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1.) Motivation and Background

• Memory wall: processor speeds outpace rate at which data can be 
fetched from memory
• leads to data starvation of compute resources

• Even worse for irregular applications
• sparse, unstructured memory access patterns found in graph analytics
• lack of spatial/temporal locality leads to fine-grained, remote communication
• memory access patterns not known at compile time

• requires runtime-based optimizations

4



1.) Motivation and Background (cont.)

• Inspector-executor technique
• inspector à analyze a kernel of interest (memory access pattern, loop iteration 

dependencies, etc.) 
• executor à generate an optimized version of the kernel that utilizes the inspector’s 

analysis (loop reordering, data reordering, etc.)
• To achieve performance gains, the overhead of the inspector needs to be 

amortized over multiple executions of the kernel
• kernel does not change between iterations
• examples: conjugate gradient, molecular dynamics simulations, PageRank

• The inspector and executor can be generated by the compiler
• in this preliminary work, we hand-code the inspector and executor to demonstrate 

the potential of the optimization
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2.) High-level Design of Inspector-executor
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Sparse Matrix-Vector Multiply (SpMV) kernel
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Rows is a block distributed array

A given row is operated on the locale where 
it is stored

Sparse Matrix-Vector Multiply (SpMV) kernel
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2.) High-level Design of Inspector-executor
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indirect access pattern not known at 
compile time

x is a block distributed array 
à fine-grained remote accesses

Sparse Matrix-Vector Multiply (SpMV) kernel

GOAL: Eliminate all remote accesses to x during the kernel

APPROACH:  
• inspect which col_idx[k] result in remote accesses to x for a given locale
• replicate the remote elements on that locale and access those copies instead

à Construct a mapping from col_idx[k] to x[col_idx[k]] for remote accesses



2.) High-level Design of Inspector-executor 
(cont.)

• Replicating remote elements: associative arrays
• Keys: col_idx[k] values (i.e., indices)
• Values: x[col_idx[k]] elements (i.e., remote values)

• Pros
• clean way to store sparse indices
• faster than Chapel’s sparse domains/arrays
• automatically ignores duplicates
• can directly use the original col_idx[k] indices as 

look-ups 
• Cons

• slower access time vs. default arrays (~2-3x)
• more memory usage vs. default arrays (~ 10%)
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Each locale stores a SparseBuffer record to keep 
track of the remote elements it will need

spD is the associative domain, arr is the array 
declared over the associative domain
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3.) High-level Design of Inspector-executor (cont.)
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original kernel

inspector



3.) High-level Design of Inspector-executor (cont.)
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original kernel

inspector

• localeBuffers: stores each locale’s SparseBuffer
• start/end: bounds on the locale’s local partition of x
• spD: a locale’s associative domain



3.) High-level Design of Inspector-executor (cont.)
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original kernel

inspector

Bounds check for remote accesses
• assumes block distribution
• could use .contains() on the local subdomain 

but we observed significant performance loss
• future work: more general, but efficient, 

approach?

Does not perform actual remote communication

spD is modified by multiple tasks concurrently
• forall loop performs both shared- and 

distributed-memory parallelism à multiple 
tasks spawned on each locale

• by default, associative domains provide parallel 
safety for this operation



3.) High-level Design of Inspector-executor (cont.)
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original kernel

inspector

Optimization: create sorted array of each locale’s 
associative domain (i.e., their indices)

• see next slide for why this is important
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3.) High-level Design of Inspector-executor (cont.)

original kernel
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3.) High-level Design of Inspector-executor (cont.)

original kernel

Update/gather the original values from x to each 
locale’s replicated copy 
à values most likely changed outside of the kernel
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3.) High-level Design of Inspector-executor (cont.)

original kernel

Update/gather the original values from x to each 
locale’s replicated copy 
à values most likely changed outside of the kernel

All updates are remote reads. But since each remote element 
is stored only once, we do a single remote read and get 
“unlimited” local accesses during the kernel
à this is the key to our approach achieving performance gains
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3.) High-level Design of Inspector-executor (cont.)

original kernel

Update/gather the original values from x to each 
locale’s replicated copy 
à values most likely changed outside of the kernel

.indices is a sorted array of the associative array’s keys
• associative array indices are unsorted, so directly iterating 

over them leads to poor locality for Chapel’s remote 
cache

à observed as much as a 22x speed-up vs. not sorting

All updates are remote reads. But since each remote element 
is stored only once, we do a single remote read and get 
“unlimited” local accesses during the kernel
à this is the key to our approach achieving performance gains
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3.) High-level Design of Inspector-executor (cont.)

original kernel

Same bounds check as inspector
• if the access will be remote, then 

access the associative array (arr)



Outline 

• Motivation and background
• Irregular applications
• Inspector-executor technique

