B}

Hewlett Packard
Enterprise

Brad Chamberlain, HPE) 3

CHIUW 2022, June 10, 2022

WHAT IS CHAPEL?

Chapel: A modern parallel programming language N
e portable & scalable
e open-source & collaborative _,
Goals:

e Support general parallel programming
o Make parallel programming at scale far more productive
—Python-like support for rapid prototyping, clear code
—-yet with the performance, scaling, GPU support of Fortran/C/C++, MPI, OpenMP, CUDA, ...

2

FOR HPC BENCHMARKS, CHAPEL TENDS TO BE CONCISE, CLEAR, AND COMPETITIVE

STREAM TRIAD: C + MPI + OPENMP

use BlockDist;

.| config const m = 1000,

alpha = 3.0;

const Dom = {1l..m} dmapped ..;

var A, B, C: [Dom] real;

B =2.0;
C =1.0

4

A = B + alpha * C;

HPCC RA: MPI KERNEL

GB/s

forall (, r) in zip(Updates, RAStream()) do
T[r & indexMask].xor(r):;

30000
25000
20000
15000
10000

5000

14
12
10

GUPS

onNn A~ O

STREAM Performance (GB/s)

MPI+OpenMP —¢—
Chapel EP —e— — - == == == == === —mm - - - —
Chapel Global - -+ -

[
16 32 64 128 256
Locales (x 36 cores / locale)

RA Performance (GUPS)

16 32 64 128 256
Locales (x 36 cores / locale)

FLAGSHIP CHAPEL APPLICATIONS

CHAMPS: 3D Unstructured CFD

Eric Laurendeau, Simon Bourgault-C6té,
Matthieu Parenteau, et al.

Ecole Polytechnique Montréal

ChplUItra: Simulating Ultralight

Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, ef al.
Yale University / University of Auckland

= - Arkouda: NumPy at Massive Scale 5 ChOp: Chapel-based Optimization
—] E EE ~ Mike Merrill, Bill Reus, et al. ‘/X'H')(Tiago Carneiro, Nouredine Melab, et al.
ﬁ e BEESEE JS DoD A teses oxe INRIA Lille, France
CrayAl: Distributed Machine Learning ‘ """""""" Your application here?
4 g “ € " e “ O " O Y Hewlett Packard Enterprise ?

: (images provided by their respective teams and used with permission) I 4

THE CHAPEL TEAM

HPE’s Chapel team currently consists of 16 full-time employees, 3 summer interns, and our director
« We also have 1 more full-time engineer joining this month and a few open positions

Chapel Development Team at HPE

see: https://chapel-lang.org/contributors.html

and https://chapel-lang.org/jobs.html

https://chapel-lang.org/contributors.html
https://chapel-lang.org/jobs.html

CHAPEL RELEASES

Three releases since CHIUW 2021:

Chapel 1.25.0: September 23, 2021
Chapel 1.25.1: December 9, 2021
Chapel 1.26.0: March 31, 2022

Up next:
Chapel 1.27.0: June 30, 2022 (anfticipated)

(We expect to release on a quarterly schedule going forward)

6

STATE OF THE CHAPEL PROJECT IN 2022

e |n a word: fantastic!

e For more detail, let’s look at ten highlighted areas/efforts since CHIUW 2022

7

NEW FACES

NEW FACES AT CHIUW 2022

o Large-Scale and User-Friendly Exact Diagonalization in Chapel IkaCiaaddl
o Tom Westerhout, Mikhail I. Katsnelson (Radboud University)

o Extending Chapel to Support Fabric Attached Memory a{CEa)
« Amitha C, Clarete Crasta and Sharad Singhal (Hewlett Packard Enterprise)

 Integrating Chapel programs and MPI-Based Libraries for High-performance Graph Analysis
o Trevor McCrary (Georgia Institute of Technology), Karen Devine, and Andrew Younge (Sandia National Laboratories)

o An Introduction to GASNet-EX for Chapel Users IRECES LA
o Dan Bonachea and Paul H. Hargrove (Lawrence Berkeley National Lab)

o ChapelPerf: A Performance Suite for Chapel BGaICESAdl
« Ricardo Jesus and Michele Weiland (EPCC, The University of Edinburgh)

e From C and Python to Chapel as My Main Programming Language

» Nelson Dias (Federal University of Parana, Brazil)

— .

