
From C and Python to Chapel as my main Programming
Language
Nelson Luís Dias

nelsonluisdias@gmail.com
Department of Environmental Engineering, UFPR – Universidade Federal do Paraná

Curitiba, PR, Brazil

ABSTRACT
I describe a trajectory of using a number of programming languages
in research, from my early days with Fortran, Pascal and Modula-2,
to mainly C and Python during approximately 30 years, and then
to Chapel in the last 2 years. During all of this time the desktop PC
has been adequate to my processing needs; therefore, this is essen-
tially a “Chapel at the desktop” experience report. Chapel is a very
elegant language, providing the power and speed of C and Fortran,
while allowing a high degree of abstraction and expressiveness that
rivals Python’s. I have used it in the last two years for: calculating
statistics over massive turbulence datasets, implementing models
for lake evaporation in hydrology, and testing some relatively sim-
ple numerical solutions of partial differential equations. Its easy
portability from C, Fortran and Python allowed fast translation and
re-use of my existing libraries. On the few (but not impossible to
live with) shortcomings, passing functions as procedure parameters
is somewhat unwieldy; re-indexing arrays in procedures is verbose;
compilation could be faster; and executables are very large.

KEYWORDS
user experience, Chapel vs C and Python, desktop computing
ACM Reference Format:
Nelson Luís Dias. 2022. From C and Python to Chapel as my main Pro-
gramming Language. In Proceedings of The 9th Annual Chapel Implementers
and Users Workshop (CHIUW 2022). ACM, New York, NY, USA, 4 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 SPEAKING MANY (PROGRAMMING)
LANGUAGES

I may have been fortunate to learn to program in some dialect of
Fortran 66 using punched cards on a PDP-11, because it gave me a
perspective of how great the evolution has been, and how much
better things are today. After learning Fortran, I have done actual
research (using editors and the command line) in many languages:
VAX Fortran, Modula-2, Turbo Pascal, and for almost 30 years
during and after my PhD, C and Python, with an occasional relapse
to Fortran 9X. I discovered Chapel because I have been interested
in doing my own Fluid Mechanics simulations that will require

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHIUW 2022, June 10 2022, Online Conference
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

parallel processing, but what I have found is that it is able to be
much more than a niche language exclusively for HPC. Instead, it
is very well suited to be a general-purpose language for research,
and a very good substitute for all of Fortran, C and Python. During
this talk, I will try to explain why, with examples.

2 THE ROLES OF LANGUAGES IN MY
RESEARCH

Programming languages seem to attract judgements and win adher-
ents for what may well be subjective reasons: a persons’s sense of
aesthetics, a preference for minimalistic (C) or near-baroque (C++?)
ways to write algorithms, a disposition of writing all code from the
ground up or using available libraries (Python’s strength), all play
a role in their language of choice.

It is not my intention to add fuel to the debate. As much as I have
my preferences and inclinations with programming languages —
which will become clear as I progress— I also need to get something
done with them. My research mostly involves calculating statistics
over large datasets of turbulence data measured in the atmosphere,
but also working with smaller datasets of mean hourly or daily
atmospheric data, as well as occasionally solving some ordinary or
partial differential equation numerically. This dictates or at least
narrows down the choices to a language that:

(1) is easy to learn and use;
(2) has enough constructs to work efficiently with large chunks

of data: array slicing is very desirable;
(3) runs fast.

Alas, until a couple of years ago, I did not know of any language that
simultaneously fulfilled all of the criteria above. Let us concentrate
on my preferred contenders: Fortran, C, and Python. Some of my
own limitations narrow the list: I do not know or use C++ (nor
anyone with whom I have ever collaborated), so I will not comment
on it, other than mention that it obviously has many more features
than C, and that it does have a std::slice function. Neither do I
know or use R or its Python “conterparts” like Pandas; I do not use
Matlab either.

Python, the youngest of the three, is easy to learn and use. It
also comes, or is easy to extend, with libraries that greatly simplifty
programming (“batteries included”), such as Numpy and SciPy. In
particular, Numpy has very power arrays that can be sliced. Python
therefore fullfils (1) and (2) above. However, being interpreted, it
can be very slow. There are all sorts of add-ons like Cython and
Numba that can improve performance, but then you are no longer
in the context of the language itself, and start to lose the simplicity
of requisite (1).

