
STATE OF THE CHAPEL PROJECT
Brad Chamberlain, HPE
CHIUW 2022, June 10, 2022

Chapel: A modern parallel programming language
• portable & scalable
• open-source & collaborative

Goals:
• Support general parallel programming
• Make parallel programming at scale far more productive

–Python-like support for rapid prototyping, clear code
–yet with the performance, scaling, GPU support of Fortran/C/C++, MPI, OpenMP, CUDA, …

WHAT IS CHAPEL?

2

3

FOR HPC BENCHMARKS, CHAPEL TENDS TO BE CONCISE, CLEAR, AND COMPETITIVE

72

HPCC RA: MPI KERNEL

/* Perform updates to main table. The scalar equivalent is:
*
* for (i=0; i<NUPDATE; i++) {
* Ran = (Ran << 1) ^ (((s64Int) Ran < 0) ? POLY : 0);
* Table[Ran & (TABSIZE-1)] ^= Ran;
* }
*/

MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,
MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);

while (i < SendCnt) {
/* receive messages */
do {
MPI_Test(&inreq, &have_done, &status);
if (have_done) {
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count(&status, tparams.dtype64, &recvUpdates);
bufferBase = 0;
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg & (tparams.TableSize - 1)) –

tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= inmsg;

}
} else if (status.MPI_TAG == FINISHED_TAG) {
NumberReceiving--;

} else
MPI_Abort(MPI_COMM_WORLD, -1);

MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,
MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);

}
} while (have_done && NumberReceiving > 0);
if (pendingUpdates < maxPendingUpdates) {
Ran = (Ran << 1) ^ ((s64Int) Ran < ZERO64B ? POLY : ZERO64B);
GlobalOffset = Ran & (tparams.TableSize-1);
if (GlobalOffset < tparams.Top)
WhichPe = (GlobalOffset / (tparams.MinLocalTableSize + 1));

else
WhichPe = ((GlobalOffset - tparams.Remainder) /

tparams.MinLocalTableSize);
if (WhichPe == tparams.MyProc) {
LocalOffset = (Ran & (tparams.TableSize - 1)) –

tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= Ran;

} else {
HPCC_InsertUpdate(Ran, WhichPe, Buckets);
pendingUpdates++;

}
i++;

}
else {
MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE);
if (have_done) {
outreq = MPI_REQUEST_NULL;
pe = HPCC_GetUpdates(Buckets, LocalSendBuffer, localBufferSize,

&peUpdates);
MPI_Isend(&LocalSendBuffer, peUpdates, tparams.dtype64, (int)pe,

UPDATE_TAG, MPI_COMM_WORLD, &outreq);
pendingUpdates -= peUpdates;

}
}

}
/* send remaining updates in buckets */
while (pendingUpdates > 0) {

/* receive messages */
do {
MPI_Test(&inreq, &have_done, &status);
if (have_done) {
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count(&status, tparams.dtype64, &recvUpdates);
bufferBase = 0;
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg & (tparams.TableSize - 1)) –

tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= inmsg;

}
} else if (status.MPI_TAG == FINISHED_TAG) {

/* we got a done message. Thanks for playing... */
NumberReceiving--;

} else {
MPI_Abort(MPI_COMM_WORLD, -1);

}
MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,

MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);
}

} while (have_done && NumberReceiving > 0);

MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE);
if (have_done) {
outreq = MPI_REQUEST_NULL;
pe = HPCC_GetUpdates(Buckets, LocalSendBuffer, localBufferSize,

&peUpdates);
MPI_Isend(&LocalSendBuffer, peUpdates, tparams.dtype64, (int)pe,

UPDATE_TAG, MPI_COMM_WORLD, &outreq);
pendingUpdates -= peUpdates;

}
}
/* send our done messages */
for (proc_count = 0 ; proc_count < tparams.NumProcs ; ++proc_count) {
if (proc_count == tparams.MyProc) { tparams.finish_req[tparams.MyProc] =

MPI_REQUEST_NULL; continue; }
/* send garbage - who cares, no one will look at it */
MPI_Isend(&Ran, 0, tparams.dtype64, proc_count, FINISHED_TAG,