• High-level design of inspector-executor
• Performance evaluation
• NAS-CG, moldyn, PageRank à see our paper for moldyn and NAS-CG results

• Future work
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3.) Performance Evaluation: Setup

• System:
• 16 node FDR Infiniband Cluster
• Each node à512GB DDR4, 2x Intel Xeon E5-2650v3 (20 cores total)
• Hyperthreading enabled

• Chapel:
• 1.24.1, LLVM 11.0.1
• --fast and --cache-remote
• GASNet over Infiniband

• Results:
• average over multiple trials (coefficient of variation does not exceed 0.07)

• Comparisons:
• Baseline à no inspector-executor optimization
• Replicate-all à no inspector performed, just give each locale a full copy of the array

• Will refer to inspector-executor as I/E

25



3.) Performance Evaluation: PageRank

• Evaluate two real web-graphs and two Graph500 graphs
(https://graph500.org/)
• Execute until convergence: tolerance of 1e-10, damping factor of 0.85
• Baseline only runs 1 iteration of Graph500 graphs
• for 2 locales, estimated to require 20 days for all iterations on g500_scale-28 
• baseline results are extrapolated from single iteration runtimes
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3.) Performance Evaluation: PageRank (cont.)

• Inspector runtime overhead:
• geomean overhead of 5% relative to the 

total execution time

• Low overhead due to many iterations, 
allowing for overhead to be amortized
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3.) Performance Evaluation: PageRank (cont.)

• I/E memory usage:
• geomean increase in memory over the baseline of 80%
• high memory usage is due to the large Graph500 graphs

• memory usage increase for real-world graphs is 42%

• Replicate-all memory usage:
• geomean increase in memory over baseline of 606%
• cannot run g500_scale-28 on 2, 4, or 8 locales àout of memory
• real-world graph memory usage increase is 565%
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Key Point: I/E replicates less data than replicate-all
• I/E only replicates what will be accessed remotely
• replicate-all replicates EVERYTHING
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PageRank Runtime Speed-ups

• I/E: geomean speed-up of 11x
• Replicate-all: geomean speed-up of 5x
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PageRank Runtime Speed-ups

I/E exploits data reuse 
• single remote get per remote element 

gives us “unlimited” local accesses

I/E replicates less data 
• spends less time in the gather/update 

phase than replicate-all

I/E slower on Graph500 graphs vs replicate-all 
• I/E needs to replicate virtually all the 

elements
• Performance now bounded by access costs 

to associative arrays vs. default arrays



3.) Performance Evaluation: PageRank (cont.)

• Noteworthy comparisons
• For two locales:

• baseline estimated to require 20 days to run all iterations on g500_scale-28
• I/E does it in 6 hours

• For 16 locales:
• baseline estimated to require 41 hours
• I/E does it in 1 hour
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3.) Performance Summary

• Note far right column
• relatively few iterations required until I/E is on par, or faster, than baseline
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Application Average Memory 
Overhead

Average Inspector 
Overhead

Average Runtime 
Speed-up

Max # of Iterations to 
Break Even with 
Baseline

NAS-CG 6% 4% 27x 2
moldyn 4% 24% 8x 1
PageRank 80% 5% 11x 4



Outline 

• Motivation and background
• Irregular applications
• Inspector-executor technique

• High-level design of inspector-executor
• Applying the inspector-executor
• Performance evaluation
• NAS-CG, moldyn, PageRank

• Future work
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4.) Future Work
• Optimizing the optimization:
• transform forall to coforall for inspector to speed-up associative domain operation

• forall loop over distributed array will spawn multiple tasks per locale
• need parallel-safety for associative domain (parSafe=true)
• Use a coforall instead, allowing us to set parSafe=false
• Reduces parallelism but still gives us net performance gains (as much as 6x faster)
• Generally, this transformation can be done, but not always true
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needs thread safety
does not need 
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4.) Future Work (cont.)
• Optimizing the optimization:
• use aggregation for the update/gathers before the kernel
• use default arrays instead of associative arrays

• more efficient memory accesses
• requires building a new index mapping from indirection array to indices in the default array
• gets much uglier than the associative array approach, so there’s a tradeoff between 

performance and what the compiler could automatically generate

• Compiler automation:
• user driven (pragmas) or have the compiler try to find suitable kernels?

• More applications please!
• not ideal for the optimization developer to write the test cases
• if you have irregular applications that could benefit from runtime optimizations (not 

just inspector-executor), contact us! tbrolin@cs.umd.edu
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Conclusions
• Inspector-executor shows promise for irregular applications in Chapel
• Speed-ups as high as 224x
• Take application runtimes from days to hours
• Does not rely on low-level details to be exposed in the source code
• our goal with the baseline implementations was to write them in the most natural 

way, sticking to the “on-paper” description of the algorithms
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