C, the second youngest, is a small and simple language, although
some concepts like mixing pointers and arrays can be a little hard.

https://orcid.org/0000-0002-9770-8595
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

CHIUW 2022, June 10 2022, Online Conference Dias

Let us say that it fulfills (1) at least in part. C arrays however cannot
compete with Numpy nor with the arrays provided by modern For-
tran, and cannot be sliced — although C99 improved the capability
of passing multi-dimensional arrays to functions. So C fails (2). But
it runs very fast, and (3) is OK.

Fortran, the oldest, has continued to evolve since it was born
in the 1950s. This produced a huge language, that still needs to
compile legacy code, as more and more features were introduced
along the way. For its size and redundant features, I will fail Fortran
in (1). But it has very good arrays that can be sliced and passed
easily as arguments: (2) is OK, and it runs at least as fast as C, so
(3) is also OK with Fortran.

At this point, in order to get a reasonable mix of (1)–(3), one is
forced to “live with” at least two, and perhaps all three, of the above
languages. For example, I have worked with Python in projects that
did not require heavy processing (or for which pre-compiled code
in Numpy, Scipy, etc., was good enough), and with Fortran or C
when heavy numerical processing coded by myself or my students
was involved.

3 CHAPEL’S STRENGTHS
With Chapel the situation is qualitatively very different. It is not
a small language — for example, like Python, it allows for object-
oriented programming and some ideas of functional programming,
but one can go quite far with a reasonable subset of strictly pro-
cedural programming that readily gives all of (1)–(3). This means
that Chapel’s claim that it is as fun to program as Python and as
efficient as C or Fortran is, in my experience, fully realized. Indeed,
this talk’s main point is little more than corroborating that claim.

Chapel has the potential to fill the niche of a convenient and easy-
to-use interpreted language such as Python while at the same time
delivering the performance of C and Fortran — even in applications
that do not run in supercomputers. Then, the researcher/engineer/etc.
can concentrate on one syntax, one compiler, and use the free space
in his/her mind to problem solving in his/her area.

In Chapel, it is as easy to re-use code as it is in Python. “Separate
compilation”, which is mildly complicated in C and Fortran, is
transparent, as long as the compiler knows where to look for the
modules that the user is importing. Here, declaring a path to the
directory where my libraries (in source code) reside is sufficient, as
in
export CHPL_MODULE_PATH=/home/nldias/Dropbox/\
nldchapel/modules

Apparently, however, this comes at the price of re-compiling all
source code each time that a program is compiled and linked into
an executable. So far, I have translated about a dozen of my libraries
that were born as C or Python code to Chapel modules, and have
been using them without any problem. In a few of my libraries, for
matrix multiplication and for spectral analysis, for example, I made
quick changes to the code from fors in C or Python to foralls in
Chapel, to speed execution up. Then, with relatively small changes
in the code, some substantial speed improvements can be gained,
that often approach (obviously) multiplying execution speed by the
number of cores available in the CPU. Here is the list of my current
Chapel modules, without any pretense of them being “professional”
or “high-quality” software:

angles.chpl Very basic operations with angles (degrees to
radians, etc.)

atmgas.chpl Concentrations, densities, and other properties
of atmospheric gases.

dgrow.chpl Grow a domain dynamically to accomodate an
out-of-range index.

evap.chpl Evaporation formulas and methods in hydrology.
matrix.chpl Vector and matrix multiplication, tridiagonal ma-

trix algorithm (with a sparse domain), Gauss-Jordan inver-
sion of a matrix, solution of a system of linear equations
with Gauss elimination.

nspectrum.chpl Spectral analysis.
nstat.chpl Basic statistics, linear regression, Lowess [1] low-

pass filtering.
nstrings.chpl Simple string operations.
ssr.chpl Search, sort and replace procedures for arrays.
sunearth.chpl Astronomical formulas for the trajectory of

the Earth around the Sun.
turbstat.chpl Processing of turbulence data.
water.chpl Thermodynamic properties of water.

Specifically, Chapel of course is much faster than Python. For my
most demanding applications (for instance calculating turbulence
statistics over massive amounts of data, measured 20 times per
second during many months) Python is too slow and what had
been gained in simplicity in programming was being lost staring
at the terminal while Python struggled with its slow loops which
were sometimes impossible to avoid using Numpy’s constructs.
The number of lines is not too different in (my) C, Fortran and
Chapel implementations, but this is not a problem. Actually, some
of the terse statements possible in Numpy are much harder to
understand than for (or do!) loops, and sharing “clever” Numpy
code with my colleagues has sometimes not been very popular. I
have not compared the speed of Chapel with that of C or Fortran,
but assumed that they produce equally efficient code. In summary,
the advantage here is that Chapel is easier to maintain and definitely
easier to program than either C or Fortran, but still as fast as on a
single core. When it is possible to make simple parallelizations, it
is of course much faster than single-processor C or Fortran code.

