

TEASER FOR THIS TALK

e Recent optimizations have significantly improved Chapel’s performance and scalability on InfiniBand
« ~15x performance improvement for Arkouda Argsort at 240 nodes (~30K cores)

Arkouda Argsort Performance
HPE Apollo (HDR-100 IB) -- 8 GiB arrays

10O
90 = chpl1.24.1/ak04/06/21 —— — ~ ~ ~~~~ -~ - - - ------- -~
80 b= chpl1.23.0/ak10/20/20 —e— - - - - ___——— .

GiB/s

16 64 128 240
Locales (x 128 cores / locale)

INFINIBAND BACKGROUND

 Historically, the Chapel team primarily focused on performance for Cray networks
 Infent was to ensure Chapel had the right language features/semantics first, then optimize for other networks

e More recently, focus has shifted to improving performance for InfiniBand networks
e Chapel uses the GASNet communication library with the ibv conduit to target InfiniBand (gasnet-ibv)

3

GASNET-IBV BACKGROUND

e Memory must be registered with the network in order to do one-sided GETs/PUTs (RDMA)

» gasnet-ibv supports two registration modes:
— Static: All memory is registered at startup—fast communication, but hurts NUMA affinity and leads to long startup times
— Dynamic: Memory is registered at communication time—can add overhead, but good NUMA affinity and fast startup

e Chapel defaults to dynamic registration to get good NUMA affinity and fast startup times

« We believe this is the right choice for most users getting started
—Have recommended static registration to some users with certain communication-heavy idioms in the past
o Ideally, we just want to have one mode with no, or few, downsides

e Late in the 1.24 release cycle, we identified root cause of some InfiniBand performance issues
o Somewhat improved NUMA affinity and startup times for static registration (not covered in this talk)

o Significantly improved communication performance for dynamic registration (main topic for this talk)
— These improvements motivated April's 1.24.1 release

— |

DYNAMIC REGISTRATION BACKGROUND

e gasnet-ibv dynamic registration only registers memory at communication time
» Fast startup time since little registration occurs at startup
o NUMA affinity is based on user first-touch
 Memory registration is expensive, want to amortize costs

—ldeally only register a memory region once and then reuse
— This requires tracking which memory regions are currently registered

DYNAMIC REGISTRATION IMPROVEMENTS

e |dentified bottleneck in registration tracking code that limited performance and scalability

« Core issue was that we were running out of dynamic registration entries
—Led to deregistration and reregistration cycles, preventing amortization

e Collaborated with the GASNet team to resolve this issue

« Increased number of dynamic registration entries based on execution-time query of hardware capabilities
» Improved data structures used to track which regions are registered

SERIAL TRANSFER PERFORMANCE

e Significant performance improvements for codes with large point-to-point communication patterns

Large Array GET Performance

--1G array (gn-ibv-fast)

— 1G array (gn-ibv-large)
14000 N --1M array (gn-ibv-fast)
12000, - e T — 1M array (gn-ibv-large)
e SE=fs————===-——=========——-----= --1/4 mem array (gn-ibv-fast)
g 10000 — 1/4 mem array (gn-ibv-large)
=3
< 8000
o
5 6000
E
€ 4000
(]
[od
2000
0
21 Mar 28 Mar 04 Apr 11 Apr
Large Array PUT Performance --1G array (gn-ibv-fast)
14000 --1/4 mem array (gn-ibv-fast)
— 1G array (gn-ibv-large)
12000} - - - m e T T T T T oo —— oo == 1M array (gn-!bv-fast)
— 1M array (gn-ibv-large)
g 10000 — 1/4 mem array (gn-ibv-large)
=
~ 8000
[0]
o
& 6000
E
£ 4000
(]
[od
2000
0
21 Mar 28 Mar 04 Apr

11 Apr

PARALLEL TRANSFER PERFORMANCE

e Significant performance improvements for codes with all-to-all communication patterns

NPB: FT Perf (Mflops/s) - size D — prim-comm ft MFlopl/s (gn-ibv-large)
-- prim-comm ft MFlop/s (gn-ibv-fast)
-~ ft MFlop/s (gn-ibv-fast)
B0 e — ft MFlop/s (gn-ibv-large)
400000
¥ 300000
Q
2
= 200000
100000
0
21 Mar 28 Mar 04 Apr 11 Apr
ISx variations — Release (gn-ibv-large)
60 -- Release (gn-ibv-fast)
— Hand Optimized (gn-ibv-large)
-- Hand Optimized (gn-ibv-fast)
w
T
=
Q
8]
)
L
[0]
E
'_
0
21 Mar 28 Mar 04 Apr 11 Apr

ARKOUDA PERFORMANCE

e Significant performance improvements for Arkouda

Performance (GiB/s)

Performance (GiB/s)

Argsort Performance

26 Mar 28 Mar 30 Mar 01 Apr 03 Apr 05 Apr

Groupby Performance

26 Mar 28 Mar 30 Mar 01 Apr 03 Apr 05 Apr

—

Performance (GiB/s)

