
Integrating Chapel programs and MPI-Based Libraries for High-performance Graph Analysis CHIUW22, June 10, 2022, Virtual

Integrating Chapel programs and MPI-Based Libraries for
High-performance Graph Analysis

Trevor McCrary∗
tmccrary9@gatech.edu

Georgia Institute for Technology
Atlanta, GA, USA

Karen Devine∗
devine.hpc@gmail.com

Sandia National Laboratories, ret.
Albuquerque, NM, USA

Andrew Younge
ajyoung@sandia.gov

Sandia National Laboratories
Albuquerque, NM, USA

ABSTRACT1

We identify techniques to interface Chapel programs with parallel,2

distributed, MPI-based libraries written in C++ without storing mul-3

tiple copies of shared data. This integration enables Chapel users4

to take advantage of the vast array of capabilities developed in5

parallel numerical libraries without the memory cost of duplicated6

data. We demonstrate two approaches to interface Chapel code7

with the MPI-based graph and numerical solver libraries Gra�ki8

and Trilinos. The �rst uses a single Chapel executable to call a C9

function that interacts with the MPI libraries; it requires Chapel10

users to understand the Gra�ki library interfaces and link their11

codes with the MPI-based libraries. The second uses the Unix mmap12

function to allow separate Chapel and Gra�ki executables to read13

and write to the same block of memory on a node; it maintains14

greater independence between the Chapel and MPI-based codes,15

simplifying the Chapel user’s experience. We also encapsulated the16

second approach in Docker/Singularity containers to maximize ease17

of use by Chapel users. Comparisons of the two approaches using18

shared and distributed memory installations of Chapel show that19

both approaches are feasible for sharing data between Chapel and20

MPI-based libraries, yielding similar scalability and performance21

with no penalty from using mmap.22

KEYWORDS23

Chapel, MPI, interoperability, mmap, container24

ACM Reference Format:25

Trevor McCrary, Karen Devine, and Andrew Younge. 2022. Integrating26

Chapel programs and MPI-Based Libraries for High-performance Graph27

Analysis. In Proceedings of The 2022 Chapel Implementers and Users Workshop28

(CHIUW22). ACM, New York, NY, USA, 10 pages.29

1 INTRODUCTION30

We present two methods that allow data to be shared, rather31

than copied, between partitioned global address space programs in32

Chapel and distributed memory, parallel algorithms that are written33

in C++ and use the Message Passing Interface (MPI) [12] library34

to exchange data. We demonstrate our methods using applications35

in graph analysis: a simple graph connected-component algorithm36

in Chapel and a graph hitting-times algorithm in the graph toolkit37

Gra�ki [15]. However, the general capability to integrate Chapel38

and MPI-based libraries is valuable in many applications, as it com-39

bines the simplicity of Chapel programming with the speed and40

e�ciency of existing high-performance MPI-based algorithms.41

∗Work completed at Sandia National Laboratories, Summer 2021. [10]

CHIUW22, June 10, 2022, Virtual
.

Chapel [3, 7] is a partitioned global address space (PGAS) lan-42

guage that is built for productive parallel programming at scale.43

Chapel simpli�es parallel programming by providing thread-based44

parallel loops and managing the layout of arrays within a parallel45

computer’s memory. Although Chapel arrays can be distributed46

across processors, Chapel users can access any array entry on any47

processor, without knowing on which processor the data is stored.48

Chapel manages the data movement or communication required49

to retrieve array entries. Thus, Chapel provides a very easy-to-use50

programming environment for parallel algorithm development; al-51

gorithms such as parallel graph connected-component labeling can52

be implemented in just a few lines of code.53

In MPI-based libraries, data is also distributed across the memory54

spaces of parallel processors. The distribution, however, is deter-55

mined by the programmer. Moreover, each processor can access56

only the data in its memory. O�-processor data must be communi-57

cated explicitly via message passing. This explicit control of data dis-58

tribution and movement allows highly e�cient parallel execution,59

but requires much more e�ort from the programmer. For example,60

Gra�ki (the successor of TriData) [15] is an MPI-based library of61

high-performance parallel graph analysis algorithms with linear62

solvers from the Trilinos [6, 14] toolkit. Gra�ki’s graph computa-63

tions are done via Trilinos’ matrix-vector operations, with explicit64

inter-processor communication via MPI send/receive operations.65

Integrating Chapel and Gra�ki allows graph analysts to easily �l-66

ter and manipulate graph data via Chapel, and then apply Gra�ki’s67

high-performance parallel algorithms to analyze the resulting data.68

The main challenges in the integration are avoiding duplication69

of data between Chapel and Gra�ki, and insulating graph analysts70

from the complications of using external MPI-based libraries.71

Sharing, rather than copying, data between Chapel and MPI-72

based libraries is crucial to success of the integration. Doubling73

the amount of memory required to couple two algorithms is often74

infeasible. In our demonstration, for example, Chapel users wish to75

analyze the largest connected component of graphs that �ll much76

of their computer’s memory; the available memory is insu�cient77

to copy this component in memory for analysis in Gra�ki. Our78

approaches rely on library interfaces with su�cient data abstraction79

to accommodate Chapel data structures (e.g., edge lists in Chapel80

arrays) without requiring data to be copied and/or reorganized for81

Gra�ki (e.g., into compressed-sparse row graphs).82

Chapel users should also be insulated as much as possible from83

the complexities of building external MPI-based libraries. One of our84

approaches addresses this issue by demonstrating how Chapel and85

Gra�ki can share data through memory-mapped regions. Gra�ki86

analysis can then be run as a separate executable or within a Docker87

container provided to the Chapel users.88

Integrating Chapel programs and MPI-Based Libraries for High-performance Graph Analysis CHIUW22, June 10, 2022, Virtual