MPI_COMM_WORLD, tparams.finish_req + proc_count);
}
/* Finish everyone else up... */
while (NumberReceiving > 0) {
MPI_Wait(&inreq, &status);
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count(&status, tparams.dtype64, &recvUpdates);
bufferBase = 0;
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg & (tparams.TableSize - 1)) –

tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= inmsg;

}
} else if (status.MPI_TAG == FINISHED_TAG) {

/* we got a done message. Thanks for playing... */
NumberReceiving--;

} else {
MPI_Abort(MPI_COMM_WORLD, -1);

}
MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,

MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);
}

MPI_Waitall(tparams.NumProcs, tparams.finish_req, tparams.finish_statuses);

#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);
MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

return errCount;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

if (!a || !b || !c) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {
fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);
fclose(outFile);

}
return 1;

}

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 1.0;

}
scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)
a[j] = b[j]+scalar*c[j];

HPCC_free(c);
HPCC_free(b);
HPCC_free(a);

return 0;
}

63

STREAM TRIAD: C + MPI + OPENMP use BlockDist;

config const m = 1000,
alpha = 3.0;

const Dom = {1..m} dmapped …;
var A, B, C: [Dom] real;

B = 2.0;
C = 1.0;

A = B + alpha * C;

0
5000
10000
15000
20000
25000
30000

16 32 64 128 256

G
B/
s

Locales (x 36 cores / locale)

MPI+OpenMP
Chapel EP

Chapel Global

STREAM Performance (GB/s)

…
forall (_, r) in zip(Updates, RAStream()) do
T[r & indexMask].xor(r);

…

Arkouda: NumPy at Massive Scale
Mike Merrill, Bill Reus, et al.
US DoD
~16k lines of Chapel

CHAMPS: 3D Unstructured CFD
Éric Laurendeau, Simon Bourgault-Côté,

Matthieu Parenteau, et al.
École Polytechnique Montréal
~48k lines of Chapel

CrayAI: Distributed Machine Learning
Hewlett Packard Enterprise

FLAGSHIP CHAPEL APPLICATIONS

ChOp: Chapel-based Optimization
Tiago Carneiro, Nouredine Melab, et al.
INRIA Lille, France

4

?
Your application here?

ChplUltra: Simulating Ultralight
Dark Matter

Nikhil Padmanabhan, J. Luna Zagorac, et al.
Yale University / University of Auckland
~10k lines of Chapel

(images provided by their respective teams and used with permission)

HPE’s Chapel team currently consists of 16 full-time employees, 3 summer interns, and our director
• We also have 1 more full-time engineer joining this month and a few open positions

THE CHAPEL TEAM

see: https://chapel-lang.org/contributors.html
and https://chapel-lang.org/jobs.html

5

https://chapel-lang.org/contributors.html
https://chapel-lang.org/jobs.html

Three releases since CHIUW 2021:
Chapel 1.25.0: September 23, 2021
Chapel 1.25.1: December 9, 2021
Chapel 1.26.0: March 31, 2022

Up next:
Chapel 1.27.0: June 30, 2022 (anticipated)

(We expect to release on a quarterly schedule going forward)

6

CHAPEL RELEASES

• In a word: fantastic!

• For more detail, let’s look at ten highlighted areas/efforts since CHIUW 2022

7

STATE OF THE CHAPEL PROJECT IN 2022

NEW FACES

• Large-Scale and User-Friendly Exact Diagonalization in Chapel
• Tom Westerhout, Mikhail I. Katsnelson (Radboud University)

• Extending Chapel to Support Fabric Attached Memory
• Amitha C, Clarete Crasta and Sharad Singhal (Hewlett Packard Enterprise)

• Integrating Chapel programs and MPI-Based Libraries for High-performance Graph Analysis
• Trevor McCrary (Georgia Institute of Technology), Karen Devine, and Andrew Younge (Sandia National Laboratories)

• An Introduction to GASNet-EX for Chapel Users
• Dan Bonachea and Paul H. Hargrove (Lawrence Berkeley National Lab)

• ChapelPerf: A Performance Suite for Chapel
• Ricardo Jesus and Michèle Weiland (EPCC, The University of Edinburgh)

• From C and Python to Chapel as My Main Programming Language
• Nelson Dias (Federal University of Parana, Brazil)