‘DYNO’ COMPILER REWORK

Background:

e The Chapel compiler...
...Is slow (seconds to minutes)
...can be hard to understand when there are errors
..isn’t terribly well-architected: inflexible, challenging to get started with
« Largely reflects its origins as a scrappy research project, by a small feam, moving fast

This Effort:

o This year, kicked off an effort fo massively rearchitect it and address these lacks:
— better user experience

—easier to start contributing to

Compiler Library API Docs
—faster / more flexible: separate compilation, dynamic evaluation of code, ...

Conceptual Guide

Symbols by Namespace

Status:

« the ‘dyno’ parser will be the default in Chapel 1.27.0
» rewrites and restructuring of later passes also underway

 code structure documented online: https://chapel-lang.org/docs/developer/compiler-internals/index.html

—

11

https://chapel-lang.org/docs/developer/compiler-internals/index.html

LLVM BY DEFAULT

Background:

« Traditionally, Chapel has generated C code as its “portable assembly”
- LLVM-based back-end was also available as an option

In Chapel 1.25:

 Finally made good on a long-term intention to switch to the LLVM back-end by default (version 11)
— C-based compilation is still available as an option

« Motivation:
—reduces burden of trying to support all versions of all C compilers
—communicates Chapel semantics more directly to back-end than C permits
—leverages community investment in, and familiarity with, LLVM
—modestly reduces compilation times, on average
— provides an attractive path for targeting GPUs

Since then:
e Chapel 1.26.0: added support for LLVM 12 and 13
e Chapel 1.27.0: will add support for LLVM 14

—

12

CLBG: ALL-LANGUAGE SUMMARY, CHIUW 2021 (ZOOMED-IN)

Execution Time
(normalized to fastest entry)

10

1
1.0

0 °"
o Racke\t\
.\\
O
= Dart
*®111:: i
“::g}“:: O \\\\\\
b, .‘O ________ \ T 1
Pascal . B "go -l Java'e
I N B
F# ‘
® B ©
Julia Rust e
®c
15 2.0 255 30

Compressed Code Sizé Cnormélized to smallest entry)

B chapel
Bl csharpcore
mam dartexe
EEm erlang
I fpascal
mmm fsharpcore
I gcc
BN ghc
EEm gnat

go
. gpp

ifc
B java
 julia
. lua

node
B ocaml
mmm perl
B php 0

python3 L S p
mmm racket
BN ruby
B rust

sbcl

swift

T VW

[] gmean-smallest

14

CLBG: ALL-LANGUAGE SUMMARY, CHIUW 2022 (ZOOMED-IN)

Execution Time
(normalized to fastest entry)

10 (I
* ! Racket

“ ~ Dart

Haskell

T O RSO e A

\ =

. .
S
=
5
° S
uila ust o
= ——
e
S
S~
~

1 1 1 1 1
1.0 15 2.0 2.5 3.0

Compressed Code Sizé Cnormélized to smallest entry)

O 4
- o Javeserpt

B chapel
Bl csharpcore
mam dartexe
EEm erlang
I fpascal
mmm fsharpcore
I gcc
BN ghc
EEm gnat

go
. gpp

ifc
 java
 julia
. lua

node
B ocaml
mmm perl
w e [LIS0)

python3
mmm racket
BN ruby
B rust

sbcl

swift
'Y

o D gmean-smallest

O gmeafi-fastest

3.5

15

LS
™

LANGUAGE / LIBRARY HIGHLIGHT

NEW LANGUAGE FEATURES

‘manage’ statements: support Python-like context management

resizing arrays of non-nilable classes: implemented using context managers
 challenges relate to elements not having a sensible default value

‘foreach’ loops: express parallel loops that should be implemented by the current task
 help indicate opportunities for vectorization or GPU execution when a “forall’ loop’s tasks would be overkill

foreach i in 1..n do //assertthat thisloop is order-independent
ali] = blpli]];

operators: prototyped in 1.24, now ready for use

» addressed an otherwise vague namespace issue
operator R.+(x: R, y: R) { ..}

17

NEW LIBRARY PACKAGE MODULES

» Socket: supports TCP-/UDP-based socket communications

e Channels: supports Go-style channels for message queues between tasks

» CopyAggregation: makes available the aggregator abstractions used by Arkouda and Bale IndexGather
» ArgumentParser: in support of richer command-line options than ‘config’ supports

o ConcurrentMap: adds an efficient concurrent map

— .

