Runtime Optimizations for Irregular
Applications in Chapel

Thomas B. Rolinger (UMD/LPS), Christopher D. Krieger (LPS), Alan Sussman (UMD)

Contact: tbrolin@cs.umd.edu
CHIUW 2021

COMPUTER SCIENCE
UNIVERSITY OF MARYLAND

The Laboratory for Physical Sciences

R

Outline

* Motivation and background
* Irregular applications
* Inspector-executor technique

* High-level design of inspector-executor

* Performance evaluation
* NAS-CG, moldyn, PageRank

e Future work

Outline

* Motivation and background
* Irregular applications
* Inspector-executor technique

1.) Motivation and Background

* Memory wall: processor speeds outpace rate at which data can be
fetched from memory

 |leads to data starvation of compute resources

* Even worse for irregular applications
e sparse, unstructured memory access patterns found in graph analytics
* lack of spatial/temporal locality leads to fine-grained, remote communication

* memory access patterns not known at compile time
* requires runtime-based optimizations

1.) Motivation and Background (cont.)

* Inspector-executor technique
* inspector = analyze a kernel of interest (memory access pattern, loop iteration

dependencies, etc.)
» executor - generate an optimized version of the kernel that utilizes the inspector’s

analysis (loop reordering, data reordering, etc.)

1.) Motivation and Background (cont.)

* Inspector-executor technique

* inspector = analyze a kernel of interest (memory access pattern, loop iteration
dependencies, etc.)

» executor - generate an optimized version of the kernel that utilizes the inspector’s
analysis (loop reordering, data reordering, etc.)
* To achieve performance gains, the overhead of the inspector needs to be
amortized over multiple executions of the kernel

* kernel does not change between iterations
* examples: conjugate gradient, molecular dynamics simulations, PageRank

* The inspector and executor can be generated by the compiler

* in this preliminary work, we hand-code the inspector and executor to demonstrate
the potential of the optimization

Outline

* High-level design of inspector-executor

2.) High-level Design of Inspector-executor

1 forall row in Rows {

2 var accum : real = 9;

3 for k in Q. .#row.nnz {

4 accum += row.valuel[k] * x[row.col_idx[k]];
5 X

6 blrow.id] = accum;

700

Sparse Matrix-Vector Multiply (SpMV) kernel

2.) High-level Design of Inspector-executor

e S - B & 4 B R T .

forall row in Rows {

var accum : real = 0;
for k in Q. .#row.nnz {
accum += row.valuel[k] * x[row.col_idx[k]];

}

‘;

blrow.id] = accum;

Sparse Matrix-Vector Multiply (SpMV) kernel

Rows is a block distributed array

A given row is operated on the locale where
it is stored

2.) High-level Design of Inspector-executor

i heras L oW Tl RoWs: X is a block distributed array

2 var accum : real = @; / - fine-grained remote accesses

3 for k in Q. .#row.nnz {

4 accum += row.valuel[k] *| x[row.col_idx[k]];||indirect access pattern not known at
5 } compile time

6 blrow.id] = accum;

10

Sparse Matrix-Vector Multiply (SpMV) kernel

2.) High-level Design of Inspector-executor

1 forall row in Rows {

<P X is a block distributed array
var accum : real = 9; / - fine-grained remote accesses

for k in Q. .#row.nnz {

accum += row.valuel[k] *| x[row.col_idx[k]];||indirect access pattern not known at
} compile time

blrow.id] = accum;

~N O o A WwN

Sparse Matrix-Vector Multiply (SpMV) kernel

GOAL: Eliminate all remote accesses to x during the kernel

APPROACH:

* inspect which col_idx[k] result in remote accesses to x for a given locale
* replicate the remote elements on that locale and access those copies instead

- Construct a mapping from col_idx[k] to x[col_idx[k]] for remote accesses

2.) High-level Design of Inspector-executor
(cont.)

* Replicating remote elements: associative arrays
* Keys: col _idx[k] values (i.e., indices)
* Values: x[col_idx[k]] elements (i.e., remote values)

1 record SparseBuffer {

2 type elem_type;

3 var spD : domain (int);

4 var arr : [spD] elem_type;

5 var start_idx, end_idx, num_elems : int;
6 var D : domain(1) = {0. .#num_elems};

7 var indices : [D] int; // sorted indices
8

| ‘
Each locale stores a SparseBuffer record to keep
track of the remote elements it will need

spD is the associative domain, arr is the array
declared over the associative domain

2.) High-level Design of Inspector-executor

(cont.)