9

NEW FACES AT CHIUW 2022

Talk @ 1:50 PT

Talk @ 3:00 PT

Talk @ 1:10 PT

Talk @ 10:05 PT

Talk @ 10:25 PT

Talk @ 8:50 PT

COMPILER IMPROVEMENTS

Background:
• The Chapel compiler…

…is slow (seconds to minutes)
…can be hard to understand when there are errors
…isn’t terribly well-architected: inflexible, challenging to get started with

• Largely reflects its origins as a scrappy research project, by a small team, moving fast

This Effort:
• This year, kicked off an effort to massively rearchitect it and address these lacks:

– better user experience
– easier to start contributing to
– faster / more flexible: separate compilation, dynamic evaluation of code, …

Status:
• the ‘dyno’ parser will be the default in Chapel 1.27.0
• rewrites and restructuring of later passes also underway
• code structure documented online: https://chapel-lang.org/docs/developer/compiler-internals/index.html

11

‘DYNO’ COMPILER REWORK

https://chapel-lang.org/docs/developer/compiler-internals/index.html

Background:
• Traditionally, Chapel has generated C code as its “portable assembly”

– LLVM-based back-end was also available as an option

In Chapel 1.25:
• Finally made good on a long-term intention to switch to the LLVM back-end by default (version 11)

– C-based compilation is still available as an option

• Motivation:
– reduces burden of trying to support all versions of all C compilers
– communicates Chapel semantics more directly to back-end than C permits
– leverages community investment in, and familiarity with, LLVM
– modestly reduces compilation times, on average
– provides an attractive path for targeting GPUs

Since then:
• Chapel 1.26.0: added support for LLVM 12 and 13
• Chapel 1.27.0: will add support for LLVM 14

12

LLVM BY DEFAULT

COMPUTER LANGUAGE
BENCHMARKS GAME STANDINGS

CLBG: ALL-LANGUAGE SUMMARY, CHIUW 2021 (ZOOMED-IN)

Ex
ec

ut
io

n
T

im
e

(n
or

m
al

iz
ed

 to
 fa

st
es

t e
nt

ry
)

Compressed Code Size (normalized to smallest entry)

fa
st

er

smaller

Julia

C++

F#

Pascal
Swift

OCaml

Rust

C

Fortran C#

Java

C

Dart

Haskell

14

Racket

CLBG: ALL-LANGUAGE SUMMARY, CHIUW 2022 (ZOOMED-IN)

Ex
ec

ut
io

n
T

im
e

(n
or

m
al

iz
ed

 to
 fa

st
es

t e
nt

ry
)

Compressed Code Size (normalized to smallest entry)

fa
st

er

smaller

Julia

C++

F#

Pascal
Swift

OCaml

Rust

C

Fortran
C#

Java

C

Dart

Haskell

15

Racket

LANGUAGE / LIBRARY HIGHLIGHTS

‘manage’ statements: support Python-like context management

resizing arrays of non-nilable classes: implemented using context managers
• challenges relate to elements not having a sensible default value

‘foreach’ loops: express parallel loops that should be implemented by the current task
• help indicate opportunities for vectorization or GPU execution when a ‘forall’ loop’s tasks would be overkill

foreach i in 1..n do // assert that this loop is order-independent

a[i] = b[p[i]];

operators: prototyped in 1.24, now ready for use
• addressed an otherwise vague namespace issue

operator R.+(x: R, y: R) { … }

17

NEW LANGUAGE FEATURES

• Socket: supports TCP-/UDP-based socket communications

• Channels: supports Go-style channels for message queues between tasks

• CopyAggregation: makes available the aggregator abstractions used by Arkouda and Bale IndexGather

• ArgumentParser: in support of richer command-line options than ‘config’ supports

• ConcurrentMap: adds an efficient concurrent map

18

NEW LIBRARY PACKAGE MODULES

19

GOOGLE SUMMER OF CODE 2021 PROJECTS

Background:
• For the past several years, we have been working toward a forthcoming Chapel 2.0 release
• Intent: stop making backward-breaking changes to core language and library features

Status:
• Major language-related changes have largely wound down
• Primary remaining effort is on stabilizing the standard libraries