The contributions of this work include two approaches for inte-89

grating Chapel programs with MPI-based C++ libraries. The �rst90

approach uses Chapel’s interface to C-language functions to share91

data between Chapel and the MPI-based libraries. For the second92

approach, we developed a new Chapel data distribution Domain93

that uses memory-mapped regions to share data with external pro-94

cesses; to our knowledge, this use of memory-mapped regions in95

Chapel Domains has not been done before. We describe how to96

extend the second approach for use in Docker containers, for the97

greatest insulation of Chapel users from the details of the MPI-98

based libraries. We demonstrate our approaches using a simple99

graph connected-components algorithm in Chapel and the high-100

performance graph hitting-times algorithm in Gra�ki. We run on101

two di�erent Chapel environments: a single-node shared memory102

environment and a multi-node distributed memory environment.103

Our performance experiments demonstrate scalability of our meth-104

ods, showing that our methods can successfully integrate Chapel105

and high-performance MPI-based parallel algorithms.106

2 BACKGROUND107

We describe the MPI, Chapel, Gra�ki, Trilinos and Unix features108

that are important to our integration approaches.109

MPI: The Message Passing Interface (MPI) enables sharing of data110

between distributed memory spaces. Each processor is assigned a111

unique “rank” in [0,#D<14A$ 5 %A>24BB>AB). Processors can access112

only their local memory; they cannot access memory associated113

with other processors. Instead, shared data must be communicated114

across the interconnect network of the cluster or supercomputer.115

The MPI library sends bu�ers of data across network links from116

the processors owning the data to the processors needing it.117

Chapel: Chapel uses the concept of locales to associate data with118

individual processors for performance and scalability [7]. Chapel’s119

locales are analogous to MPI ranks. Chapel’s global address space120

allows locales to access and manipulate data that are stored on other121

locales without explicit communication by the Chapel user; needed122

communication is performed by the Chapel runtime environment.123

Thus, underlying communication causes data access on a di�erent124

locale to be more expensive than data access on the data’s own125

locale. While Chapel can be built with an MPI back-end to do its126

communication, an MPI back-end in Chapel is not necessary for127

our proposed approach. In our work, we rely only on a one-to-one128

mapping between processors’ Chapel locales and MPI ranks.129

Chapel distributed arrays are the main data structure used in130

this work. We store lists of graph edges and vertices in Chapel131

distributed arrays. A distributed array is implemented as a collection132

of arrays, with one local array stored on each locale. The Chapel133

distributed array manages the global address space indexing that134

allows access of any array entry from any locale. Chapel’s Domain135

maps describe and manage the distribution of arrays to processes.136

The Block Domain provides a commonly used distribution; in it,137

the indices are partitioned evenly across the locales so that the �rst138

locale has the �rst contiguous chunk of indices, the second locale139

has the next chunk, and so on. An example Block array with 64140

elements distributed across four locales in depicted in Figure 1.141

Chapel users can create their own distributions to �t their re-142

quirements. To create a custom distribution, users create custom143

Domain map classes that implement the Domain map Standard144

Interface (DSI) [1, 2]. For our second approach below, we create a145

custom Domain map by modifying Chapel’s Block distribution to146

use memory that can be shared among processes.147

Chapel supports interoperability with C code. Users can access148

C libraries, variables, functions, structures, and constants using149

the extern keyword. Chapel programs can call C functions, and150

addresses of Chapel arrays can be passed to C functions. We use151

this capability in our �rst approach below. Chapel also has a library152

of de�nitions for C datatypes (e.g., long long int). We use these153

datatypes for consistency between our Chapel and C code.154

Gra�ki and Trilinos: Gra�ki (formerly called TriData) [15] is155

a library of high-performance graph and hypergraph analysis al-156

gorithms written in C++. It contains algorithms for computing157

hitting times, spectral clustering, and eigenvector centrality. For158

our demonstration, we use Gra�ki’s hitting time algorithm, which159

operates on a square, symmetric matrix that may be distributed160

across processors. The symmetric matrix represents the adjacency161

matrix of a connected graph (i.e., the graph has a single connected162

component). Each edge (8, 9) in the Chapel data corresponds to a163

nonzero 08 9 in the adjacency matrix �; each vertex corresponds to164

a row and column of the matrix.165

Gra�ki’s algorithms rely on linear and eigen-solvers; for these166

solvers as well as for abstractions of matrix and vector operations,167

Gra�ki uses the open-source Trilinos [6, 14] framework. Trilinos168

has been developed and optimized for distributed memory, shared169

memory, and GPU parallel performance, especially in the realm170

of physics-based scienti�c simulations. Trilinos can operate with171

arbitrary data distributions, including two-dimensional matrix dis-172

tributions favored for reducing communication in graph analysis173

applications. In this work, we pass the edge and vertex lists to174

Gra�ki with the same distribution as speci�ed by the user in Chapel;175

thus, the distribution of nonzeros to processors is arbitrary and176

matches that of the Chapel edge list distribution.177

Trilinos provides an e�cient compressed sparse row matrix178

(CrsMatrix) data structure, but creation of a CrsMatrix from179

Chapel data would require creating a copy of the data in CRS format180

– an unacceptable requirement for this project. However, Trilinos181

also provides a RowMatrix abstraction that allows users to imple-182

ment matrix operations on their data using their own underlying183

data structures. The RowMatrix abstraction supports any distribu-184

tion of sparse matrix entries across processors. It does not require185

that matrix entries be sorted in any particular manner. Performance186

of a user’s RowMatrix strongly depends on the user’s implementa-187

tion and data distribution. In our work, we sacri�ce some computa-188

tional performance by allowing our RowMatrix to use the Chapel189

edge lists directly, without any reordering or reorganization, thus190

avoiding an additional copy of Chapel users’ data.191

Unix: The Unix mmap function can be used to create memory-192

mapped regions that can be shared by independent Unix processes.193

With this function, two separate processes can read and write to194

the same block of memory by using the Unix MAP_SHARED �ag.195

The mmap function works with the function shm_open, which takes196

Integrating Chapel programs and MPI-Based Libraries for High-performance Graph Analysis CHIUW22, June 10, 2022, Virtual

Figure 1: Example of a Block distribution across four locales of a Chapel distributed array with 64 elements; elements are
distributed evenly across locales, with a contiguous chunk of indices assigned to each locale.