Performance (GiB/s)

Coargsort Performance

26 Mar 28 Mar 30 Mar 01 Apr 03 Apr 05 Apr

Set Operations Performance

26 Mar 28 Mar 30 Mar 01 Apr 03 Apr 05 Apr

10

ARKOUDA BACKGROUND

e Arkouda provides NumPy-like arrays at HPC scale

o A NumPy/Pandas Python interface, backed by Chapel
— https://github.com/mhmerrill/arkouda

e We track Arkouda performance nightly at small-scale

e Had an opportunity to run on a large HPE Apollo system
—128-cores - (2) 64-core AMD Rome Processors
—2 TB of memory
—HDR-100 InfiniBand network

HPE PROPRIETARY I 12

https://github.com/mhmerrill/arkouda

INITIAL ARKOUDA SCALABILITY

e Previously, performance fell off above 64 nodes for Argsort
o Gather, Scatter, and other core idioms also suffered

Arkouda Argsort Performance
HPE Apollo (HDR-100 IB) -- 8 GiB arrays

GiB/s

Locales (x 128 cores / locale)

HPE PROPRIETARY I

13

CURRENT ARKOUDA SCALABILITY

» Fixing dynamic registration improved performance and enabled tuning aggregation

» Argsort is ~50% faster at 16 nodes, ~15x faster at 240 nodes

GiB/s

100
80

Arkouda Argsort Performance
HPE Apollo (HDR-100 IB) -- 8 GiB arrays

KO4/0B/2] —e— — —~ — — — ———~ == === ===~ — o
k 10/20/20 —&— _ _ _ o —

~
AV

16 64 128 240
Locales (x 128 cores / locale)

HPE PROPRIETARY I

14

CURRENT ARKOUDA SCALABILITY

» Fixing dynamic registration improved performance and enabled tuning aggregation
o Gather and Scatter see similar improvements

1200
1000
800
600
400
200

GiB/s

Arkouda Gather Performance
HPE Apollo (HDR-100 IB) -- 8 GiB arrays

chpl 1.24.1 / ak 04/06/21 ——
) 23.0/ak10/20/20 —— "~~~ " T T T T T T~/ """ """"77

16 64 128 240
Locales (x 128 cores / locale)

1400
1200
1000
800
600
400
200

GiB/s

Arkouda Scatter Performance
HPE Apollo (HDR-100 IB) -- 8 GiB arrays

. chpl1.24.1/ak 04/06/21 —— _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ______
chpl 1.23.0/

ak 10/20/20 —e—

[[I |
16 64 128 240
Locales (x 128 cores / locale)

HPE PROPRIETARY

15

ARGSORT BACKGROUND

e Argsort requires ~6x the input data for scratch space

e Previous Arkouda scalability graphs used 8 GiB-per-node input arrays
« This was the largest power of 2 we could reliably sort on our XC
« Apollo system has significantly more memory, allowing much larger problem sizes to be used

e Argsort has a fixed startup overhead that depends on ‘'numCores*numLocales’
» More cores on Apollo system means higher startup overhead, which can be amortized with larger problem sizes

: HPE PROPRIETARY | 16

ARGSORT XC COMPARISON

e Apollo system offers performance improvements over Cray XC, especially at larger problem sizes

e For equivalent problem sizes: ~2.5x improvement at 16 nodes and ~50% at 240 nodes
« For larger problem sizes: ~3x improvement at 16 and 240 nodes

Arkouda Argsort Performance
chpl 1.24.1 / ak 04/06/21

D00 [-

180 = HPEApollo - 64 GiBArrays - -~~~ ~ -~~~ -~~~ - e
160 |= HPEApollo-- 8GiBArays —— - - -~ -

140
120
100
80
60
40
20

GiB/s

: HPE PROPRIETARY | 17

ARGSORT LARGER PROBLEM SIZE

e Can run significantly larger problem sizes on Apollo system
« Sorting up to 256 GiB per node input arrays (60 TiB at 240 nodes in under 5 minutes)

250
200
150
100

50

GiB/s

Arkouda Argsort Performance
chpl 1.24.1 / ak 04/06/21

HPE Apollo -- 256 GiB Arrays ----¢---
.. HPEApollo-- 64 GiBArrays == - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .=l
HPE Apollo -- 8 GiB Arrays —— .7 ---

HPE PROPRIETARY

18

SUMMARY

e Performance and scalability of large transfers on InfiniBand systems has been improved

o Dynamic registration communication performance is nearly on par with static registration
—While retaining fast startup and good NUMA affinity

19

FUTURE WORK

e Continue to improve dynamic registration performance
 ISx and some other communication-intensive applications lag slightly still

e Look at using On-Demand-Paging (ODP) as an alternative registration mechanism
« Hardware/firmware takes care of registration on-demand rather than fracking in software

e Improve other aspects of InfiniBand performance
o Network injection is currently serialized, limiting performance of fine-grained communication
—Mapping to the upcoming GASNet-EX multi-endpoint API should resolve this
o Target the GASNet-EX network atomic API

20