Like modern Fortran, and unlike C or Python or Julia, Chapel
is agnostic about the first index of an array. It does not force all
your arrays to begin at 0 or at 1, and you are free to choose. This
is a better feature for a programming language because, as I see
it, the appropriate starting index may change with the algorithm,
problem, etc., and that, in spite of unending heated arguments, there
is no overall best choice between 0 and 1 (or something else), not
to mention that at the end of the day it is also a matter of personal
taste. It does bring complications to arrays as formal arguments:
by default, in Chapel an array enters a procedure with its pre-
defined starting indices, and “aligning” the indices (as in matrix
multiplication, for example) has to be done manually by calling a
reindex method or by writing an “index-neutral” algorithm that
will be longer and require the programmer to think a little harder.
In Fortran, you can force the formal array variable to start at a
specified index inside a subroutine, something that in Chapel would
be written (if available) somewhat like

proc vmax(ref a: [1..?n] real) { ... }

From C and Python to Chapel as my main Programming Language CHIUW 2022, June 10 2022, Online Conference

which would immediately re-index a to start at 1, while making n
locally equal to a.size.

I have also used, sparingly, the ability to write procedures with
formal arguments of generic types. This is obviously useful when
exactly (or almost exactly) the same code needs to be used to calcu-
late (say) the median of an integer and of a real array. This is quite
automatic in Python, but as far as I know impossible in C — and
used to be impossible in Fortran as well. In Chapel, you say

proc median(ref ax: [] ?at): at { ... }

and you are in business.
Domains are a very distinctive feature of Chapel, that I had never

seen in any other language before. In Chapel, an array’s index set
is defined over a domain, and domains are very flexible: they can
be rectangular (as in C and Fortran), but they can also be sparse
(as when dealing with a tridiagonal matrix) and finally they can
be associative (as in a Python dictionary). Associative domains can
also function as sets, over which you can perform the usual unions,
intersections, symmetric differences, etc.. Domains can also be used
to automatically resize arrays: changing a domain variable changes
all arrays defined over it. I have used all kinds above in my research,
and the result is code that is clearer and usually shorter than the
equivalent C or Fortran counterpart and, importantly, fast to write.

The upshot is a fair increase in my productivity as a programmer
(which I am reporting here on subjective grounds) because (a) I
have the ability to re-use my own code and maintain my libraries
with ease and (b) there are enough syntactical elements in Chapel to
implement some ideas easily and fast. In one example that I used re-
cently, for data organized sequentially in time in a one-dimensional
array A, the indices for the dates can be stored in an auxiliary asso-
ciative array idate, so that A[idate["2010-02-28"]] retrives a
particular day without fussing too much about years, months and
days.

Parallelization is, of course, a central feature of Chapel, and is
incredibly easy to implement. A lot can be achieved by changing
from for to forall, being careful about race conditions (but the
compiler is often clever enough to forbid suspicious accesses by
default!). As an example, table 1 shows the speedup that can be
achieved with that change for the solution of Laplace’s equation
with successive over-relaxation (SOR) in two dimensions on a com-
puter with 12 logical cores. The speedup factor, although not the
theoretical maximum of 12, is still a respectable 6–8 (and bear in
mind that there are only 6 physical cores). It is possible to run
Chapel in multiple locales, but only if you have access to a cluster,
which I currently do not. I have made a few experiments simulating
a multi-locale machine on my desktop computer, but cannot report
much on using locales and (domain) distributions.

The content of this section is similar to my words of praise about
Chapel to my colleagues and students. I haven’t convinced most of
my peers but understandably have had more effect on the students.
Those that were already doing their job with Python were left
alone: doing research is hard enough without having to learn a
new language along the way. But newcomers are gently coerced to
use Python, and there is an ongoing project with a colleague (the
exception) where a PhD student of hers is developing a turbulence
model in Chapel.

As a last praise, Chapel is elegant. It achieves a good balance
between being easy to write (for example, you need to declare a
variable, but the type can be inferred implicitly by a simultaneous
assignment as in ‘var a = 1;’ that declares a to be a integer) and
safe for the programmer (again in my experience, I make far fewer
errors than in C or in Python), and almost always the syntax is a
delight to use when writing an algorithm.

