
Runtime Optimizations for Irregular
Applications in Chapel

Thomas B. Rolinger (UMD/LPS), Christopher D. Krieger (LPS), Alan Sussman (UMD)

CHIUW 2021
Contact: tbrolin@cs.umd.edu

Outline

• Motivation and background
• Irregular applications
• Inspector-executor technique

• High-level design of inspector-executor
• Performance evaluation
• NAS-CG, moldyn, PageRank

• Future work

2

Outline

• Motivation and background
• Irregular applications
• Inspector-executor technique

• High-level design of inspector-executor
• Performance evaluation
• NAS-CG, moldyn, PageRank

• Future work

3

1.) Motivation and Background

• Memory wall: processor speeds outpace rate at which data can be
fetched from memory
• leads to data starvation of compute resources

• Even worse for irregular applications
• sparse, unstructured memory access patterns found in graph analytics
• lack of spatial/temporal locality leads to fine-grained, remote communication
• memory access patterns not known at compile time

• requires runtime-based optimizations

4

1.) Motivation and Background (cont.)

• Inspector-executor technique
• inspector à analyze a kernel of interest (memory access pattern, loop iteration

dependencies, etc.)
• executor à generate an optimized version of the kernel that utilizes the inspector’s

analysis (loop reordering, data reordering, etc.)
• To achieve performance gains, the overhead of the inspector needs to be

amortized over multiple executions of the kernel
• kernel does not change between iterations
• examples: conjugate gradient, molecular dynamics simulations, PageRank

• The inspector and executor can be generated by the compiler
• in this preliminary work, we hand-code the inspector and executor to demonstrate

the potential of the optimization

5

1.) Motivation and Background (cont.)

• Inspector-executor technique
• inspector à analyze a kernel of interest (memory access pattern, loop iteration

dependencies, etc.)
• executor à generate an optimized version of the kernel that utilizes the inspector’s

analysis (loop reordering, data reordering, etc.)
• To achieve performance gains, the overhead of the inspector needs to be

amortized over multiple executions of the kernel
• kernel does not change between iterations
• examples: conjugate gradient, molecular dynamics simulations, PageRank

• The inspector and executor can be generated by the compiler
• in this preliminary work, we hand-code the inspector and executor to demonstrate

the potential of the optimization

6

Outline

• Motivation and background
• Irregular applications
• Inspector-executor technique

• High-level design of inspector-executor
• Performance evaluation
• NAS-CG, moldyn, PageRank

• Future work

7

2.) High-level Design of Inspector-executor

8

Sparse Matrix-Vector Multiply (SpMV) kernel

2.) High-level Design of Inspector-executor

9

Rows is a block distributed array

A given row is operated on the locale where
it is stored

Sparse Matrix-Vector Multiply (SpMV) kernel

2.) High-level Design of Inspector-executor

10

indirect access pattern not known at
compile time

x is a block distributed array
à fine-grained remote accesses

Sparse Matrix-Vector Multiply (SpMV) kernel

2.) High-level Design of Inspector-executor

11

indirect access pattern not known at
compile time

x is a block distributed array
à fine-grained remote accesses

Sparse Matrix-Vector Multiply (SpMV) kernel

GOAL: Eliminate all remote accesses to x during the kernel

APPROACH:
• inspect which col_idx[k] result in remote accesses to x for a given locale
• replicate the remote elements on that locale and access those copies instead

à Construct a mapping from col_idx[k] to x[col_idx[k]] for remote accesses

2.) High-level Design of Inspector-executor
(cont.)

• Replicating remote elements: associative arrays
• Keys: col_idx[k] values (i.e., indices)
• Values: x[col_idx[k]] elements (i.e., remote values)

• Pros
• clean way to store sparse indices
• faster than Chapel’s sparse domains/arrays
• automatically ignores duplicates
• can directly use the original col_idx[k] indices as

look-ups
• Cons

• slower access time vs. default arrays (~2-3x)
• more memory usage vs. default arrays (~ 10%)

12

Each locale stores a SparseBuffer record to keep
track of the remote elements it will need

spD is the associative domain, arr is the array
declared over the associative domain

2.) High-level Design of Inspector-executor
(cont.)

