
RECENT INFINIBAND OPTIMIZATIONS IN CHAPEL

Elliot Ronaghan
CHIUW 2021 – June 4, 2021

• Recent optimizations have significantly improved Chapel’s performance and scalability on InfiniBand
• ~15x performance improvement for Arkouda Argsort at 240 nodes (~30K cores)

2

TEASER FOR THIS TALK

0
10
20
30
40
50
60
70
80
90
100

16 64 128 240

G
iB
/s

Locales (x 128 cores / locale)

chpl 1.23.0 / ak 10/20/20
chpl 1.24.1 / ak 04/06/21

Arkouda Argsort Performance
HPE Apollo (HDR-100 IB) -- 8 GiB arrays

• Historically, the Chapel team primarily focused on performance for Cray networks
• Intent was to ensure Chapel had the right language features/semantics first, then optimize for other networks

• More recently, focus has shifted to improving performance for InfiniBand networks
• Chapel uses the GASNet communication library with the ibv conduit to target InfiniBand (gasnet-ibv)

3

INFINIBAND BACKGROUND

• Memory must be registered with the network in order to do one-sided GETs/PUTs (RDMA)
• gasnet-ibv supports two registration modes:

– Static: All memory is registered at startup—fast communication, but hurts NUMA affinity and leads to long startup times
– Dynamic: Memory is registered at communication time—can add overhead, but good NUMA affinity and fast startup

• Chapel defaults to dynamic registration to get good NUMA affinity and fast startup times
• We believe this is the right choice for most users getting started

– Have recommended static registration to some users with certain communication-heavy idioms in the past

• Ideally, we just want to have one mode with no, or few, downsides

• Late in the 1.24 release cycle, we identified root cause of some InfiniBand performance issues
• Somewhat improved NUMA affinity and startup times for static registration (not covered in this talk)
• Significantly improved communication performance for dynamic registration (main topic for this talk)

– These improvements motivated April’s 1.24.1 release

4

GASNET-IBV BACKGROUND

DYNAMIC REGISTRATION
IMPROVEMENTS

• gasnet-ibv dynamic registration only registers memory at communication time
• Fast startup time since little registration occurs at startup
• NUMA affinity is based on user first-touch
• Memory registration is expensive, want to amortize costs

– Ideally only register a memory region once and then reuse
– This requires tracking which memory regions are currently registered

6

DYNAMIC REGISTRATION BACKGROUND

• Identified bottleneck in registration tracking code that limited performance and scalability
• Core issue was that we were running out of dynamic registration entries

– Led to deregistration and reregistration cycles, preventing amortization

• Collaborated with the GASNet team to resolve this issue
• Increased number of dynamic registration entries based on execution-time query of hardware capabilities
• Improved data structures used to track which regions are registered

7

DYNAMIC REGISTRATION IMPROVEMENTS

• Significant performance improvements for codes with large point-to-point communication patterns

8

SERIAL TRANSFER PERFORMANCE

• Significant performance improvements for codes with all-to-all communication patterns

9

PARALLEL TRANSFER PERFORMANCE

• Significant performance improvements for Arkouda

10

ARKOUDA PERFORMANCE

ARKOUDA SCALABILITY
IMPROVEMENTS

• Arkouda provides NumPy-like arrays at HPC scale
• A NumPy/Pandas Python interface, backed by Chapel

– https://github.com/mhmerrill/arkouda

• We track Arkouda performance nightly at small-scale
• Had an opportunity to run on a large HPE Apollo system

– 128-cores – (2) 64-core AMD Rome Processors
– 2 TB of memory
– HDR-100 InfiniBand network

12

ARKOUDA BACKGROUND

HPE PROPRIETARY

https://github.com/mhmerrill/arkouda

• Previously, performance fell off above 64 nodes for Argsort
• Gather, Scatter, and other core idioms also suffered