GOOGLE SUMMER OF CODE 2021 PROJECTS

Divye Nayyar

Go-Style Channels

Lakshya Singh

Socket Library MENTORS

Michael Ferguson

Prasanth Duvvuri ATy B

Matrix Exponentials MENTORS

Michael Ferguson
Krishna Dey
MENTORS Ankush Bhardwaj

Lydia Duncan

Garvit Dewan

Engin Kayraklioglu
Nikhil Padmanabhan

CHAPEL 2.0

Background:

« For the past several years, we have been working toward a forthcoming Chapel 2.0 release
« Infent: stop making backward-breaking changes to core language and library features

Status:

» Major language-related changes have largely wound down
« Primary remaining effort is on stabilizing the standard libraries

IZO

CHAPEL 2.0: MODULE STABILIZATION

S9|e207
UOILBZI|BIHIUIDAOIN AJOWDIN
S10.113
P3UMQ / paJeys
sAelly
sulewo(
sabuey
sajAg / Buus
UOISIDA
swll |
Xobay

awli] aleq
10113SAS
J1segsAs
SAS
,Ss9204dgns
LS9dA D
slallleg
wopuey
YLe
1abayu|big
sadA|
V[eJILETTEN
yied

Ol
wasASo|l4
13S

dep

s

(o[-ETH
Loyuod|dyd
sulyjing

1.24

n O
N8 N
wl w

v

Review Started

Progress

Stable

21

USER PUBLICATION HIGHLIGHTS .

USER PUBLICATION HIGHLIGHTS

ChOp: Tiago Carneiro, Guillaume Helbecque, Jan Gmys, Loizos Koutsantonis, Nouredine Melab, Emmanuel
Kieffer, Pascal Bouvry (U. Luxembourg, Inria Lille):
« A performance-oriented comparative study of the Chapel high-productivity language to conventional
programming environments

— 13th International Workshop on Programming Models and Applications for Multicores and Manycores (PMAM 2022), Seoul,
South Korea, April 2, 2022.

o A Local Search for Automatic Parameterization of Distributed Tree Search Algorithms
—12th IEEE Workshop Parallel / Distributed Combinatorics and Optimization (PDCO 2022), June 3, 2022.

r or
|

ChplUltra: J. Luna Zagorac, Isabel Sands, Nikhil Padmanabhan, and '@ ® ®
Richard Easther (Yale University, University of Auckland) 40 4\ 40 %
 Schradinger-Poisson Solitons: Perturbation Theory ' \l \¢ AR

. . ® (® (® (®
— ArXiv, September 4, 2021 / April 15, 2022

o A Light in the Dark: UltraLight Dark matter Phenomenology in Simulaﬁons ’ \\l S S S
- Ph.D. thesis, defended by Dr. J. Luna Zagorac on April 1, 2022 (4 ® (@ @ @

Talk by Luna @ 9:30 iJ e A O A OO A "‘L

— .

ARKOUDA HIGHLIGHTS

ARKOUDA'’S HIGH-LEVEL APPROACH

Arkouda Client Arkouda Server
(written in Python) (written in Chapel)
= '\
-
e
—

999999999999999999
9999999999999999

N

O User writes Python code in Jupyter,
ﬂ making NumPy/Pandas calls
— -

KEY ARKOUDA FEATURES

o Massive-Scale Data
e TB-sized arrays

e Interactive Rates
« seconds to minutes per op
o Extensible
» Fast and Scalable
e Open-Source:
o github.com/Bears-R-Us/arkouda/