• Replicating remote elements: associative arrays
• Keys: col_idx[k] values (i.e., indices)
• Values: x[col_idx[k]] elements (i.e., remote values)

• Pros
• clean way to store sparse indices
• faster than Chapel’s sparse domains/arrays
• automatically ignores duplicates
• can directly use the original col_idx[k] indices as

look-ups
• Cons

• slower access time vs. default arrays (~2-3x)
• more memory usage vs. default arrays (~ 10%)

13

Each locale stores a SparseBuffer record to keep
track of the remote elements it will need

spD is the associative domain, arr is the array
declared over the associative domain

2.) High-level Design of Inspector-executor
(cont.)

• Replicating remote elements: associative arrays
• Keys: col_idx[k] values (i.e., indices)
• Values: x[col_idx[k]] elements (i.e., remote values)

• Pros
• clean way to store sparse indices
• faster than Chapel’s sparse domains/arrays
• automatically ignores duplicates
• can directly use the original col_idx[k] indices as

look-ups
• Cons

• slower access time vs. default arrays (~2-3x)
• more memory usage vs. default arrays (~ 10%)

14

Each locale stores a SparseBuffer record to keep
track of the remote elements it will need

spD is the associative domain, arr is the array
declared over the associative domain

3.) High-level Design of Inspector-executor (cont.)

15

original kernel

inspector

3.) High-level Design of Inspector-executor (cont.)

16

original kernel

inspector

• localeBuffers: stores each locale’s SparseBuffer
• start/end: bounds on the locale’s local partition of x
• spD: a locale’s associative domain

3.) High-level Design of Inspector-executor (cont.)

17

original kernel

inspector

Bounds check for remote accesses
• assumes block distribution
• could use .contains() on the local subdomain

but we observed significant performance loss
• future work: more general, but efficient,

approach?

Does not perform actual remote communication

spD is modified by multiple tasks concurrently
• forall loop performs both shared- and

distributed-memory parallelism à multiple
tasks spawned on each locale

• by default, associative domains provide parallel
safety for this operation

3.) High-level Design of Inspector-executor (cont.)

18

original kernel

inspector

Optimization: create sorted array of each locale’s
associative domain (i.e., their indices)

• see next slide for why this is important

19
executor

3.) High-level Design of Inspector-executor (cont.)

original kernel

20
executor

3.) High-level Design of Inspector-executor (cont.)

original kernel

Update/gather the original values from x to each
locale’s replicated copy
à values most likely changed outside of the kernel

21
executor

3.) High-level Design of Inspector-executor (cont.)

original kernel

Update/gather the original values from x to each
locale’s replicated copy
à values most likely changed outside of the kernel

All updates are remote reads. But since each remote element
is stored only once, we do a single remote read and get
“unlimited” local accesses during the kernel
à this is the key to our approach achieving performance gains

22
executor

3.) High-level Design of Inspector-executor (cont.)

original kernel

Update/gather the original values from x to each
locale’s replicated copy
à values most likely changed outside of the kernel

.indices is a sorted array of the associative array’s keys
• associative array indices are unsorted, so directly iterating

over them leads to poor locality for Chapel’s remote
cache

à observed as much as a 22x speed-up vs. not sorting

All updates are remote reads. But since each remote element
is stored only once, we do a single remote read and get
“unlimited” local accesses during the kernel
à this is the key to our approach achieving performance gains

23
executor

3.) High-level Design of Inspector-executor (cont.)

original kernel

Same bounds check as inspector
• if the access will be remote, then

access the associative array (arr)

Outline

• Motivation and background
• Irregular applications
• Inspector-executor technique

• High-level design of inspector-executor
• Performance evaluation
• NAS-CG, moldyn, PageRank à see our paper for moldyn and NAS-CG results