* Replicating remote elements: associative arrays
* Keys: col _idx[k] values (i.e., indices)
* Values: x[col_idx[k]] elements (i.e., remote values)

* Pros
* clean way to store sparse indices
 faster than Chapel’s sparse domains/arrays
* automatically ignores duplicates

e can directly use the original col_idx[k] indices as
look-ups

1 record SparseBuffer {

2 type elem_type;

3 var spD : domain (int);

4 var arr : [spD] elem_type;

5 var start_idx, end_idx, num_elems : int;
6 var D : domain(1) = {0. .#num_elems};

7 var indices : [D] int; // sorted indices
8

| |

Each locale stores a SparseBuffer record to keep
track of the remote elements it will need

spD is the associative domain, arr is the array
declared over the associative domain

2.) High-level Design of Inspector-executor

(cont.)

* Replicating remote elements: associative arrays
* Keys: col _idx[k] values (i.e., indices)
* Values: x[col_idx[k]] elements (i.e., remote values)

* Pros
* clean way to store sparse indices
 faster than Chapel’s sparse domains/arrays
* automatically ignores duplicates
e can directly use the original col_idx[k] indices as
look-ups

e Cons

* slower access time vs. default arrays (~2-3x)
* more memory usage vs. default arrays (~ 10%)

1 record SparseBuffer {

2 type elem_type;

3 var spD : domain (int);

4 var arr : [spD] elem_type;

5 var start_idx, end_idx, num_elems : int;
6 var D : domain(1) = {0. .#num_elems};

7 var indices : [D] int; // sorted indices
8

| |

Each locale stores a SparseBuffer record to keep
track of the remote elements it will need

spD is the associative domain, arr is the array
declared over the associative domain

N OO AW NN =

W 00 N O O A W N -

- ed -
N =

3.) High-level Design of Inspector-executor (cont.)

forall row in Rows {
var accum : real = 0;
for k in @. .#row.nnz {
accum += row.value[k] * x[row.col_idx[k]];
}
b[row.id] = accum;
3
original kernel
forall row in Rows {
const start = localeBuffers[here.id].start_idx;
const end = localeBuffers[here.id].end_idx;
ref spD = localeBuffers[here.id].spD;
for k in Q. .#row.nnz {
const idx = row.col_idx[k];
if idx < start || idx > end {
spD += idx;
i

3

sort_indices(localeBuffers);

inspector 15

N OO AW NN =

W 00 N O O A W N -

- ed -
N =

3.) High-level Design of Inspector-executor (cont.)

localeBuffers: stores each locale’s SparseBuffer
start/end: bounds on the locale’s local partition of x
spD: a locale’s associative domain

forall row in Rows {
var accum : real = 0;
for k in @. .#row.nnz {
accum += row.valuel[k] * x[row.col_idx[k]];
}
b[row.id] = accum;
3
original kernel
forall row in Rows {
const start = localeBuffers[here.id].start_idx;
const end = localeBuffers[here.id].end_idx;
ref spD = localeBuffers[here.id].spD;
for k in Q. .#row.nnz {
const idx = row.col_idx[k];
if idx < start || idx > end {
spD += idx;
i

3

sort_indices(localeBuffers);

inspector

16

N OO AW NN =

W 00 N O O A W N -

- ed -
N =

3.) High-level Design of Inspector-executor (cont.)

forall row in Rows {

/

var accum : real = 0;
for k in 0. .#row.nnz {
accum += row.valuel[k] * x[row.col_idx[k]];
}
b[row.id] = accum;
}
original kernel
forall row in Rows {
const start = localeBuffers[here.id].start_idx;
const end = localeBuffers[here.id].end_idx;
ref spD = localeBuffers[here.id].spD;
for k in 9. .#row.nnz {
const idx = row.col_idx[k];
if idx < start || idx > end {
spD += idx;
ki

3

sort_indices(localeBuffers);

inspector

Bounds check for remote accesses
e assumes block distribution
e could use .contains() on the local subdomain
but we observed significant performance loss
e future work: more general, but efficient,
approach?