a backing �le name (C string) for mmap. This backing �le name197

connects mmap calls on separate processes to the same block of198

memory. Chapel has its own mmap function, sys_mmap, which takes199

the same arguments as the Unix function, invokes the system mmap200

function and returns an error code. Because we used the Unix mmap201

function in sys/mman.h in our early explorations, we continued202

using it with Chapel, specifying the extern keyword to refer to203

the Unix mmap function. However, we expect Chapel’s sys_mmap204

would work identically. In our second approach below, we use205

mmap capability to share edge and vertex lists in mapped memory206

between separate Chapel and C++ processes or containers.207

3 METHODOLOGY208

In the general use case that we wish to support, graph analysts load209

graph data into Chapel edge lists. They then �lter the graph data in210

some way to identify vertices and edges of interest. The resulting211

subgraph is shared with an MPI-based library for further analysis,212

and results are shared back to Chapel. Our goal is to accomplish213

this work�ow without copying or reformatting data that is to be214

shared between Chapel and the MPI-based library.215

Our demonstration follows the pattern of this general use216

case. We load a graph from �les that contain coordinate pairs217

(B>DA24: , C0A64C:) and, optionally, a weight F: for all edges : in218

the graph (i.e., nonzeros in an adjacency matrix). The edges are219

stored in Chapel arrays B>DA24 and C0A64C distributed across locales220

with Chapel’s Block distribution. We �lter the graph by identifying221

its largest connected component via a parallel label-propagation222

algorithm written in a few lines of Chapel code. We then share the223

edge lists, along with an array identifying vertices in the largest224

connected component, with the MPI-based Gra�ki library. Gra�ki225

computes vertex hitting times on the largest connected component.226

Both of our integration approaches create a Trilinos RowMatrix227

(in C++) to describe the matrix that is passed to Gra�ki. The228

RowMatrix class directly uses our shared, distributed edge lists229

to answer queries about the matrix and perform matrix operations.230

The most important method of RowMatrix is sparse-matrix vector231

multiplication (SpMV): ~ = U�G + V~ for matrix �, vectors G and ~,232

and constants U and V . In parallel with distributed data, SpMV re-233

quires communication of o�-processor vector entries G 9 to be used234

in multiplication with local matrix entries 08 9 , and of subproducts235

08 9G 9 to be accumulated into vector entries ~8 . This communication236

is done via MPI using the communication operations from Trili-237

nos’ CrsMatrix implementation. However, the localApply — the238

on-processor SpMV operation — di�ers from Trilinos’ CrsMatrix239

since our RowMatrix uses coordinate-formatted edge lists from240

Chapel rather than Trilinos’ compressed-sparse row format. Our241

Figure 2: Method One: A single Chapel executable calls the
MPI-based library; the library and “glue” code to convert
from Chapel to C++ are linked into the Chapel executable.

localApply uses a straightforward loop over the edge lists, mul-242

tiplying each edge value for edge (B>DA24: , C0A64C:) with the ap-243

propriate, possibly communicated, G vector entry GC0A64C: . For our244

demonstration, we did not attempt to optimize this operation, but245

several optimizations (e.g., threading, GPU parallelism) are possible.246

3.1 Method One: Direct Chapel-to-C calls247

For our �rst method, we use a straightforward approach in which248

a single Chapel executable reads the graph data �le, performs the249

connected-component label propagation, and then calls directly250

to a C function that then calls a C++ function that calls Gra�ki. A251

high-level �ow chart of its execution is in Figure 2.252

This method takes advantage of Chapel’s C interoperability to253

directly call C code. An overview of the code is shown in Figure 3.254

We start by having Chapel call a short C function glueCwrapped in255

extern �C� controls to allow it to be compiled by a C++ compiler.256

The C function then calls a C++ function glueChapelGrafikiwith257

the same arguments. Function glueChapelGrafiki instantiates a258

RowMatrix object using the Chapel edge lists, and calls Gra�ki. The259

C and C++ code are in a �le separate from the Chapel code. The260

�le is compiled by a C++ compiler and its object �le is linked with261

the Chapel object �le at build time.262

Integrating Chapel programs and MPI-Based Libraries for High-performance Graph Analysis CHIUW22, June 10, 2022, Virtual

/ / In Chapel s ou r c e code
r e q u i r e " g lue . h " ;
e x t e r n proc glueC (nEdges , ∗ s r c , ∗ t g t , . . .) ;

c o f o r a l l l o c in Lo c a l e s {
on l o c {

var mySrc = sou r c e . l o ca l Subdoma in () ;
var myTgt = t a r g e t . l o ca l Subdoma in () ;
g lueC (mySrc . s i z e : s i z e _ t ,

c_p t rTo (sou r c e [mySrc . low]) ,
c_p t rTo (t a r g e t [myTgt . low]) , . . .) ;

}
}

/ / In g lue . h f i l e
e x t e r n "C" {

i n t glueC (nEdge , ∗ s r c , ∗ t g t , . . .) ;
}

/ / In g lue . cpp C++ f i l e
i n t g l u eCh ap e lG r a f i k i (nEdge , ∗ s r c , ∗ t g t , . . .) {

Bu i l d RowMatrix (nEdge , s r c , t g t , . . .) ;
r e t u r n G r a f i k i _ h i t t i n g T im e sD r i v e r (RowMatrix , . . .) ;

}

e x t e r n "C" {
i n t glueC (nEdge , ∗ s r c , ∗ t g t , . . .) {

r e t u r n g l u eCh ap e lG r a f i k i (nEdge , s r c , t g t , . . .) ;
}

}

Figure 3: Method One: Chapel’s path to call C++ code directly.