• Future work

24

3.) Performance Evaluation: Setup

• System:
• 16 node FDR Infiniband Cluster
• Each node à512GB DDR4, 2x Intel Xeon E5-2650v3 (20 cores total)
• Hyperthreading enabled

• Chapel:
• 1.24.1, LLVM 11.0.1
• --fast and --cache-remote
• GASNet over Infiniband

• Results:
• average over multiple trials (coefficient of variation does not exceed 0.07)

• Comparisons:
• Baseline à no inspector-executor optimization
• Replicate-all à no inspector performed, just give each locale a full copy of the array

• Will refer to inspector-executor as I/E

25

3.) Performance Evaluation: PageRank

• Evaluate two real web-graphs and two Graph500 graphs
(https://graph500.org/)
• Execute until convergence: tolerance of 1e-10, damping factor of 0.85
• Baseline only runs 1 iteration of Graph500 graphs
• for 2 locales, estimated to require 20 days for all iterations on g500_scale-28
• baseline results are extrapolated from single iteration runtimes

26

3.) Performance Evaluation: PageRank (cont.)

• Inspector runtime overhead:
• geomean overhead of 5% relative to the

total execution time

• Low overhead due to many iterations,
allowing for overhead to be amortized

27

11% 13% 13% 14%

86% 85% 83% 82%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

2 4 8 16

%
 o

f t
ot

al
 ti

m
e

of locales

g500_scale-28

4% 3% 3% 5%

3.) Performance Evaluation: PageRank (cont.)

• I/E memory usage:
• geomean increase in memory over the baseline of 80%
• high memory usage is due to the large Graph500 graphs

• memory usage increase for real-world graphs is 42%

• Replicate-all memory usage:
• geomean increase in memory over baseline of 606%
• cannot run g500_scale-28 on 2, 4, or 8 locales àout of memory
• real-world graph memory usage increase is 565%

28

Key Point: I/E replicates less data than replicate-all
• I/E only replicates what will be accessed remotely
• replicate-all replicates EVERYTHING

3.) Performance Evaluation: PageRank (cont.)

• I/E memory usage:
• geomean increase in memory over the baseline of 80%
• high memory usage is due to the large Graph500 graphs

• memory usage increase for real-world graphs is 42%

• Replicate-all memory usage:
• geomean increase in memory over baseline of 606%
• cannot run g500_scale-28 on 2, 4, or 8 locales àout of memory
• real-world graph memory usage increase is 565%

29

Key Point: I/E replicates less data than replicate-all
• I/E only replicates what will be accessed remotely
• replicate-all replicates EVERYTHING

