Recent InfiniBand Optimizations in Chapel

Elliot Ronaghan
Hewlett Packard Enterprise
USA
elliot.ronaghan@hpe.com

Abstract—This talk will highlight recent optimizations that
have significantly improved Chapel’s performance and scalability
on InfiniBand systems. Enhancements to the memory registration
implementation have improved the performance of several core
benchmarks and user applications including Arkouda, a Python
package backed by Chapel that provides a key subset of the
NumPy and Pandas interfaces. Performance results for core
benchmarks will be shown on a small scale InfiniBand cluster and
Arkouda results will be shown on a 240 node InfiniBand-based
HPE Apollo system.

I. INTRODUCTION

Historically, we have focused on optimizing Chapel’s per-
formance on Cray networks with the intention of ensuring
we had the right language features first and then optimizing
for other networks. Over the last few Chapel releases we
have started optimizing more for InfiniBand networks, which
we target using the GASNet communication library. With re-
cent memory registration optimizations, applications can now
achieve better performance on a modern InfiniBand network
than they can on a Cray Aries network.

II. MEMORY REGISTRATION

On most high performance networks, including InfiniBand,
memory has to be registered with the network in order
to do one-sided communication. This support for one-sided
communication or Remote Dynamic Memory Access (RDMA)
is critical for achieving good performance in Chapel.

On InfiniBand, Chapel uses GASNet’s dynamic registration
mode where memory is registered with the network at com-
munication time. This results in fast startup times and good
NUMA affinity, but can incur a performance penalty to RDMA
operations because memory has to be registered the first time
it is communicated. This cost is typically amortized over
multiple RDMA operations, but doing so requires tracking
which regions of memory have already been registered.

Bottlenecks in this registration tracking code previously
limited performance and scalability. We collaborated with the
GASNet team to resolve these performance issues, which will
be detailed in this talk.

III. PERFORMANCE RESULTS

Performance results for core benchmarks and user appli-
cations will be shown on a 16 node InfiniBand cluster that
is used for Chapel’s nightly performance testing. Example
improvements include a 4x speedup for ISx, an integer sort
benchmark, as well as 4x improvement for NAS Parallel
Benchmarks FT.

Additionally, performance results for Arkouda will be
shown on a 240 node InfiniBand-based HPE Apollo system.
The following figures summarize the Arkouda results.

Figure 1 shows Arkouda argsort performance on 240 nodes
(30K cores) of an HPE Apollo system with an HDR-100
InfiniBand network. Registration tracking issues caused per-
formance to fall off dramatically after 64 nodes. Fixing the
tracking issues as well as implementing application optimiza-
tions enabled by that fix result in a 50% speedup at 16 nodes,
and nearly a 20x speedup at 240 nodes.

Figure 2 shows argsort performance on 240 nodes of the
same HPE Apollo system compared to a Cray XC with an
Aries network. With an equivalent problem size of 8 GiB per
node, Apollo performance is 50% ahead of XC at 240 nodes.
Apollo systems can have much higher memory capacities,
enabling larger problem sizes. With 64 GiB per node, 240
node Apollo performance is nearly 3x better than the XC.

Arkouda Argsort Performance
HPE Apollo (HDR-100 IB) -- 8 GiB arrays

ak 04/06/2] —e— === === mmmmmmmmmmm -
ak 10/20/20 —e— _ . _____

24.1
80 | chpl1:24.0

GiB/s
o
S

128
Locales (x 128 cores / locale)

Fig. 1. Argsort scalability before and after registration improvements

Arkouda Argsort Performance
chpl 1.24.1/ ak 04/06/21

B pollo -- iBArmays = =e==- """ """ """ ----- P
180 |+ HPE Apollo -- 64 GiB A
160 |- HPEApolio-- 8GiBArrays —— - _ .. __- =T

GiB/s

128
Locales

Fig. 2. Argsort scalability comparing Cray XC to HPE Apollo



	Introduction
	Memory Registration
	Performance Results