Each Chapel locale must call the C function in parallel, using263

Chapel’s coforall parallel-for loop and its built-in !>20;4B array264

as in Figure 3. The coforall loop creates a parallel task ;>2 for each265

locale, and the subsequent on ;>2 directive ensures that each locale266

calls glueC independently. This parallelism is needed to prevent267

Gra�ki from hanging in collective MPI communications; all locales268

(i.e., all ranks) must participate in the call to glueC.269

The short C function passes pointers from Chapel to the MPI-270

based library. Each locale can provide, for example, the number of271

edges and vertices in the locale, and pointers to its local B>DA24 and272

C0A64C arrays. The appropriate way to get the pointer to the local273

arrays is shown in Figure 3: Chapel’s c_ptrTo function obtains the274

C pointer to the lowest-indexed value of the array in the locale.275

This approach is a simple path for integrating MPI-based C++276

libraries with Chapel applications, but it has several drawbacks. It277

is intrusive to Chapel algorithm development. In order for Chapel278

to directly call to Gra�ki, Chapel users must understand how to279

call C functions from Chapel. They must ensure that their Chapel280

installation, Gra�ki library, and Trilinos library were built all with281

compatible compilers and MPI libraries. They also need to deter-282

mine how to link the Gra�ki and Trilinos libraries with their Chapel283

executable. Our next approach reduces this burden for Chapel users.284

3.2 Method Two: Separate Chapel and C++285

Processes286

In our second method, a Chapel process interacts with an indepen-287

dent, concurrently running, C++ process, as outlined in Figure 4.288

The C++ process waits for a semaphore to be posted by Chapel289

before starting computation. The Chapel program reads edges into290

arrays that use a new shareBlock Domain that allows them to be291

shared with the C++ program through a mmap memory region. It292

�lters the data (in our case, labeling connected components). It then293

writes metadata about the edge lists to a �le and sets the semaphore294

indicating the C++ program can begin. The C++ program reads the295

metadata �le to get information on accessing the shared data. It296

then creates a RowMatrix with the shared data, and calls Gra�ki297

as in our �rst method. Upon completion, it resets the semaphore,298

indicating to the Chapel program that the Gra�ki result is ready299

and Chapel can proceed. Details of each step follow.300

To enable the Chapel data to be shared with the C++ program, we301

created a modi�ed version of Chapel’s Block Domain (from Chapel302

v1.23) in which the local arrays are built using mmap memory. We303

refer to this modi�ed Domain as a shareBlock Domain.304

Chapel code for our new shareBlock Domain is shown in Fig-305

ure 5. The Chapel BlockDomain stores the local arrays in a variable306

named myElems; this variable is assigned with a call to Chapel’s307

domain.buildArray(). In our shareBlock Domain, we replace308

domain.buildArray() with a function createMmap() (shown in309

red) that calls the Unix mmap function to allocate memory of the310

requested size (the element’s data type size times the domain size).311

Each locale’s mmap local array uses a separate backing312

�le. The backing �le name is generated by a new function313

getBackingFile(); it is a string consisting of the locale’s ID and314

a counter to indicate which shareBlock is stored there. For exam-315

ple, the �rst shareBlock array allocated across four locales uses316

backing �les /share.bak0-1, /share.bak1-1, /share.bak2-1,317

and /share.bak3-1. After all of the locales’ local arrays are al-318

located with mmap, we increment a counter Status that is used to319

di�erentiate between separate shareBlock arrays’ backing �les.320

To use the mmap region for the local array, we321

pass its pointer to modi�ed versions of Chapel’s322

makeArrayFromPtr and makeArrayFromExternArray (see323

Figure 6). Function makeArrayFromPtr is a short func-324

tion that calls makeArrayFromExternArray. Function325

makeArrayFromExternArray creates a Domain for the new326

array and returns a call to Chapel’s _newArray(), returning a327

new Chapel local array. We modi�ed makeArrayFromPtr and328

makeArrayFromExternArray to accept a Domain as an argument.329

The Domain was needed because the original functions created a330

new Domain from 0 to the size of the array minus one, while the331

Block Domain expected indices matching the global indices of the332

array. Without the Domain argument, Chapel would assign a copy333

of the mmap region to the myElems array, rather than use the mmap334

region directly. Our modi�ed shareMakeArrayFromExternArray335

uses the same Domain as myElems, so we avoid making a copy, and336

myElems refers directly to the mmap memory.337

For the C++ program to access the mmap regions, it needs to338

know some metadata about the arrays using shareBlock Domains.339

Speci�cally, it needs the names of the backing �les associated with340

Integrating Chapel programs and MPI-Based Libraries for High-performance Graph Analysis CHIUW22, June 10, 2022, Virtual

Figure 4: Method Two: Separate, concurrently running Chapel and C++ executables share graph data in mmapmemory; execution
is coordinated by a semaphore and a small metadata �le.