2.4 2.2
1.7

2.52.3

0.6 0.6
1.0

0
0.5

1
1.5

2
2.5

3

2 4 8 16

sp
ee

d-
up

 o
ve

r b
as

el
in

e

of locales

sk-2005

86
72

52
39 46

0
20
40
60
80

100

2 4 8 16

sp
ee

d-
up

 o
ve

r b
as

el
in

e

of locales

g500_scale-28

2.2
1.8 2.0

2.6

1.4

0.5 0.4 0.4
0

0.5
1

1.5
2

2.5
3

2 4 8 16

sp
ee

d-
up

 o
ve

r b
as

el
in

e

of locales

arabic-2005

96
54 42 35

255

98 75 45

0

100

200

300

2 4 8 16

sp
ee

d-
up

 o
ve

r b
as

el
in

e

of locales

g500_scale-26

PageRank Runtime Speed-ups

• I/E: geomean speed-up of 11x
• Replicate-all: geomean speed-up of 5x

2.4 2.2
1.7

2.52.3

0.6 0.6
1.0

0
0.5

1
1.5

2
2.5

3

2 4 8 16

sp
ee

d-
up

 o
ve

r b
as

el
in

e

of locales

sk-2005

86
72

52
39 46

0
20
40
60
80

100

2 4 8 16

sp
ee

d-
up

 o
ve

r b
as

el
in

e

of locales

g500_scale-28

2.2
1.8 2.0

2.6

1.4

0.5 0.4 0.4
0

0.5
1

1.5
2

2.5
3

2 4 8 16

sp
ee

d-
up

 o
ve

r b
as

el
in

e

of locales

arabic-2005

96
54 42 35

255

98 75 45

0

100

200

300

2 4 8 16

sp
ee

d-
up

 o
ve

r b
as

el
in

e

of locales

g500_scale-26

PageRank Runtime Speed-ups

I/E exploits data reuse
• single remote get per remote element

gives us “unlimited” local accesses

I/E replicates less data
• spends less time in the gather/update

phase than replicate-all

I/E slower on Graph500 graphs vs replicate-all
• I/E needs to replicate virtually all the

elements
• Performance now bounded by access costs

to associative arrays vs. default arrays

3.) Performance Evaluation: PageRank (cont.)

• Noteworthy comparisons
• For two locales:

• baseline estimated to require 20 days to run all iterations on g500_scale-28
• I/E does it in 6 hours

• For 16 locales:
• baseline estimated to require 41 hours
• I/E does it in 1 hour

32

3.) Performance Summary

• Note far right column
• relatively few iterations required until I/E is on par, or faster, than baseline

33

Application Average Memory
Overhead

Average Inspector
Overhead

Average Runtime
Speed-up

Max # of Iterations to
Break Even with
Baseline

NAS-CG 6% 4% 27x 2
moldyn 4% 24% 8x 1
PageRank 80% 5% 11x 4

Outline

• Motivation and background
• Irregular applications
• Inspector-executor technique

• High-level design of inspector-executor
• Applying the inspector-executor
• Performance evaluation
• NAS-CG, moldyn, PageRank

• Future work

34

4.) Future Work
• Optimizing the optimization:
• transform forall to coforall for inspector to speed-up associative domain operation

• forall loop over distributed array will spawn multiple tasks per locale
• need parallel-safety for associative domain (parSafe=true)
• Use a coforall instead, allowing us to set parSafe=false
• Reduces parallelism but still gives us net performance gains (as much as 6x faster)
• Generally, this transformation can be done, but not always true

35

needs thread safety
does not need
thread safety

4.) Future Work (cont.)
• Optimizing the optimization:
• use aggregation for the update/gathers before the kernel
• use default arrays instead of associative arrays

• more efficient memory accesses
• requires building a new index mapping from indirection array to indices in the default array
• gets much uglier than the associative array approach, so there’s a tradeoff between

performance and what the compiler could automatically generate

• Compiler automation:
• user driven (pragmas) or have the compiler try to find suitable kernels?

• More applications please!
• not ideal for the optimization developer to write the test cases
• if you have irregular applications that could benefit from runtime optimizations (not

just inspector-executor), contact us! tbrolin@cs.umd.edu
36

4.) Future Work (cont.)
• Optimizing the optimization:
• use aggregation for the update/gathers before the kernel
• use default arrays instead of associative arrays

• more efficient memory accesses
• requires building a new index mapping from indirection array to indices in the default array
• gets much uglier than the associative array approach, so there’s a tradeoff between

performance and what the compiler could automatically generate

• Compiler automation:
• user driven (pragmas) or have the compiler try to find suitable kernels?

• More applications please!
• not ideal for the optimization developer to write the test cases
• if you have irregular applications that could benefit from runtime optimizations (not

just inspector-executor), contact us! tbrolin@cs.umd.edu
37

Conclusions
• Inspector-executor shows promise for irregular applications in Chapel
• Speed-ups as high as 224x
• Take application runtimes from days to hours
• Does not rely on low-level details to be exposed in the source code
• our goal with the baseline implementations was to write them in the most natural

way, sticking to the “on-paper” description of the algorithms

38

Runtime Optimizations for Irregular
Applications in Chapel

Thomas B. Rolinger (UMD/LPS), Christopher D. Krieger (LPS), Alan Sussman (UMD)

CHIUW 2021
Contact: tbrolin@cs.umd.edu