NumPy Arkouda (serial) Arkouda (parallel) Arkouda (distributed)
0.75 GB 0.75 GB 0.75 GB 384 GB
benchmark 1 core, 1 node 36 cores x 1 node 36 cores x 512 nodes
0.03 GiB/s 0.05 GiB/s 0.50 GiB/s 55.12 GiB/s
argsort
-- 1.66x 16.7x 1837.3x
coarasort 0.03 GiB/s 0.07 GiB/s 0.50 GiB/s 29.54 GiB/s
9 -- 2.3x 16.7x 984.7x
1.15 GiB/s 0.45 GiB/s 13.45 GiB/s 539.52 GiB/s
gather
-- 0.4x 11.7x 469.1x
reduce 9.90 GiB/s 11.66 GiB/s 118.57 GiB/s 43683.00 GiB/s
-- 1.2x 12.0x L412.4X
scan 2.78 GiB/s 2.12 GiB/s 8.90 GiB/s 741.14 GiB/s
-- 0.8x 3.2x 266.6x
scatter 1.17 GiB/s 1.12 GiB/s 13.77 GiB/s 914.67 GiB/s
-- 1.0x 11.8x 781.8x
I 3.94 GiB/s 2.92 GiB/s 24.58 GiB/s 6266.22 GiB/s
-- 0.7x 6.2x 1590.4x

|26

https://github.com/Bears-R-Us/arkouda/

ARKOUDA HIGHLIGHTS SINCE CHIUW 2021

o Dataframe support: including support for additional types
e Modular builds: select feature set at Arkouda build-time

* NJIT repository w/ graph capabilities

e Large-scale string processing improvements

e And much more: See hitps://github.com/Bears-R-Us/arkouda/releases for details

» Also, performance improvements...

— .

https://github.com/Bears-R-Us/arkouda/releases

ARKOUDA ARGSORT AT MASSIVE SCALE

e Ran on a large Apollo system, summer 2022

e 73,728 cores of AMD Rome
o 72 TiB of 8-byte values

« 480 GiB/s (2.5 minutes elapsed time) ggg

e ~100 lines of Chapel code 400
350
300
250
200
150
100

50

GiB/s

Arkouda Argsort Performance
HPE Apollo (HDR-100 IB)

64 128 256 512 576
Locales (x 128 cores / locale)

Close to world-record performance—quite likely a record for performance/SLOC

—

|28

PERFORMANCE IMPROVEMENTS -

MANY, MANY PERFORMANCE IMPROVEMENTS

Pr

Time (seconds)

imarily motivated by...

...fargeting new platforms
—InfiniBand-based systems

—high core-count chips like AMD Rome

—large-memory nodes
...user codes

+——t BEFORE
16 | = AFTER

Time (s)
® o
-
==

2 /A 1
0 + - : — i 4 Fniaisw
1 2 4 8 16 32 64 128
Threads
LLNL CoMD Time (sec)

06"
0.5 -
0.4
03
0.2
0.1

o
01Aug 02 Aug 03 Aug 04 Aug 05 Aug 06 Aug 07 Aug

—

Performance (MB/s per node)

Performance (GiB/s)

Performance (MB/s per node)

Bale: Aggregated Indexgather Perf (MB/s per node)

1200

i T

400

200

Jul 2021

Aug 2021

Groupby Performance

Sep 2021

25 Jul

01 Aug 08 Aug 15Aug 22 Aug

29 Aug

05 Sep

12 Sep

GiB/s

Time (seconds)

GiB/s

Arkouda Gather Performance
HPE Apollo (HDR-100 IB) -- 8 GiB arrays

120 s m oo

Serialized CQ poll —+—
100 | AK false-sharing fix —e— ==~~~ "~~~ """ """~ =

Initial —=—

Locales (x 112 cores / locale)

16-node allLocalesBarrier (100,000 ftrials)

70
60
50
40
30

20

InfiniBand Aries

m1l24 125

Arkouda Gather Performance
HPE Apollo (HDR-100 IB) -- 8 GiB arrays

900 |= serCQ/false-share fix
800 chpl 1.24.1 / ak 04/06/21

Locales (x 128 cores / locale)

CHAPEL ON GPUS

CHAPEL ON GPUS

Background:

e GPUs have become a key feature in many HPC systems
« We have long described Chapel’s goal as being “any parallel algorithm on any parallel hardware”
e Yet, historically, Chapel releases have only supported GPUs via interoperability
—i.e., call GPU code written in CUDA, OpenCL, OpenMP, ... as an extern routine Talk by Akihiro Hayashi @ 12:35 PT

What’s New?
 Lots of progress since CHIUW 2021...

— .

