


TEASER FOR THIS TALK

e Recent optimizations have significantly improved Chapel’s performance and scalability on InfiniBand
« ~15x performance improvement for Arkouda Argsort at 240 nodes (~30K cores)

Arkouda Argsort Performance
HPE Apollo (HDR-100 IB) -- 8 GiB arrays
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INFINIBAND BACKGROUND

 Historically, the Chapel team primarily focused on performance for Cray networks
 Infent was to ensure Chapel had the right language features/semantics first, then optimize for other networks

e More recently, focus has shifted to improving performance for InfiniBand networks
e Chapel uses the GASNet communication library with the ibv conduit to target InfiniBand (gasnet-ibv)
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GASNET-IBV BACKGROUND

e Memory must be registered with the network in order to do one-sided GETs/PUTs (RDMA)

» gasnet-ibv supports two registration modes:
— Static: All memory is registered at startup—fast communication, but hurts NUMA affinity and leads to long startup times
— Dynamic: Memory is registered at communication time—can add overhead, but good NUMA affinity and fast startup

e Chapel defaults to dynamic registration to get good NUMA affinity and fast startup times

« We believe this is the right choice for most users getting started
—Have recommended static registration to some users with certain communication-heavy idioms in the past
o Ideally, we just want to have one mode with no, or few, downsides

e Late in the 1.24 release cycle, we identified root cause of some InfiniBand performance issues
o Somewhat improved NUMA affinity and startup times for static registration (not covered in this talk)

o Significantly improved communication performance for dynamic registration (main topic for this talk)
— These improvements motivated April's 1.24.1 release
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DYNAMIC REGISTRATION BACKGROUND

e gasnet-ibv dynamic registration only registers memory at communication time
» Fast startup time since little registration occurs at startup
o NUMA affinity is based on user first-touch
 Memory registration is expensive, want to amortize costs

—ldeally only register a memory region once and then reuse
— This requires tracking which memory regions are currently registered



DYNAMIC REGISTRATION IMPROVEMENTS

e |dentified bottleneck in registration tracking code that limited performance and scalability

« Core issue was that we were running out of dynamic registration entries
—Led to deregistration and reregistration cycles, preventing amortization

e Collaborated with the GASNet team to resolve this issue

« Increased number of dynamic registration entries based on execution-time query of hardware capabilities
» Improved data structures used to track which regions are registered



SERIAL TRANSFER PERFORMANCE

e Significant performance improvements for codes with large point-to-point communication patterns
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PARALLEL TRANSFER PERFORMANCE

e Significant performance improvements for codes with all-to-all communication patterns
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ARKOUDA PERFORMANCE

e Significant performance improvements for Arkouda
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ARKOUDA BACKGROUND

e Arkouda provides NumPy-like arrays at HPC scale

o A NumPy/Pandas Python interface, backed by Chapel
— https://github.com/mhmerrill/arkouda

e We track Arkouda performance nightly at small-scale

e Had an opportunity to run on a large HPE Apollo system
—128-cores - (2) 64-core AMD Rome Processors
—2 TB of memory
—HDR-100 InfiniBand network
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https://github.com/mhmerrill/arkouda

INITIAL ARKOUDA SCALABILITY

e Previously, performance fell off above 64 nodes for Argsort
o Gather, Scatter, and other core idioms also suffered

Arkouda Argsort Performance
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CURRENT ARKOUDA SCALABILITY

» Fixing dynamic registration improved performance and enabled tuning aggregation

» Argsort is ~50% faster at 16 nodes, ~15x faster at 240 nodes
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CURRENT ARKOUDA SCALABILITY

» Fixing dynamic registration improved performance and enabled tuning aggregation
o Gather and Scatter see similar improvements
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Arkouda Scatter Performance
HPE Apollo (HDR-100 IB) -- 8 GiB arrays
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ARGSORT BACKGROUND

e Argsort requires ~6x the input data for scratch space

e Previous Arkouda scalability graphs used 8 GiB-per-node input arrays
« This was the largest power of 2 we could reliably sort on our XC
« Apollo system has significantly more memory, allowing much larger problem sizes to be used

e Argsort has a fixed startup overhead that depends on ‘'numCores*numLocales’
» More cores on Apollo system means higher startup overhead, which can be amortized with larger problem sizes
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ARGSORT XC COMPARISON

e Apollo system offers performance improvements over Cray XC, especially at larger problem sizes

e For equivalent problem sizes: ~2.5x improvement at 16 nodes and ~50% at 240 nodes
« For larger problem sizes: ~3x improvement at 16 and 240 nodes
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ARGSORT LARGER PROBLEM SIZE

e Can run significantly larger problem sizes on Apollo system
« Sorting up to 256 GiB per node input arrays (60 TiB at 240 nodes in under 5 minutes)
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SUMMARY

e Performance and scalability of large transfers on InfiniBand systems has been improved

o Dynamic registration communication performance is nearly on par with static registration
—While retaining fast startup and good NUMA affinity
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FUTURE WORK

e Continue to improve dynamic registration performance
 ISx and some other communication-intensive applications lag slightly still

e Look at using On-Demand-Paging (ODP) as an alternative registration mechanism
« Hardware/firmware takes care of registration on-demand rather than fracking in software

e Improve other aspects of InfiniBand performance
o Network injection is currently serialized, limiting performance of fine-grained communication
—Mapping to the upcoming GASNet-EX multi-endpoint API should resolve this
o Target the GASNet-EX network atomic API
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