Hewlett Packard Enterprise

RECENTINE MBAND OPTIMIZATIONS IN CHAPEL

Elliot Ronaghan CHIUW 2021 – June 4, 2021

TEASER FOR THIS TALK

- Recent optimizations have significantly improved Chapel's performance and scalability on InfiniBand
 - ~15x performance improvement for Arkouda Argsort at 240 nodes (~30K cores)

INFINIBAND BACKGROUND

- Historically, the Chapel team primarily focused on performance for Cray networks
 - Intent was to ensure Chapel had the right language features/semantics first, then optimize for other networks
- More recently, focus has shifted to improving performance for InfiniBand networks
 - Chapel uses the GASNet communication library with the ibv conduit to target InfiniBand (gasnet-ibv)

GASNET-IBV BACKGROUND

- Memory must be registered with the network in order to do one-sided GETs/PUTs (RDMA)
 - gasnet-ibv supports two registration modes:
 - Static: All memory is registered at startup—fast communication, but hurts NUMA affinity and leads to long startup times
 - Dynamic: Memory is registered at communication time—can add overhead, but good NUMA affinity and fast startup
- Chapel defaults to dynamic registration to get good NUMA affinity and fast startup times
 - We believe this is the right choice for most users getting started
 Have recommended static registration to some users with certain communication-heavy idioms in the past
 - Ideally, we just want to have one mode with no, or few, downsides
- Late in the 1.24 release cycle, we identified root cause of some InfiniBand performance issues
 - Somewhat improved NUMA affinity and startup times for static registration (not covered in this talk)
 - Significantly improved communication performance for dynamic registration (main topic for this talk)
 - These improvements motivated April's 1.24.1 release

DYNAMIC REGISTRATION IMPROVEMIENTS

DYNAMIC REGISTRATION BACKGROUND

- gasnet-ibv dynamic registration only registers memory at communication time
 - Fast startup time since little registration occurs at startup
 - NUMA affinity is based on user first-touch
 - Memory registration is expensive, want to amortize costs
 - Ideally only register a memory region once and then reuse
 - This requires tracking which memory regions are currently registered

DYNAMIC REGISTRATION IMPROVEMENTS

- Identified bottleneck in registration tracking code that limited performance and scalability
 - Core issue was that we were running out of dynamic registration entries
 - Led to deregistration and reregistration cycles, preventing amortization
- Collaborated with the GASNet team to resolve this issue
 - Increased number of dynamic registration entries based on execution-time query of hardware capabilities
 - Improved data structures used to track which regions are registered

SERIAL TRANSFER PERFORMANCE

• Significant performance improvements for codes with large point-to-point communication patterns

PARALLEL TRANSFER PERFORMANCE

• Significant performance improvements for codes with all-to-all communication patterns

ARKOUDA PERFORMANCE

• Significant performance improvements for Arkouda

ARKOUDA SCALABILITY MPROVEMENTS

ARKOUDA BACKGROUND

- Arkouda provides NumPy-like arrays at HPC scale
 - A NumPy/Pandas Python interface, backed by Chapel
 - -<u>https://github.com/mhmerrill/arkouda</u>
- We track Arkouda performance nightly at small-scale
 - Had an opportunity to run on a large HPE Apollo system
 - 128-cores (2) 64-core AMD Rome Processors
 - 2 TB of memory
 - HDR-100 InfiniBand network

INITIAL ARKOUDA SCALABILITY

- Previously, performance fell off above 64 nodes for Argsort
 - Gather, Scatter, and other core idioms also suffered

CURRENT ARKOUDA SCALABILITY

- Fixing dynamic registration improved performance and enabled tuning aggregation
 - Argsort is ~50% faster at 16 nodes, ~15x faster at 240 nodes

CURRENT ARKOUDA SCALABILITY

- Fixing dynamic registration improved performance and enabled tuning aggregation
 - Gather and Scatter see similar improvements

ARGSORT BACKGROUND

- Argsort requires ~6x the input data for scratch space
- Previous Arkouda scalability graphs used 8 GiB-per-node input arrays
 - This was the largest power of 2 we could reliably sort on our XC
 - Apollo system has significantly more memory, allowing much larger problem sizes to be used
- Argsort has a fixed startup overhead that depends on 'numCores*numLocales'
 - More cores on Apollo system means higher startup overhead, which can be amortized with larger problem sizes

ARGSORT XC COMPARISON

- Apollo system offers performance improvements over Cray XC, especially at larger problem sizes
 - For equivalent problem sizes: ~2.5x improvement at 16 nodes and ~50% at 240 nodes
 - For larger problem sizes: ~3x improvement at 16 and 240 nodes

ARGSORT LARGER PROBLEM SIZE

- Can run significantly larger problem sizes on Apollo system
 - Sorting up to 256 GiB per node input arrays (60 TiB at 240 nodes in under 5 minutes)

SUMMARY

- Performance and scalability of large transfers on InfiniBand systems has been improved
 - Dynamic registration communication performance is nearly on par with static registration
 - While retaining fast startup and good NUMA affinity

FUTURE WORK

- Continue to improve dynamic registration performance
 - ISx and some other communication-intensive applications lag slightly still
- Look at using On-Demand-Paging (ODP) as an alternative registration mechanism
 - Hardware/firmware takes care of registration on-demand rather than tracking in software
- Improve other aspects of InfiniBand performance
 - Network injection is currently serialized, limiting performance of fine-grained communication
 - Mapping to the upcoming GASNet-EX multi-endpoint API should resolve this
 - Target the GASNet-EX network atomic API

THANKYOU

elliot.ronaghan@hpe.com