each locale’s local arrays and the size of those arrays. The Chapel341

program writes these �elds to a metadata �le, as in Figure 7. (While342

we used a regular �le for the metadata, one could easily use a mmap343

memory space to share the metadata instead. But because the �le344

is very small, using a regular �le is feasible and straightforward.)345

This example �le shows a matrix with 25 vertices and 105 edges346

distributed across four locales, with backing arrays for the source347

and target edge lists and the component labels. Locale 0 has 27 edges348

and 7 vertices, while other locales each have 26 edges and 6 vertices.349

While the Chapel program runs, the C++ executable waits for350

a semaphore to indicate that the data is ready for use. After the351

Chapel program posts the semaphore to �ag the C++ program to352

begin, the processor with rank 0 in the C++ program reads the entire353

metadata �le into a bu�er and broadcasts it to the other processors.354

Each processor then parses the bu�er to extract the information355

(backing �le names and data sizes) associated with its rank. The356

processors then set up pointers to their mmap data and call the MPI-357

based libraries with the data. In our demonstration, the processors358

creates the source, target, and component arrays using the backing359

�les, collectively create a distributed RowMatrix wrapping the data,360

and call Gra�ki’s hitting times algorithm.361

The key advantage of this method is that it is less intrusive to362

Chapel developers. Developers can declare distributed arrays using363

shareBlock, and the shareBlock class handles creating the mmap364

arrays with the required size. In addition, this method allows a C++365

process to be built and run separately from the Chapel program,366

eliminating the need for Chapel programmers to link their code367

with MPI-based libraries. The disadvantage, for now, is that this368

method is restricted to the block distribution; extensions to other369

Chapel distributions are feasible but not yet done. Also, currently,370

we cannot reshape a shareBlock Domain after it is initialized.371

3.3 Containerization of the C++ Library372

To make Gra�ki even easier to use by Chapel programmers, we373

have containerized our C++ glue program with Gra�ki, and shown374

that a Chapel program and the Gra�ki container can share memory375

through the same mmap array mechanism. This containerization al-376

lows Gra�ki developers to provide tools that are fully encapsulated,377

sparing Chapel users from have to compile the Gra�ki executable.378

Our Docker container encapsulates our C++ glue program, Gra�ki379

and all of the libraries on which Gra�ki depends (Trilinos, Kokkos,380

MPI, BLAS). We use Singularity [9], a container system designed for381

high-performance parallel computing, to instantiate our container382

with MPI parallelism. Our work�ow then proceeds as in Method383

Two (Figure 4), with the user’s Chapel program and and the Gra�ki384

C++ container accessing the same mmap regions.385

One challenge in integrating Chapel with containers was our386

use of semaphores. While mmap memory works across containers,387

POSIX semaphores do not. Semaphores are created on the parent388

process’ stack. They are unusable in the container after namespace389

creation, which copies the semaphore rather than addressing it.390

Thus, the semaphore never unlocks in the C++ program. Our solu-391

tion is to implement a “pseudo-semaphore” signaling mechanism.392

Since mmapworks across containers, we use a single integer in mmap393

Integrating Chapel programs and MPI-Based Libraries for High-performance Graph Analysis CHIUW22, June 10, 2022, Virtual

c l a s s LocBlockArr {
proc i n i t () {

. . .
/ / Chapel ' s B lock domain a l l o c a t e d l o c a l a r r ay as f o l l ow s
/ / t h i s . myElems = t h i s . locDom . myBlock . bu i l dAr r ay (. . .) ;
/ / New sha r eB l o ck domain a l l o c a t e s l o c a l a r r ay with mmap memory
i f (t h i s . locDom . myBlock . s i z e) {

var myPtr = createMmap (e l tType , t h i s . locDom . myBlock . s i z e : u i n t) ;
t h i s . myElems = shareMakeArrayFromPtr (myPtr , t h i s . locDom . myBlock . s i z e : u in t , t h i s . locDom . myBlock) ;
a l l L o c a l e s B a r r i e r . b a r r i e r () ;
i f (here . i d == 0) then

S t a t u s += 1 ;

} e l s e {
t h i s . myElems = t h i s . locDom . myBlock . bu i l dAr r ay (. . .) ;

}
}

/ / Chapel f u n c t i o n s to c r e a t e mmap a r r ay
proc createMmap (type e l tType , s i z e : u i n t) : c _ p t r {

var myBytes = (s i z e ∗ c _ s i z e o f (e l tType)) : u i n t ;
var fd = shm_open (g e t B a c k i n g F i l e () , O_RDWR | O_CREAT | O_EXCL , acce s sPe rms) : c _ i n t ;
f t r u n c a t e (fd , myBytes : o f f _ t) ;
var r e g i on ;
r e g i on = mmap(n i l , myBytes : s i z e _ t , PROT_READ | PROT_WRITE , MAP_SHARED , fd : f d_ t , 0 : o f f _ t) ;
r e t u r n r eg i on : c _ p t r (e l tType) ;

}

proc g e t B a c k i n g F i l e () : c _ s t r i n g {
r e t u r n (" / sha r e . bak " + here . i d : s t r i n g + " \ − " + S t a t u s : s t r i n g) . c _ s t r () ;

}

Figure 5: Method Two: The new shareBlock Domain allocates mmap memory (shown in red) in place of the memory allocated in
Chapel’s Block Domain (Chapel v1.23). If the size of the domain is nonzero, an mmap array is created to �t the size requirements
of the Domain and datatype. Backing �les are tracked by incrementing (C0CDB after all local arrays have been allocated.

memory to mimic semaphore functionality. The value of this �ag394

indicates which process should be working and which should be395

idling. Currently, we use a spin lock for this functionality.396

With containerization, the Chapel user is spared the chore of397

building Gra�ki and everything on which it depends. This approach398

delivers the highest ease of use to graph analysts.399

4 EXPERIMENTS AND RESULTS400

We demonstrate our approaches with a simple Chapel graph analy-401

sis application that shares the graph with the C++ library Gra�ki.402

Speci�cally, our Chapel program reads a matrix from a Matrix Mar-403

ket �le, symmetrizing the matrix if necessary, and constructs lists404

of edges corresponding to the matrix nonzeros. It then identi�es405

the largest connected component of the graph using a simple, com-406

monly used, label propagation algorithm. For label propagation,407

each vertex’s label is initialized to its vertex number. Then the408

propagation algorithm loops over edges, giving each vertex of an409

edge the lower-valued label of the edge’s two vertices. Iteration410

over edges is done in parallel with respect to locales and continues411

until no vertex labels change. The Chapel code then counts the412

number of vertices with each label and identi�es the label with413

the most vertices. The label of the largest component is passed,414

along with the edge lists and vertex component labels, to Gra�ki,415

which computes hitting times within the largest component. While416

vertices that are not in the largest component remain in the edge417

lists passed to Gra�ki, they are ignored in the RowMatrix sparse418

matrix-vector multiplication operation.419

We tested our approaches on Sandia’s Kahuna high-performance420

data analytics cluster. Kahuna has Dual Socket Intel E5-2683v3421

2.00GHz CPUs with 28 cores and 256 GB of memory. Kahuna uses422

a shared-memory build of Chapel 1.23; that is, Kahuna’s Chapel423

did not enable an MPI backend. Thus, all experiments on Kahuna424

could use only a single multi-core node. For Method One, in which425

Chapel calls Gra�ki directly, only one MPI rank (and, thus, one426

locale) can be used. Method Two, in which separate processes are427

used for Gra�ki andChapel, allowsmoreMPI parallelism, as theMPI428

parallelism is not tied to Chapel’s shared-memory implementation;429

we can run Gra�ki and Chapel with up to 28 ranks (locales).430

Integrating Chapel programs and MPI-Based Libraries for High-performance Graph Analysis CHIUW22, June 10, 2022, Virtual