CHAPEL FOR GPUS: CHAPEL 1.24 / CHIUW 2021

Targeting GPUs with Chapel was possible for the first time, but very low-level:

pragma '"codegen for GPU" extern {
export proc add nums (A: c ptr(real(64))) { #define FATBIN FILE "chpl gpu.fatbin"
A[0] = A[0]+5; double createFunction () {
} fatbinBuffer = <read FATBIN FILE into buffer>

cuModuleLoadData(&cudaModulg, fatbinBuffer);
cuModuleGetFunction (&function, cudaModule,

var funcPtr = createFunction();
var A = [1, 2, 3, 4, 5]; add_nums*™) ;)
__primitive ("gpu kernel launch", funcPtr, }

<grid and block size>, ..,
c ptrTo(A), ..);
writeln (A) ;

CHAPEL FOR GPUS: CHAPEL 1.25

Raised the level of abstraction significantly, yet with significant restrictions:
 only relatively simple computations
« single GPU only
e single locale only

on here.getChild(1l) {
var A = [1, 2, 3, 4, 51;
forall a in A do
a += 5;

— .

CHAPEL FOR GPUS: CHAPEL 1.26

Improved generality: computational styles, multiple GPUs, CPU+GPU parallelism

cobegin {
A[O..<cpuSize] += 1; //dopartofthe work on the CPUs

// simultaneously, do the rest of the work on the GPUs in parallel
coforall subloc in 1..numGPUs do on here.getChild(subloc) {
const myShare = cpuSize+gpuSize* (subloc-1)..#gpuSize;

var AonThisGPU = A[myShare]; //copy achunk of work to the unified memory

AonThisGPU += 1;
A[myShare] = AonThisGPU; // copy the results back

35

CHAPEL FOR GPUS: WHAT’S NEXT?

Coming up in Chapel 1.27:
» Targeting GPUs using multiple locales
« Improved representation of GPU sublocales
« Support for more general computations

Thereafter:
« Benchmarking, performance analysis, and optimization
o Portability across vendors (Nvidia-only today)
« Increasingly general computations

Talk by Engin Kayraklioglu @ 12:35 PT

36

CHAMPS SUMMARY

What is it?
e 3D unstructured CFD framework for airplane simulation
e ~100k lines of Chapel written from scratch in ~3 years

Who wrote it?

« Professor Eric Laurendeau’s students + postdocs at Polytechnique Montreal

S /%% POLYTECHNIQUE R
5. MONTREAL

Why Chapel?
« performance and scalability competitive with MPI + C++
« students found it far more productive to use

P &
44
_.4.:[
—4

EEETTEY

: (images provided by the CHAMPS team and used with permission) I

T

CHAMPS: EXCERPT FROM ERIC’S CHIUW 2021 KEYNOTE

HPC Lessons From 30 Years of Practice in CFD Towards Aircraft Design and Analysis (June 4, 2021)

“To show you what Chapel did in our lab... [our previous framework] ended up 120k lines.
And my students said, ‘We can't handle it anymore. It’s too complex, we lost track
of everything.” And today, they went from 120k lines to 48k lines, so 3x less.

But the code is not 2D, it’s 3D. And it’s not structured, it’s unstructured, which is way
more complex. And it’s multi-physics... So, Pve got industrial-type code in 48k lines.”

“[Chapel] promotes the programming efficiency ... We ask students at the master’s A7
degree to do stuff that would take 2 years and they do it in 3 months. So, if you = |

want to take a summer internship and you say, ‘program a new turbulence model,’ well f; POLYTECHNIQUE
they manage. And before, it was impossible to do.” m-i:- MONTREAL

| i

“So, for me, this is like the proof of the benefit of Chapel, plus the smiles | have on my students everyday in the lab
because they love Chapel as well. So that’s the key, that’s the takeaway.”

» Talk available online: https://youtu.be/wD-a KyB8al?t=1904 Chyperlink jumps to the section quoted here)

— .

https://youtu.be/wD-a_KyB8aI?t=1904

CHAMPS IN THE COMMUNITY SINCE CHIUW 2021

Community Activities:

« While on sabbatical, Eric has presented CHAMPS and Chapel at Université de Strasbourg and ONERA
« Student presentations at CASI/IASC Aero 21 Conference and to CFD Society of Canada (CFDSC)

e Team participated in the 4™ AIAA High-lift Prediction Workshop and 15" AIAA Ice Prediction Workshop
— Generating comparable results to high-profile sites: Boeing, Lockheed Martin, NASA, JAXA, Georgia Tech, ...