4 WHERE ARE THE BATTERIES?
Application libraries are not so readily available in Chapel as they
are in Python, and this might prevent potential users to jump on
Chapel’s boat. Still, there are already very useful “Package Modules”
in Chapel’s distribution (see https://chapel-lang.org/docs/modules/
packages.html). Sometimes they require adding additional libraries
to the operating system. For example, I often use FFTW, which
requires libfftw3-bin and friends to be installed in the debian-
based Linux OS (Linux Mint 20.3) that I use. Then, compiling with
the additional -lfftw3 flag does the job.

Alternatively, there are many repositories of useful Fortran and
C scientific libraries. If you have the header file and the source
file of a library, say foo.h and foo.c, then Chapel allows you to
specify external functions in your prog.chpl Chapel source file
and to link it with the C library via
chpl foo.h foo.c prog.chpl

Details can be found in https://chapel-lang.org/docs/technotes/
extern.html. Since most Python scientific libraries are wrappers to
C and Fortran code that is often open-source and easy to find, with
some additional effort it is possible to take advantage of existing
scientific routines. I consider that shedding light on this feature
and giving detailed examples (for instance, how to install and use
CMinpack (http://devernay.free.fr/hacks/cminpack/) can attract a
larger audience to using Chapel on the desktop.

5 A FEW THINGS THAT COULD BE BETTER
This is just my opinion! No language can ever be “perfect”, as this
is a matter of personal taste. A killer feature in one’s opinion may
well be a disaster in someone else’s. Here are a few things that I
think could be slightly better.

Compilation could be faster, and the generated executables could
be smaller. Faster compilation is definitely the most important thing,
if only because people will compare Chapel’s compilation times
to the instantaneous result in Python or in the GCC family of
compilers. I know that this is a goal of the project, so it is probably
on its way in forthcoming versions of the compiler.

As I mentioned above, there could be an option for arrays as
formal arguments to be reindexed automatically in their declaration.

Procedures as arguments to other procedures are not naturally
integrated into the language. “First class” functions are available,
but do not work in all cases of practical interest. There are two
solutions that always work: wrapping the function type in a record
and declaring the desired function with this, followed by declaring
function variables, or declaring the function variable in a lambda
expression. The corresponding formal argument has to be declared
as a generic argument, without any type: the long existing solution
in C and Fortran of using a function declaration in the argument
list is not possible.

https://chapel-lang.org/docs/modules/packages.html
https://chapel-lang.org/docs/modules/packages.html
https://chapel-lang.org/docs/technotes/extern.html
https://chapel-lang.org/docs/technotes/extern.html

CHIUW 2022, June 10 2022, Online Conference Dias

Table 1: Grid size 𝑁𝑛 , number of iterations to convergence 𝑛𝑐 , estimated 𝑢, MAD and runtime 𝑡𝑟 for the serial and parallel
versions of the solution of Laplace’s equation with SOR.

serial parallel

𝑁𝑛 𝑛𝑐 𝑢 MAD 𝑡𝑟 (s) 𝑛𝑐 𝑢 MAD 𝑡𝑟 (s)

128 431 0.7500 2.5625 × 10−7 0.0647 428 0.7500 2.5278 × 10−7 0.0107
256 1934 0.7499 1.5653 × 10−6 0.6914 1931 0.7499 1.5609 × 10−6 0.1152
512 6947 0.7499 6.6456 × 10−6 9.9662 6943 0.7499 6.6525 × 10−6 1.3221
1024 23955 0.7499 2.7032 × 10−5 137.6410 23952 0.7499 2.7028 × 10−5 16.7878
2048 80310 0.7498 1.0864 × 10−4 1867.7000 80306 0.7498 1.0865 × 10−4 232.3660

This ends, however, my very short list of things that could be
better in the language. None of them is an impediment to using
Chapel productively. They may require a few extra lines of code,
but his has a very little impact in the overall scheme of things.
Programming in Chapel is very safe and making errors is far less
frequent than in C or Python. Productivity is high, the power of the

language’s constructs is considerable, and parallelization is almost
effortless. I hope that Chapel continues to thrive and that it grows
in acceptance. It is now my language of choice.

REFERENCES
[1] W. S. Cleveland. 1981. LOWESS: A program for smoothing scatterplots by robust

locally weighted regression. American Statistician 35, 1 (1981), 54.

	Abstract
	1 Speaking many (programming) languages
	2 The roles of languages in my research
	3 Chapel's strengths
	4 Where are the batteries?
	5 A few things that could be better
	References