/ / Chapel ' s makeArrayFromPtr
proc makeArrayFromPtr (

v a l u e : c_p t r , num_el t s : u i n t) {
var da t a = chp l _make_ e x t e r n a l _ a r r a y _p t r (

va lue , num_el t s) ;
r e t u r n makeArrayFromExternArray (

data , v a l u e . e l tType) ;
}
/ / Chapel ' s makeArrayFromExternArray
proc makeArrayFromExternArray (

va l u e : c h p l _ e x t e r n a l _ a r r a y , type e l tType) {
var dom = 0 . . number_elements \ − 1 ;
var a r r = new unmanaged

De f a u l t R e c t a ngu l a rA r r (dom=dom , . . .) ;
dom . add_a r r (a r r , l o c k i n g = f a l s e) ;
r e t u r n _newArray (a r r) ;

}

/ / New shareMakeArrayFromPtr
proc shareMakeArrayFromPtr (

v a l u e : c_p t r , num_el t s : u in t , dom : domain) {
var da t a = chp l _make_ e x t e r n a l _ a r r a y _p t r (

va lue , num_el t s) ;
r e t u r n shareMakeArrayFromExternArray (

data , v a l u e . e l tType , dom) ;
}
/ / New shareMakeArrayFromExternArray
proc shareMakeArrayFromExternArray (

va l u e : c h p l _ e x t e r n a l _ a r r a y , type e l tType ,
dom : domain) {
var a r r = new unmanaged

De f a u l t R e c t a ngu l a rA r r (dom=dom . _va lue , . . .) ;
dom . add_a r r (a r r , l o c k i n g = f a l s e) ;
r e t u r n _newArray (a r r) ;

}

Figure 6: Method Two: Chapel’s original (left) vs. our new (right) shared makeArrayFromPtr: in the shared version, a shareBlock
Domain is passed as an argument to shareMakeArrayFromExternArray and DefaultRectangularArr.

sou r c e / sha r e . bak0 −1 / sha r e . bak1 −1 / sha r e . bak2 −1 / sha r e . bak3 −1
t a r g e t / sha r e . bak0 −2 / sha r e . bak1 −2 / sha r e . bak2 −2 / sha r e . bak3 −2
component / sha r e . bak0 −3 / sha r e . bak1 −3 / sha r e . bak2 −3 / sha r e . bak3 −3
nEdge 27 26 26 26
nVtx 7 6 6 6

Figure 7: Method Two: Chapel shares matrix data with the separate C++ executable that calls Gra�ki via a small metadata �le
containing per-locale backing �le names and data sizes.

We also tested on Sandia’s Mutrino Cray computing system with431

100 Intel Haswell nodes with 96 GB of memory per node. Mutrino432

has a distributed memory build of Chapel 1.24 with an MPI backend.433

Thus, we could run both approaches with multiple ranks and locales.434

To evaluate the e�ect of inter-node communication and provide435

the greatest contrast to the shared-memory Kahuna experiments,436

we chose to assign one rank (locale) per node on Mutrino.437

Method One uses only one executable; Chapel and Gra�ki exe-438

cute on the same cores of allocated nodes. Method Two launches439

two executables that run concurrently on the nodes (using SLURM’s440

“srun –overlap” for each executable); cores may or may not be441

oversubscribed, depending on the number of ranks per node. For442

Method Two, we show results with a C++ executable for Gra�ki;443

past experiences saw no performance degradation using containers.444

We tested the performance of our methods with small and large445

graphs from the SuiteSparse matrix collection [4]. The small graph,446

bcsstk29.mtx, has 28 strongly connected components and a largest447

component with 13.8K vertices and 620K edges. The large graph,448

GAP-kron.mtx, has 78M strongly connected components (many of449

them singleton vertices), and a largest component with 63M vertices450

and 4.2B edges. The large test case uses over half of aMutrino node’s451

memory for the source and target arrays alone (> 67 GB), making452

the graph too large to be copied; on a single node, data sharing453

between Chapel and Gra�ki is the only way to solve the problem.454

In Table 1, we show the execution times for label propagation455

in our connected-component algorithm written in Chapel, and the456

linear solve time in Gra�ki’s hitting time algorithm using both457

integration methods and the small graph bcsstk29.mtx. Results are458

shown for both the Kahuna and Mutrino systems. Execution times459

for Methods One and Two are comparable, with no signi�cant loss460

of performance caused by using mapped memory in Method Two.461

On both platforms, we see that adding MPI ranks accelerates462

the linear solve in Gra�ki, with reasonable scaling even for this463

small graph. Adding locales also accelerates each iteration of label464

propagation in the Chapel-based connected component algorithm.465

Adding locales can increase the number of iterations required for466

connected component labeling, as each locale operates on a subset467

of the edges, slowing propagation across the full graph. This e�ect468

was seen in this small graph, in which the ordering (sorted by469

target vertex) of the input graph was optimal for label propagation470

with one locale; increasing the number of locales from one to 16471

increased the number of propagation iterations from two to nine.472

We ran the same experiments with the large GAP-Kron.mtx473

graph; execution times are in Table 2. Again, we see that Gra�ki’s474

linear solve time scales reasonably well with the number of MPI475

ranks, as does Chapel’s label propagation time with the number of476

locales. On Mutrino, we see a di�erence in the label propagation477

time for our two approaches, with per-iteration time signi�cantly478

longer using Method Two. This time di�erence is not seen for the479

Integrating Chapel programs and MPI-Based Libraries for High-performance Graph Analysis CHIUW22, June 10, 2022, Virtual

Chapel Gra�ki
LabelPropagation Hitting Times

Number Time per iteration Time per iteration
of (seconds) (seconds)