Numerical Verification

Application - First AIAA Ice Prediction Workshop

F ok Nean D . A/, [(DPW'
Fifth Drag Prediction Workshop (DPW)

)

® Case 241 (left): Rime ice prediction on small NACA23012 airfoil (2D, low temp.); ® The pressure drag convergence of CHAMPS is similar to the workshop results

® Case 363 (right): Glaze ice prediction on NACA0012 swept wing (3D, warmer temp.).
§ CHAMPS —e— CFL3D — & FUN3D —e—
| NSU3D —e— FUN3D-V
2 0.0175 - i
0017
z 00165 {
$ 0016 {
2 o 00155 {
8 .
© o015 |
o 00145 4 {
:, __“'.‘7: 0.014 1
Sa = 00135 - ¥ {
R R R LT T S , " " 0.080 J
. I ——] 0 ¢ 000400 50005 10004 15004
Adapted from Olivier-Gooch, C., Coder, J. 4th CFD High Lift Prediction Workshop, Fixed-Grid et mnbtebotsatodsol) e —
RANS TFG, AIAA HLPW4 Case 241 (2D rime ice) Case 363 (3D glaze ice)

=7 0000 w»|

: (slide images taken from Eric Laurendeau’s SIAM PP22 talk, A Case Study on the Impact of Chapel within an Academic Computational Aerodynamic Laboratory, with permission) I 40

https://chapel-lang.org/presentations/SIAM_2022_P22_Laurendeau.pdf

CHAMPS HIGHLIGHTS SINCE CHIUW 2021

Progress since CHIUW 2021

e Code has more than doubled in size since CHIUW 2021
— ~48k lines during Eric’s CHIUW 2021 keynote

- >100k lines now —
- contributions represent the work of ~7 students / postdocs Talk by Frédéric Plante @ 9:10 PT

e Released CHAMPS 2.0
- Many new features and capabilities

What’s Nex1?
 Later this month, giving 6-7 presentations at the AIAA Aviation Forum and Exposition
« Eric will continue his sabbatical tour by presenting at DLR (German Aerospace Center)
o Participating in the 7" AIAA Drag Prediction Workshop

41

CHAPEL AT PAW-ATM 2021 (AT SC21)

Thomas Rolinger o X
published + presented i EI!W

ATMy

=~ SC21

paper

Talk by Thomas @ 1:30

Towards High Productivity and Performance
for Irregular Applications in Chapel

Thomas B. Rolinger University of Maryland V

Joseph Craft Laboratory for Physical Sciences

Christopher D. Krieger Laboratory for Physical Sciences

Alan Sussman University of Maryland ChplU"‘ra and

participated in
PAW-ATM panel @
P % 5€W

Chapel

Eric Laurendeau (Polytechnique Montreal)

ATV

Chapel in Astronomy

Nikhil Padmanabhan (Yale University)

| 43

SIAM PP22 MINISYMPOSIUM

“Achieving Productivity at Scale with Chapel in User Applications”, February 24, 2022

Hewlett Packard
Enterprise

CHAPEL OVERVIEW, AND FUTURE

Michelle Mills STrouI sBen McDonald, \

“EMiot Ronaghan, .

SIAM PP22: Achieving P
Chapel in User.Applicatic|
February 24,2022

Arkouda (apkovda):
Interactive Supercomputing for Data Analytics
Made Possible by Chapel

Michael Merrill

SIAM PP-22
MS34: Achieving Productivity at Scale with Chapel in User Applications
February 24, 2022

Nikhil Padmanabhan

Experiences with Chapel in Cosmology

Data Analysis to Simulations

Nikhil Padmanabhan '

'Dept. of Physics. Yale Univ.

w/ Luna Zagorac (Yale).
Richard Easther (Auckland).
Elliot Ronaghan (HPE)

Computational Aerodynamic Laboratory

1 Polytechnique Montreal, Quebec, H3T 1J4, Canada

; P AAARLL gy =

S
T g m 'l.r-l-“..,, —

: dmhm Em"" L |

-~

and many, many more talks as well; slides and often videos, available at https://chapel-lang.org/presentations.html

---....--_,_____" T h.