Does not perform actual remote communication

spD is modified by multiple tasks concurrently
* forall loop performs both shared- and
distributed-memory parallelism = multiple
tasks spawned on each locale
* by default, associative domains provide parallel
safety for this operation

N OO AW NN =

W 00 N O O A W N -

—
(]

L
—

3.) High-level Design of Inspector-executor (cont.)

forall row in Rows {
var accum : real = 0;
for k in @. .#row.nnz {
accum += row.valuel[k] * x[row.col_idx[k]];
}
b[row.id] = accum;
3
original kernel
forall row in Rows {
const start = localeBuffers[here.id].start_idx;
const end = localeBuffers[here.id].end_idx;
ref spD = localeBuffers[here.id].spD;
for k in Q. .#row.nnz {
const idx = row.col_idx[k];
if idx < start || idx > end {
spD += idx;
i

\

-t
N

sort_indices(localeBuffers);

inspector

—

Optimization: create sorted array of each locale’s
associative domain (i.e., their indices)
* see next slide for why this is important

N OO AW NN =

3.) High-level Design of Inspector-executor (cont.)

forall row in Rows {
e 1 forall buff in localeBuffers {
for k in 0..#row.nnz { 2 forall idx in buff.indices {
accum += row.value[k] * x[row.col_idx[k]]; 3 buff.arrlidx] = x[idx];
) ¢
blrow.id] = accum; 5 }
} 6 forall row in Rows {
. 7 const start = localeBuffers[here.id].start_idx;
original kernel 8 const end = localeBuffers[here.id].end_idx;
9 ref arr = localeBuffers[here.id].arr;
10 var accum : real = 0;
1 for k in @..#row.nnz {
12 const idx = row.col_idx[k];
13 if idx < start || idx > end {
14 accum += row.valuel[k] * arr[idx];
15 }
16 else {
17 accum += row.valuel[k] * x[idx];
18 }
19 }
20 blrow.id] = accum;
21 }
executor

19

3.) High-level Design of Inspector-executor (cont.)

1 forall row in Rows { -
2 arlacenE e 1 forall buff in localeBuffers {
5 for k in 0. .#row.nnz 2 forall idx in buff.indices {
4 accum += row.value[k] * x[row.col_idx[k]]; 3 buff.arrfidx] = x[idx];
5 } 4 }
6 blrow.id] = accum; 5 }
7 } 6 forall row in Rows {
ivinal k | 7 const start = localeBuffers[here.id].start_idx;
orginal kerne 8 const end = localeBuffers[here.id].end_idx;
Update/gather the original values from x to each 9 ref arr = localeBuffers[here.id].arr;

locale’s replicated copy 10 var accum : real = 0;

- values most likely changed outside of the kernel ! LS) e i
12 const idx = row.col_idx[k];
13 if idx < start || idx > end {
14 accum += row.valuel[k] * arr[idx];
15 }
16 else {
17 accum += row.valuel[k] * x[idx];
18 }
19 }
20 blrow.id] = accum;
21 }
executor

20

3.) High-level Design of Inspector-executor (cont.)

1 forall row in Rows { .
5 VAT Sccl e raali= o 1 forall buff in localeBuffers {
; e nnz’{ 2 forall idx in buff.indices {
4 accum += row.value[k] * x[row.col_idx[k]]; 2 buff.arrfidx] = x[1idx];
5 } - }
6 b[row.id] = accum; 5
7 3} 6 forall row in Rows {
ivinal k | 7 const start = localeBuffers[here.id].start_idx;
original kerne 8 const end = localeBuffers[here.id].end_idx;
Update/gather the original values from x to each 9 ref arr = localeBuffers[here.id].arr;

locale’s replicated copy 10 var accum : real = 0;

- values most likely changed outside of the kernel el g SRl e iz PR
12 const idx = row.col_idx[k];
All updates are remote reads. But since each remote element 2 SRR s S L 2R GG
. . 14 accum += row.valuel[k] * arr[idx];
is stored only once, we do a single remote read and get .)
“unlimited” local accesses during the kernel 6 Sl i
—> this is the key to our approach achieving performance gains o accum += row.value[k] * x[idx]:
18 }
19 }
20 blrow.id] = accum;
21 }

executor

3.) High-level Design of Inspector-executor (cont.)

