
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Integrating Chapel programs and MPI-
Based Libraries for High-performance

Graph Analysis
Summer project:

Trevor McCrary (Mississippi State University, SNL intern)
Karen Devine, SNL

Andrew Younge, SNL

Chapel and Grafiki integration:
using the right tool for every job

6/15/22 2

x x x
x x
x x
x x x x x x

x x
x
x
x

Chapel’s PGAS enables analysts to
easily manipulate parallel graph data
(e.g., extract largest connected
component via label propagation)

Grafiki’s linear-algebra-based parallel graph
algorithms enable efficient parallel graph
analysis
(e.g., vertex hitting times)

Composing tools is challenging
• Different parallel paradigms: PGAS in Chapel vs MPI in Grafiki
• Different data formats: Edge lists in Chapel vs matrix in Grafiki
• Huge graphs prohibit copying/reformatting data in memory

Three new approaches to integrate Chapel graph manipulation with Grafiki graph
analysis without requiring additional copy of graph
• Direct calls from Chapel to Grafiki using Chapel’s C interface
• Separate Chapel & Grafiki processes access shared mmap memory
• Chapel and Containerized Grafiki access shared mmap memory

Requirement to not copy data allows ability
to solve larger problems

• Share data with files is not scalable
– Chapel reads data, modifies it, and writes results to a new

file
– C++ program reads new file and performs some analysis

with it

• Sharing data with native data structures requires
copies that use extra memory
– Chapel reads data, modifies it, and shares it with C++

program
– C++ program rearranges data, which creates a copy, and

performs some analysis with it

6/15/22 3

C++ program needs to have general
abstractions to use data in any format

• Grafiki relies on Trilinos for linear algebra
classes and linear/eigen solvers

• Replaced Grafiki’s use of concrete CrsMatrix
class with abstract RowMatrix
– RowMatrix user provides implementation of key

operations (SpMV, norms, etc.)

• New Chapel-based RowMatrix uses edge lists
directly from Chapel to perform matrix
operations – no data copy

6/15/22 4

Approach 1: Chapel program calls Grafiki
through Chapel’s C interface

6/15/22 5

EdgeLists

Chapel creates EdgeList in
BlockDomain arrays

Each Chapel locale directly
calls C function (in
coforall) with pointer to its
local data

C function instantiates
RowMatrix from
EdgeList pointers

C function calls Grafiki

Grafiki computes
using
RowMatrix

Pro: Simple proof-of-concept for data sharing
Con: Intrusive to user: needs to link with Trilinos and Grafiki

Approach 1 details: Coordinating Chapel
locales and MPI ranks

• Numbers of Chapel locales and MPI ranks are equal
• Calls from Chapel to Grafiki must be made from each

locale in parallel
– All locales must enter Grafiki together to avoid hanging in

Grafiki’s MPI collective communication
– Chapel coforall launches one task per locale

• Locales provide pointers to local edge list arrays

6/15/22 6

coforall loc in Locales {
on loc {

var subdom = edgelist.localSubdomain();
call_C_function(c_ptrTo(edgelist[subdom.low]), …);

}
}

Image is Unclassified

Approach 2: Separate Chapel and Grafiki
processes share data in mapped memory

6/15/22 7

EdgeLists

Chapel creates EdgeList in new
shareBlockDomain arrays that
use mmap memory

Chapel program signals (via
POSIX semaphore) external C
process to begin

C process instantiates
RowMatrix from
EdgeList pointers in
mmap’ed memory

C process calls Grafiki,
signals Chapel when done

Grafiki computes
using
RowMatrix

Less intrusive: user uses Chapel as usual, only substituting
shareBlockDomain for BlockDomain for shared data

New shareBlockDomain uses shared memory
(mmap) on each compute node

Approach 2 details: new shareBlockDomain
• Chapel Domains

– describe distribution of data across locales (processors)
– manage global address space indexing

• Chapel’s Block Domain assigns contiguous chunks of
global arrays to locales
– Each locale’s local array is a separate allocation

• New shareBlock Domain replaces the
local array allocation with mmap regions
in shared memory
– Separate mmap backing file for each

shared array
– Backing file names are shared between

processes through tiny meta-data file
– Chapel users simply substitute

shareBlock for Block in their code

6/15/22 8

EdgeLists
mmap

mmap

mmap

SemaphoreSemaphore

Approach 3: Chapel and Containerized
Grafiki further simplify user experience

6/15/22 9

EdgeLists

Least intrusive: Container handles details of building and
running C process and Grafiki

New shareBlockDomain uses shared memory
(mmap) on each compute node

Container image provides
pre-built C process and
Grafiki libraries that run as
in Approach 2.

Chapel creates EdgeList in
new shareBlockDomain arrays
that use mmap memory

Chapel program signals external C process to
begin via pseudo-semaphore (mmap int)

Demonstrations done with Chapel on MPI
and SMP systems

• Shared-memory Chapel on Xeon (kahuna)
– Single node, multiple locales / ranks per node
– Uses containerized Grafiki with Singularity

• MPI-enabled Chapel on Cray / Haswell
(mutrino)
– Single locale / rank per node, multiple nodes

• Compare
– approach One – Chapel’s C interoperability
– approach Two – separate processes
– Look at Chapel label propagation and Grafiki hitting times

6/15/22 10

Using mmap memory shows no performance
penalty against a Chapel’s usual memory

6/15/22 11

Small Matrix
Bcsstk29.mtx
600k nonzeros
14k rows & columns

Using mmap memory shows no performance
penalty against a Chapel’s usual memory

6/15/22 12

Kahuna used chapel
SMP 1.23, and we were
unable to run approach
1 on more than one
locale

Small Matrix
Bcsstk29.mtx
600k nonzeros
14k rows & columns

Using mmap memory shows no performance
penalty against a Chapel’s usual memory

6/15/22 13

mmap memory
performs equal to
Chapel’s usual memory
when comparing
approach One and Two

Small Matrix
Bcsstk29.mtx
600k nonzeros
14k rows & columns

Using mmap memory shows no performance
penalty against a Chapel’s usual memory

6/15/22 14

Large Matrix
GAP_kron.mtx
4B nonzeros
134M rows

Using mmap memory shows no performance
penalty against a Chapel’s usual memory

6/15/22 15

Kahuna used chapel SMP 1.23, and
we were unable to run approach 1
on more than one locale

Large Matrix
GAP_kron.mtx
4B nonzeros
134M rows

Using mmap memory shows loss of performance in
Chapel algorithm but not in C++ algorithm

6/15/22 16

There is a noticeable loss of performance in the
Chapel label propagation using mmap memory.
We hypothesize that this is due to using Chapel
1.23’s Block Domain as a template for share block
while mutrino uses Chapel 1.24.

Large Matrix
GAP_kron.mtx
4B nonzeros
134M rows

Using mmap memory shows loss of performance in
Chapel algorithm but not in C++ algorithm

6/15/22 17

We still observe no performance
penalty when using the mmap
memory in the C++ program

Large Matrix
GAP_kron.mtx
4B nonzeros
134M rows

Conclusion

• We present 3 new approaches for sharing
data between Chapel and C++ without
making multiple copies of data
– Allows Chapel users to leverage existing fast

C++/MPI based libraries

6/15/22 18

Future Work

• Extend operability to different Chapel
distributions
– Option for Chapel to accept a user defined

allocator

• Analyze container performance
• Analyze Chapel and C++ integrated code

against pure Chapel implementation

6/15/22 19

