code. They turn on a compiler flag



Performance Evaluation

• Applications:
• NAS-CG (conjugate gradient)
• PageRank (iterative SpMV-like operations)

• Systems:
• FDR Infiniband, 20 cores per node, 512 GB of memory per node
• Cray XC, Aries interconnect, 44 cores per node, 128 GB of memory per node

• Experiments:
• measured runtime speed-ups achieved by optimization relative to the original 

code
• includes any overhead incurred by the inspector

21
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NAS-CG Data sets
NAS-CG Optimization Speed-ups

Take-aways:
• “—” means not enough memory, “NA” means not 

enough nodes
• lots of data reuse in the kernel, so the optimization 

performs very well
• inspector overhead is small due to many iterations w/o 

the access pattern changing
• optimization provides larger gains on Infiniband

• higher latency for small messages than Aries
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PageRank Data sets

PageRank Optimization Speed-ups

Take-aways:
• smaller speed-ups overall due to fewer iterations 

than NAS-CG and less data reuse
• because of both the algorithm and the graphs

• speed-ups on the Cray can be negative when the 
data reuse is low (webbase-2001)

• nevertheless, still significant speed-ups overall



Conclusions
• Optimization is producing promising results: runtimes improved from 

hours/days to minutes
• Limitations exists for this type of data replication
• forall must execute multiple times without the memory access pattern changing
• could use a lot of memory for the replication
• currently limited to read-only data

• Not covered in this talk:
• handling foralls in procedures with multiple call sites
• special handling for arrays/domains that are fields in a record
• inter-procedural analysis to detect modifications to arrays/domains across calls
• alias analysis to detect modifications to arrays/domains
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Future Work
• Use this framework to implement other optimizations
• prefetching for Chapel’s remote cache
• more generalized aggregation for remote writes than CopyAggregation
• end goal is a single framework that can apply all these optimizations 

automatically, deciding which one to apply considering the specific scenario

• Acknowledgements:
• Chapel team: extremely helpful and responsive to questions, and facilitated 

access to the Cray system
• Specific shout outs to Engin K., Vass L., Elliot R., Brad C., Michelle S.
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Bonus: BFS Results
• Implemented Breadth First Search (BFS) as a series of SpMV-like 

operations
• Not necessarily the best approach for raw performance but provides an 

interesting experiment
• relatively few iterations are performed, so the cost of the inspector becomes 

more prominent

26
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BFS Data sets BFS Optimization Speed-ups

Take-aways:
• poor performance on the Cray

• not enough iterations to amortize the cost of the 
inspector

• positive gains on the Infiniband system despite the few 
number of iterations
• performance increases dwindle as we increase the 

number of locales (inspector runtime does not 
scale as well as the runtime of each iteration)