4 L
L}

| 1 e ray

o n...n.w...._n!ggm

NSERC
CRSNG

|

POLYTECHNIQUE
MONTREAL

TECH nu HCI[L el

A Case Study on the Impact of Chapel within an Academic

@-

VA

https://chapel-lang.org/presentations.html

WHAT’S NEXT? ¥ |

WHAT’S NEXT?

Tuning Chapel for HPE Cray EX Supercomputers / HPE Slingshot interconnect
« achieving promising initial performance, but additional tuning remains

Continuing three key efforts
 targeting GPUs
e ‘dyno’ compiler rework
e Chapel 2.0 stabilization

Growing the community

« supporting existing users and identifying new ones
o Advent of Code 2022 working group
» Chapel blog

— .

The 5th Annual
Parallel Applications Workshop,
Alternatives To MPI+X

Deadline: July 29, 2022
Submission Styles: Papers, Talks,
Pictures, Videos

BEST CHAPEL TWEETS SINCE CHIUW 2021 (?)

€

Christopher D. Long (Kpictodep A. JIoHr) @octonion - Apr 14

The most underrated and overlooked programming language, in my opinion,
is @ChapelLanguage. Primarily designed for supercomputing, it's always
as fast or faster than any other language I've used, and it's very feature-rich
with respect to abstract data structures.

Christopher D. Long (Kpictodep [. JIoHr) @octonion - Apr 14
Replying to @hipsterelectron and @ChapelLanguage

I've tried other languages | believe were targeting supercomputing -
ParaSail, X10, Bigloo. All were a struggle to do anything. Chapel just works,
and works well.

49

CHAPEL RESOURCES

Chapel homepage: hitps://chapel-lang.org
 (points to all other resources)

Social Media:

o Twitter: @ChapelLanguage
e Facebook: @ChapelLanguage

e YouTube: http://www.youtube.com/c/ChapelParallelProgramminglLangquage

Community Discussion / Support:

e Discourse: https://chapel.discourse.group/
o Gitter: https://gitter.im/chapel-lang/chapel

o Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

o GitHub Issues: https://github.com/chapel-lang/chapel/issues

—

What is Chapel?
What's New?

Upcoming Events
Job Opportunities

How Can | Learn Chapel?
Contributing to Chapel

Download Chapel
Try Chapel Online

Documentation
Release Notes

Performance
Powered by Chapel

User Resources
Developer Resources

Social Media / Blog Posts
Press

Presentations
Papers / Publications

CHIuw
CHUG

Contributors / Credits

chapel_info@cray.com

O - A
vyEHD

What is Chapel?

Chapel is a programming language designed for productive parallel computing at scale.

Why Chapel? Because it simplifies parallel programming through elegant support for:

« distributed arrays that can leverage thousands of nodes' memories and cores

« a global namespace supporting direct access to local or remote variables

« data parallelism to trivially use the cores of a laptop, cluster, or supercomputer
« task parallelism to create concurrency within a node or across the system

Chapel Characteristics

« productive: code tends to be similarly readable/writable as Python
« scalable: runs on laptops, clusters, the cloud, and HPC systems

« fast: performance competes with or beats C/C++ & MPI & OpenMP
« portable: compiles and runs in virtually any *nix environment

* open-source: hosted on GitHub, permissively licensed

New to Chapel?

As an introduction to Chapel, you may want to...

« watch an overview talk or browse its slides

read a blog-length or chapter-length introduction to Chapel
learn about projects powered by Chapel

check out performance highlights like these:

PRK Stencil Performance (Glop's) NPB-FT Performance (Gop's)

Giop/'s
) §
L A\“‘ evi
\ |
\
Gopis
st
\
1

Locales (x 36 cores / locale) Locales (x 36 cores / locale)

* browse sample programs or learn how to write distributed programs like this one:

use CyclicDist; // use the Cyclic distribution Llibrary
config const n = 100; // use --n=<val> when executing to override this default

forall i in {1..n} dmapped Cyclic(startIdx=1) do
writeln("Hello from iteration ", i, " of ", n,

" running on node ", here.id);

C e The Chapel Parallel Programming Language
| [=

50

https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
http://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

THANK YOU

https://chapel-lang.org
@ChapelLanguage