20

CHAPEL 2.0

21

CHAPEL 2.0: MODULE STABILIZATION

USER PUBLICATION HIGHLIGHTS

ChOp: Tiago Carneiro, Guillaume Helbecque, Jan Gmys, Loizos Koutsantonis, Nouredine Melab, Emmanuel
Kieffer, Pascal Bouvry (U. Luxembourg, Inria Lille):
• A performance-oriented comparative study of the Chapel high-productivity language to conventional

programming environments
– 13th International Workshop on Programming Models and Applications for Multicores and Manycores (PMAM 2022), Seoul,

South Korea, April 2, 2022.
• A Local Search for Automatic Parameterization of Distributed Tree Search Algorithms

– 12th IEEE Workshop Parallel / Distributed Combinatorics and Optimization (PDCO 2022), June 3, 2022.

ChplUltra: J. Luna Zagorac, Isabel Sands, Nikhil Padmanabhan, and
Richard Easther (Yale University, University of Auckland)
• Schrödinger-Poisson Solitons: Perturbation Theory

– ArXiv, September 4, 2021 / April 15, 2022

• A Light in the Dark: UltraLight Dark matter Phenomenology in Simulations
– Ph.D. thesis, defended by Dr. J. Luna Zagorac on April 1, 2022

23

USER PUBLICATION HIGHLIGHTS

Talk by Luna @ 9:30

ARKOUDA HIGHLIGHTS

ARKOUDA’S HIGH-LEVEL APPROACH

User writes Python code in Jupyter,
making NumPy/Pandas calls

Arkouda Server
(written in Chapel)

Arkouda Client
(written in Python)

25

KEY ARKOUDA FEATURES

benchmark

NumPy
0.75 GB

Arkouda (serial)
0.75 GB

1 core, 1 node

Arkouda (parallel)
0.75 GB

36 cores x 1 node

Arkouda (distributed)
384 GB

36 cores x 512 nodes

argsort
0.03 GiB/s

--
0.05 GiB/s

1.66x
0.50 GiB/s

16.7x
55.12 GiB/s

1837.3x

coargsort
0.03 GiB/s

--
0.07 GiB/s

2.3x
0.50 GiB/s

16.7x
29.54 GiB/s

984.7x

gather
1.15 GiB/s

--
0.45 GiB/s

0.4x
13.45 GiB/s

11.7x
539.52 GiB/s

469.1x

reduce
9.90 GiB/s

--
11.66 GiB/s

1.2x
118.57 GiB/s

12.0x
43683.00 GiB/s

4412.4x

scan
2.78 GiB/s

--
2.12 GiB/s

0.8x
8.90 GiB/s

3.2x
741.14 GiB/s

266.6x

scatter
1.17 GiB/s

--
1.12 GiB/s

1.0x
13.77 GiB/s

11.8x
914.67 GiB/s

781.8x

stream
3.94 GiB/s

--
2.92 GiB/s

0.7x
24.58 GiB/s

6.2x
6266.22 GiB/s

1590.4x

26

• Massive-Scale Data
• TB-sized arrays

• Interactive Rates
• seconds to minutes per op

• Extensible
• Fast and Scalable
• Open-Source:

• github.com/Bears-R-Us/arkouda/

https://github.com/Bears-R-Us/arkouda/

• Dataframe support: including support for additional types
• Modular builds: select feature set at Arkouda build-time
• NJIT repository w/ graph capabilities
• Large-scale string processing improvements
• Parquet file I/O
• And much more: See https://github.com/Bears-R-Us/arkouda/releases for details

• Also, performance improvements…

27

ARKOUDA HIGHLIGHTS SINCE CHIUW 2021

Talk by Zhihui Du@ 2:40 PT

Talk by Ben McDonald @ 2:20 PT

https://github.com/Bears-R-Us/arkouda/releases

• Ran on a large Apollo system, summer 2022
• 73,728 cores of AMD Rome
• 72 TiB of 8-byte values
• 480 GiB/s (2.5 minutes elapsed time)
• ~100 lines of Chapel code

Close to world-record performance—quite likely a record for performance/SLOC

ARKOUDA ARGSORT AT MASSIVE SCALE

be
tt

er

28

PERFORMANCE IMPROVEMENTS

Primarily motivated by…
…targeting new platforms

– InfiniBand-based systems
– high core-count chips like AMD Rome
– large-memory nodes