13

INITIAL ARKOUDA SCALABILITY

0
5
10
15
20
25
30
35
40

16 64 128 240

G
iB
/s

Locales (x 128 cores / locale)

chpl 1.23.0 / ak 10/20/20

Arkouda Argsort Performance
HPE Apollo (HDR-100 IB) -- 8 GiB arrays

HPE PROPRIETARY

• Fixing dynamic registration improved performance and enabled tuning aggregation
• Argsort is ~50% faster at 16 nodes, ~15x faster at 240 nodes

14

CURRENT ARKOUDA SCALABILITY

0
10
20
30
40
50
60
70
80
90
100

16 64 128 240

G
iB
/s

Locales (x 128 cores / locale)

chpl 1.23.0 / ak 10/20/20
chpl 1.24.1 / ak 04/06/21

Arkouda Argsort Performance
HPE Apollo (HDR-100 IB) -- 8 GiB arrays

HPE PROPRIETARY

• Fixing dynamic registration improved performance and enabled tuning aggregation
• Gather and Scatter see similar improvements

15

CURRENT ARKOUDA SCALABILITY

0
200
400
600
800
1000
1200

16 64 128 240

G
iB
/s

Locales (x 128 cores / locale)

chpl 1.23.0 / ak 10/20/20
chpl 1.24.1 / ak 04/06/21

Arkouda Gather Performance
HPE Apollo (HDR-100 IB) -- 8 GiB arrays

0
200
400
600
800
1000
1200
1400

16 64 128 240

G
iB
/s

Locales (x 128 cores / locale)

chpl 1.23.0 / ak 10/20/20
chpl 1.24.1 / ak 04/06/21

Arkouda Scatter Performance
HPE Apollo (HDR-100 IB) -- 8 GiB arrays

HPE PROPRIETARY

• Argsort requires ~6x the input data for scratch space

• Previous Arkouda scalability graphs used 8 GiB-per-node input arrays
• This was the largest power of 2 we could reliably sort on our XC
• Apollo system has significantly more memory, allowing much larger problem sizes to be used

• Argsort has a fixed startup overhead that depends on 'numCores*numLocales’
• More cores on Apollo system means higher startup overhead, which can be amortized with larger problem sizes

16

ARGSORT BACKGROUND

HPE PROPRIETARY

• Apollo system offers performance improvements over Cray XC, especially at larger problem sizes
• For equivalent problem sizes: ~2.5x improvement at 16 nodes and ~50% at 240 nodes
• For larger problem sizes: ~3x improvement at 16 and 240 nodes

17

ARGSORT XC COMPARISON

0
20
40
60
80
100
120
140
160
180
200

16 64 128 240

G
iB
/s

Locales

Cray XC -- 8 GiB Arrays
HPE Apollo -- 8 GiB Arrays
HPE Apollo -- 64 GiB Arrays

Arkouda Argsort Performance
chpl 1.24.1 / ak 04/06/21

HPE PROPRIETARY

• Can run significantly larger problem sizes on Apollo system
• Sorting up to 256 GiB per node input arrays (60 TiB at 240 nodes in under 5 minutes)

18

ARGSORT LARGER PROBLEM SIZE

0

50

100

150

200

250

16 64 128 240

G
iB
/s

Locales

HPE Apollo -- 8 GiB Arrays
HPE Apollo -- 64 GiB Arrays
HPE Apollo -- 256 GiB Arrays

Arkouda Argsort Performance
chpl 1.24.1 / ak 04/06/21

HPE PROPRIETARY

• Performance and scalability of large transfers on InfiniBand systems has been improved
• Dynamic registration communication performance is nearly on par with static registration

– While retaining fast startup and good NUMA affinity

19

SUMMARY

• Continue to improve dynamic registration performance
• ISx and some other communication-intensive applications lag slightly still

• Look at using On-Demand-Paging (ODP) as an alternative registration mechanism
• Hardware/firmware takes care of registration on-demand rather than tracking in software

• Improve other aspects of InfiniBand performance
• Network injection is currently serialized, limiting performance of fine-grained communication

– Mapping to the upcoming GASNet-EX multi-endpoint API should resolve this

• Target the GASNet-EX network atomic API

20

FUTURE WORK

THANK YOU
elliot.ronaghan@hpe.com