Platform Locales One Two One Two
Kahuna 1 1.24 1.22 0.0285 0.0287

2 NA 1.91 NA 0.0162
4 NA 1.56 NA 0.0087
8 NA 1.00 NA 0.0045
16 NA 0.65 NA 0.0051

Mutrino 1 0.82 0.89 0.0215 0.0230
2 0.65 0.77 0.0113 0.0120
4 0.44 0.47 0.0058 0.0062
8 0.22 0.29 0.0031 0.0033
16 0.11 0.15 0.0018 0.0018

Table 1: Runtime of Chapel connected-component label prop-
agation and Gra�ki hitting times on Kahuna and Mutrino
using Method One (Direct calls from Chapel to Gra�ki, Sec-
tion 3.1) and Method Two (Separate Chapel and Gra�ki exe-
cutables, Section 3.2) with small graph bcsstk29.mtx

Chapel Gra�ki
LabelPropagation Hitting Times

Number Time per iteration Time per iteration
of (seconds) (seconds)

Platform Locales One Two One Two
Kahuna 1 8626 7476 1187 1235

4 NA 9103 NA 364
16 NA 3749 NA 188

Mutrino 4 OOM 10333 OOM 371
16 1274 3079 103 105
64 320 824 30 26

Table 2: Runtime of Chapel connected-component label prop-
agation and Gra�ki hitting times on Kahuna and Mutrino
using Method One (Direct calls from Chapel to Gra�ki, Sec-
tion 3.1) and Method Two (Separate Chapel and Gra�ki exe-
cutables, Section 3.2) with large graph GAP-Kron.mtx

Gra�ki linear solve; Gra�ki linear solve times for both approaches480

are nearly identical. Thus, the degredation in Chapel’s label propa-481

gation must be due to our implementation of shareBlock rather482

than some inherent mapped-memory access issue on Mutrino. We483

suspect it arises due to di�erences between Chapel versions 1.23484

and 1.24. Our shareBlock Domain was built from the Block Do-485

main in Chapel 1.23; it may not exploit performance enhancements486

in Chapel version 1.24. More investigation and a transfer of our487

memory-mapped approach to newer versions of Chapel are needed.488

5 CONCLUSIONS AND FUTUREWORK489

We have described new methods for integrating Chapel algorithms490

with MPI-based numerical libraries, enabling Chapel users to take491

advantage of existing, optimized parallel algorithms while maintain-492

ing the simplicity of Chapel programming. Our approaches enabled493

integration of Chapel algorithms with MPI-based libraries without494

requiring additional copies of the user data, allowing Chapel users to495

solve problems that �ll the computer’s memory. We demonstrated496

our approaches with shared-memory and distributed-memory ver-497

sions of Chapel, as well as with Docker/Singularity containers.498

While our demonstration used a simple Chapel program for �nd-499

ing connected components of a graph and the MPI-based graph500

libraries Gra�ki and Trilinos for computing hitting times within501

the largest component, our methodology extends beyond this sin-502

gle demonstration. A matrix abstraction in Trilinos (RowMatrix)503

allowed Trilinos to perform matrix operations using the Chapel-504

formatted edge lists directly (i.e., without copying and/or reformat-505

ting the Chapel data). With our methods, any MPI-based library506

could be used, provided it either has native data structures identi-507

cal to Chapel’s or has abstraction capabilities similar to Trilinos’.508

To share data from any Chapel program with MPI-based libraries,509

Chapel users simply need to substitute mmap-enabled data structures510

(e.g., shareBlock) for standard Chapel arrays in their programs.511

This project raises many opportunities for future work.512

Arkouda [11] is often used for large-scale graph analysis because513

of its elegant NumPy-like interface. Arkouda is built on Chapel, so514

using our methods to integrate Arkouda and MPI-based libraries515

would be a natural extension of this work.516

An option in Chapel to use a user-de�ned allocatorwhen creating517

arrays would simplify extension of this work to other Chapel data518

objects and versions. To enable Chapel to use mmap memory, we519

refactored several Chapel functions to use the mmap memory (see520

Figures 5 and 6). These functions were based on the Block Domain521

in a speci�c version of Chapel (version 1.23), and would need to be522

updated for new versions of Chapel and other Domain types. An523

option for a user-de�ned allocator would allow us to provide an524

allocator based on mmap that could be used in many Chapel objects.525

Redistributing graphs’ edge lists to increase locality and reduce526

o�-processor data accesses would speed matrix-vector multiplica-527

tion and other operations in both Chapel and Gra�ki. Load balanc-528

ing tools such as Zoltan [5] or ParMETIS [8] balance computational529

work while reducing o�-processor data dependencies. Even simple530

sorting of edge lists has been shown to reduce cache misses and531

speed execution [13]. Our current work relies on the users’ data532

layout; users would need to pre-process the data to increase locality.533

This work allows Chapel users to leverage years of e�ort in534

MPI-based parallel computing for physics-based and graph-based535

applications by using libraries like Trilinos and Gra�ki. Compar-536

isons between Chapel and MPI in terms of performance and ease-537

of-use are beyond the scope of this work, but are important for538

evaluating the productivity versus performance trade-o� in us-539

ing Chapel. Also important is the sharing of hardware resources540

between Chapel and MPI processes in modern computer architec-541

tures. Our experiments showed that running separate processes542

(Method Two) on the same cores of a single node did not slow543

performance relative to running a single process (Method One).544

Further experiments using Trilinos’ multithreaded implementation545

would help in understanding interaction between Chapel and mul-546

tithreaded libraries. Moreover, given the extensive recent e�orts to547

adapt MPI-based libraries to accelerator architectures, experiments548

using Chapel+MPI+GPU would be of great interest and potential549

bene�t to the graph analysis community.550

Integrating Chapel programs and MPI-Based Libraries for High-performance Graph Analysis CHIUW22, June 10, 2022, Virtual