…user codes

30

MANY, MANY PERFORMANCE IMPROVEMENTS

0
20
40
60
80
100
120

1 2 4 8 13

G
iB
/s

Locales (x 112 cores / locale)

Initial
AK false-sharing fix
Serialized CQ poll

Arkouda Gather Performance
HPE Apollo (HDR-100 IB) -- 8 GiB arrays

0
100
200
300
400
500
600
700
800
900
1000

16 32 64 128

G
iB
/s

Locales (x 128 cores / locale)

ser CQ / false-share fix
chpl 1.24.1 / ak 04/06/21

Arkouda Gather Performance
HPE Apollo (HDR-100 IB) -- 8 GiB arrays

CHAPEL ON GPUS

Background:
• GPUs have become a key feature in many HPC systems
• We have long described Chapel’s goal as being “any parallel algorithm on any parallel hardware”
• Yet, historically, Chapel releases have only supported GPUs via interoperability

– i.e., call GPU code written in CUDA, OpenCL, OpenMP, … as an extern routine

What’s New?
• Lots of progress since CHIUW 2021…

32

CHAPEL ON GPUS

Talk by Akihiro Hayashi @ 12:35 PT

Targeting GPUs with Chapel was possible for the first time, but very low-level:

33

CHAPEL FOR GPUS: CHAPEL 1.24 / CHIUW 2021

extern {
#define FATBIN_FILE "chpl__gpu.fatbin"
double createFunction(){

fatbinBuffer = <read FATBIN_FILE into buffer>
cuModuleLoadData(&cudaModule, fatbinBuffer);
cuModuleGetFunction(&function, cudaModule,

"add_nums");}

}

pragma "codegen for GPU"
export proc add_nums(A: c_ptr(real(64))){

A[0] = A[0]+5;
}

var funcPtr = createFunction();
var A = [1, 2, 3, 4, 5];
__primitive("gpu kernel launch", funcPtr,

<grid and block size>,…,
c_ptrTo(A), …);

writeln(A);

Raised the level of abstraction significantly, yet with significant restrictions:
• only relatively simple computations
• single GPU only
• single locale only

34

CHAPEL FOR GPUS: CHAPEL 1.25

on here.getChild(1) {
var A = [1, 2, 3, 4, 5];
forall a in A do
a += 5;

}

35

CHAPEL FOR GPUS: CHAPEL 1.26

cobegin {
A[0..<cpuSize] += 1; // do part of the work on the CPUs

// simultaneously, do the rest of the work on the GPUs in parallel
coforall subloc in 1..numGPUs do on here.getChild(subloc) {
const myShare = cpuSize+gpuSize*(subloc-1)..#gpuSize;

var AonThisGPU = A[myShare]; // copy a chunk of work to the unified memory
AonThisGPU += 1;
A[myShare] = AonThisGPU; // copy the results back

}
}

Improved generality: computational styles, multiple GPUs, CPU+GPU parallelism

Coming up in Chapel 1.27:
• Targeting GPUs using multiple locales
• Improved representation of GPU sublocales
• Support for more general computations

Thereafter:
• Benchmarking, performance analysis, and optimization
• Portability across vendors (Nvidia-only today)
• Increasingly general computations

36

CHAPEL FOR GPUS: WHAT’S NEXT?

Talk by Engin Kayraklioglu @ 12:35 PT

CHAMPS HIGHLIGHTS

What is it?
• 3D unstructured CFD framework for airplane simulation
• ~100k lines of Chapel written from scratch in ~3 years

Who wrote it?
• Professor Éric Laurendeau’s students + postdocs at Polytechnique Montreal

Why Chapel?
• performance and scalability competitive with MPI + C++
• students found it far more productive to use

CHAMPS SUMMARY

(images provided by the CHAMPS team and used with permission) 38

HPC Lessons From 30 Years of Practice in CFD Towards Aircraft Design and Analysis (June 4, 2021)

“To show you what Chapel did in our lab... [our previous framework] ended up 120k lines.
And my students said, ‘We can't handle it anymore. It’s too complex, we lost track
of everything.’ And today, they went from 120k lines to 48k lines, so 3x less.

But the code is not 2D, it’s 3D. And it’s not structured, it’s unstructured, which is way
more complex. And it’s multi-physics… So, I’ve got industrial-type code in 48k lines.”

“[Chapel] promotes the programming efficiency … We ask students at the master’s
degree to do stuff that would take 2 years and they do it in 3 months. So, if you
want to take a summer internship and you say, ‘program a new turbulence model,’ well
they manage. And before, it was impossible to do.”

“So, for me, this is like the proof of the benefit of Chapel, plus the smiles I have on my students everyday in the lab
because they love Chapel as well. So that’s the key, that’s the takeaway.”

• Talk available online: https://youtu.be/wD-a_KyB8aI?t=1904 (hyperlink jumps to the section quoted here)

CHAMPS: EXCERPT FROM ÉRIC’S CHIUW 2021 KEYNOTE

39

https://youtu.be/wD-a_KyB8aI?t=1904

Community Activities:
• While on sabbatical, Éric has presented CHAMPS and Chapel at Université de Strasbourg and ONERA
• Student presentations at CASI/IASC Aero 21 Conference and to CFD Society of Canada (CFDSC)
• Team participated in the 4th AIAA High-lift Prediction Workshop and 1st AIAA Ice Prediction Workshop

– Generating comparable results to high-profile sites: Boeing, Lockheed Martin, NASA, JAXA, Georgia Tech, …

CHAMPS IN THE COMMUNITY SINCE CHIUW 2021

(slide images taken from Éric Laurendeau’s SIAM PP22 talk, A Case Study on the Impact of Chapel within an Academic Computational Aerodynamic Laboratory, with permission) 40

https://chapel-lang.org/presentations/SIAM_2022_P22_Laurendeau.pdf

Progress since CHIUW 2021
• Code has more than doubled in size since CHIUW 2021

– ~48k lines during Éric’s CHIUW 2021 keynote
– >100k lines now

– contributions represent the work of ~7 students / postdocs

• Released CHAMPS 2.0
– Many new features and capabilities

What’s Next?
• Later this month, giving 6–7 presentations at the AIAA Aviation Forum and Exposition
• Éric will continue his sabbatical tour by presenting at DLR (German Aerospace Center)
• Participating in the 7th AIAA Drag Prediction Workshop

CHAMPS HIGHLIGHTS SINCE CHIUW 2021

41

Talk by Frédéric Plante @ 9:10 PT

OUTREACH HIGHLIGHTS

43

CHAPEL AT PAW-ATM 2021 (AT SC21)

Thomas Rolinger
published + presented
paper

ChplUltra and
CHAMPS PIs

participated in
PAW-ATM panel

Talk by Thomas @ 1:30

“Achieving Productivity at Scale with Chapel in User Applications”, February 24, 2022

44

SIAM PP22 MINISYMPOSIUM

and many, many more talks as well; slides and often videos, available at https://chapel-lang.org/presentations.html

https://chapel-lang.org/presentations.html

WHAT’S NEXT?

Tuning Chapel for HPE Cray EX Supercomputers / HPE Slingshot interconnect
• achieving promising initial performance, but additional tuning remains

Continuing three key efforts
• targeting GPUs
• ‘dyno’ compiler rework
• Chapel 2.0 stabilization

Growing the community
• supporting existing users and identifying new ones
• Advent of Code 2022 working group
• Chapel blog

46

WHAT’S NEXT?

Deadline: July 29, 2022
Submission Styles: Papers, Talks,

Pictures, Videos

TWEET OF THE YEAR

49

BEST CHAPEL TWEETS SINCE CHIUW 2021 (?)

Chapel homepage: https://chapel-lang.org
• (points to all other resources)

Social Media:
• Twitter: @ChapelLanguage
• Facebook: @ChapelLanguage
• YouTube: http://www.youtube.com/c/ChapelParallelProgrammingLanguage

Community Discussion / Support:
• Discourse: https://chapel.discourse.group/
• Gitter: https://gitter.im/chapel-lang/chapel
• Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

• GitHub Issues: https://github.com/chapel-lang/chapel/issues

CHAPEL RESOURCES

50

https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
http://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

THANK YOU
https://chapel-lang.org
@ChapelLanguage