6 ACKNOWLEDGEMENTS551

We thank several people for enabling this work. Jon Berry provided552

motivation and use cases for this project. Samuel Knight, Omar553

Aaziz and Connor Brown provided system support on Sandia’s554

computers. Chapel developers Elliot Ronaghan, Brad Chamber-555

lain, Michael Ferguson, and Lydia Duncan in the Chapel Discourse556

Group provided technical advice and got us over several hurdles.557

Danny Dunlavy and the conference reviewers provided valuable558

feedback on this paper.559

Sandia National Laboratories is a multimission laboratory man-560

aged and operated by National Technology and Engineering So-561

lutions of Sandia, LLC, a wholly owned subsidiary of Honeywell562

International Inc., for the U.S. Department of Energy’s National563

Nuclear Security Administration under contract DE-NA0003525.564

REFERENCES565

[1] Bradford Chamberlain, Sung-Eun Choi, Steven Deitz, David Iten, and Vassily566

Litvinov. 2010. User-De�ned Distributions and Layouts in Chapel: Philosophy567

and Framework. In 2nd USENIX Workshop on Hot Topics in Parallelism. Cray Inc,568

1–12. https://chapel-lang.org/publications/hotpar10-�nal.pdf569

[2] Bradford Chamberlain, Steven Deitz, David Iten, and Sung-Eun Choi. 2011. Au-570

thoring User-De�ned Domain Maps in Chapel. In Chapel User’s Group 2011. Cray571

Inc, 1–6. https://chapel-lang.org/publications/cug11-�nal.pdf572

[3] B. L. Chamberlain, E. Ronaghan, B. Albrecht, L. Duncan, M. Ferguson, B. Harsh-573

barger, D. Iten, D. Keaton, V. Litvinov, and P. Sahabu. 2018. Chapel comes of574

age: Making scalable programming productive. In Cray User Group 2018. https:575

//cug.org/proceedings/cug2018_proceedings/includes/�les/pap130s2-�le1.pdf576

[4] Timothy A. Davis and Yifan Hu. 2011. The University of Florida sparse matrix577

collection. ACM Trans. Math. Software 38, 1 (2011), 1:1 – 1:25. https://sparse.578

tamu.edu/579

[5] K.D. Devine, E.G. Boman, R.T. Heaphy, R.H. Bisseling, and U.V. Catalyurek. 2006.580

Parallel Hypergraph Partitioning for Scienti�c Computing. In Proc. of 20th Inter-581

national Parallel and Distributed Processing Symposium (IPDPS’06). IEEE.582

[6] Michael AHeroux, RoscoeABartlett, Vicki EHowle, Robert J Hoekstra, Jonathan J583

Hu, Tamara G Kolda, Richard B Lehoucq, Kevin R Long, Roger P Pawlowski,584

Eric T Phipps, et al. 2005. An overview of the Trilinos project. ACM Trans. Math.585

Software 31, 3 (2005), 397–423. http://dx.doi.org/10.1145/1089014.1089021586

[7] Hewlett Packard Enterprise Development LP. 2021. Chapel Documentation.587

https://chapel-lang.org/docs/588

[8] G. Karypis and V. Kumar. 1997. ParMETIS: Parallel Graph Partitioning and Sparse589

Matrix Ordering Library. Technical Report 97-060. Dept. Computer Science,590

University of Minnesota. http://glaros.dtc.umn.edu/gkhome/metis/parmetis/591

overview592

[9] Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. 2017. Singularity:593

Scienti�c containers for mobility of compute. PLOS ONE 12, 5 (05 2017), 1–20.594

[10] Trevor M. McCrary, Karen D. Devine, and Andrew J. Younge. 2022. Integrating595

PGAS and MPI-Based Graph Analysis. Technical Report SAND2022-0653R. Sandia596

National Laboratories. Computer Science Research Institute Summer Proceedings597

2021, J.D. Smith and E. Galvan, eds., 235–249.598

[11] MichaelMerrill,WilliamReus, and TimothyNeumann. 2019. Arkouda: Interactive599

Data Exploration Backed by Chapel. In Proceedings of the ACM SIGPLAN 6th600

Chapel Implementers and Users Workshop. 28. https://doi.org/10.1145/3329722.601

3330148602

[12] Message Passing Interface Forum. 1994.MPI: AMessage-Passing Interface Standard.603

Technical Report. University of Tennessee, USA.604

[13] Eric T. Phipps and Tamara G. Kolda. 2019. Software for Sparse Tensor Decom-605

position on Emerging Computing Architectures. SIAM Journal on Scienti�c606

Computing 41, 3 (2019), C269–C290.607

[14] The Trilinos Project Team. 2021. The Trilinos Project Website. https://trilinos.608

github.io/609

[15] Michael Wolf, Daniel Dunlavy, Richard B Lehoucq, Jonathan W Berry, and Daniel610

Bourgeois. 2018. TriData: High Performance Linear Algebra-Based Data Analytics.611

Technical Report. Sandia National Laboratories.612

https://chapel-lang.org/publications/hotpar10-final.pdf
https://chapel-lang.org/publications/cug11-final.pdf
https://cug.org/proceedings/cug2018_proceedings/includes/files/pap130s2-file1.pdf
https://cug.org/proceedings/cug2018_proceedings/includes/files/pap130s2-file1.pdf
https://cug.org/proceedings/cug2018_proceedings/includes/files/pap130s2-file1.pdf
https://sparse.tamu.edu/
https://sparse.tamu.edu/
https://sparse.tamu.edu/
http://dx.doi.org/10.1145/1089014.1089021
https://chapel-lang.org/docs/
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
https://doi.org/10.1145/3329722.3330148
https://doi.org/10.1145/3329722.3330148
https://doi.org/10.1145/3329722.3330148
https://trilinos.github.io/
https://trilinos.github.io/
https://trilinos.github.io/

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Method One: Direct Chapel-to-C calls
	3.2 Method Two: Separate Chapel and C++ Processes
	3.3 Containerization of the C++ Library

	4 Experiments and Results
	5 Conclusions and future work
	6 Acknowledgements
	References