forall row in Rows {

; var accum : real = 0: 1 forall buff in localeBuffers {
: for k in 0..#row.nnz { 2 forall idx in buff.indices {
4 accum += row.valuel[k] * x[row.col_idx[k]1]; : buff.arrlidx] = x[idx];
5 } 4 }
6 b[row.id] = accum; 5}
7 } 6 forall row in Rows {
. 7 const start = localeBuffers[here.id].start_idx;
original kernel 8 const end = localeBuffers[here.id].end_idx;
Update/gather the original values from x to each 9 ref arr = localeBuffers[here.id].arr;

locale’s replicated copy 10 var accum : real = 0;

- values most likely changed outside of the kernel el HOBEAND L ron nZt B
12 const idx = row.col_idx[k];
All updates are remote reads. But since each remote element 2 e S e e G CUL R
. . 14 accum += row.valuel[k] * arr[idx];
is stored only once, we do a single remote read and get .)
“unlimited” local accesses during the kernel 6 Sl
—> this is the key to our approach achieving performance gains . accum += row.value[k] * x[idx]:
18 }
.indices is a sorted array of the associative array’s keys 5)
e associative array indices are unsorted, so directly iterating 20 blrow.id] = accum;
over them leads to poor locality for Chapel’s remote 21 }
cache executor
—> observed as much as a 22x speed-up vs. not sorting

3.) High-level Design of Inspector-executor (cont.)

1 forall row in Rows {

5 e 1 forall buff in localeBuffers {

. for k in 0..#row.nnz { 2 forall idx in buff.indices {

4 accum += row.valuel[k] * x[row.col_idx[k]1]; 2 buff.arrlidx] = x[idx];

5 } . }

6 blrow.id] = accum; 5 }

7 3 6 forall row in Rows {

. 7 const start = localeBuffers[here.id].start_idx;
original kernel 8 const end = localeBuffers[here.id].end_idx;
9 ref arr = localeBuffers[here.id].arr;
10 var accum : real = 0;
1 for k in @..#row.nnz {
12 const idx = row.col_idx[k];
13 if idx < start || idx > end {
Same bounds check as inspector s > accum += row.value[k] * arr[idx]:
» if the access will be remote, then 15 }
access the associative array (arr) 16 else {
17 accum += row.valuel[k] * x[idx];
18 }
19 }
20 blrow.id] = accum;
21 }
executor

23

Outline

* Performance evaluation
* NAS-CG, moldyn, PageRank = see our paper for moldyn and NAS-CG results

3.) Performance Evaluation: Setup

System:
* 16 node FDR Infiniband Cluster
* Each node -512GB DDR4, 2x Intel Xeon E5-2650v3 (20 cores total)
* Hyperthreading enabled

Chapel:
e 1.24.1, LLVM 11.0.1
» --fast and --cache-remote
* GASNet over Infiniband

Results:
* average over multiple trials (coefficient of variation does not exceed 0.07)

Comparisons:
* Baseline = no inspector-executor optimization
* Replicate-all = no inspector performed, just give each locale a full copy of the array

Will refer to inspector-executor as I/E

3.) Performance Evaluation: PageRank

e Evaluate two real web-graphs and two Graph500 graphs
(https://graph500.org/)

* Execute until convergence: tolerance of 1e-10, damping factor of 0.85

e Baseline only runs 1 iteration of Graph500 graphs
* for 2 locales, estimated to require 20 days for all iterations on g500_scale-28
* baseline results are extrapolated from single iteration runtimes

Table 3: Data Sets for PageRank

Name Vertices | Edges | Density (%) | Memory | Iterations
arabic-2005 23M 630M 1.2e~42 26 GB 94
sk-2005 51M 1.9B 1963 63 GB 82
g500_scale-26 67M 2.1B 4.7e—5 79 GB 29
g500_scale-28 268M 8.5B 1.26—5 318 GB 20

i ' fid

o S
o e
b Pt
[e i

PageRank: arabic-2005

3.) Performance Evaluation: PageRank (cont.)

* Inspector runtime overhead: g500_scale-28

 geomean overhead of 5% relative to the 100%

. . 90%
total execution time -
70%

* Low overhead due to many iterations, 60%
50%

allowing for overhead to be amortized =

30%
20%
10%

0%

% of total time

2 4 8 16
of locales

B INSPECTOR B UPDATE B KERNEL

27

3.) Performance Evaluation: PageRank (cont.)

* |/E memory usage:
e geomean increase in memory over the baseline of 80%
* high memory usage is due to the large Graph500 graphs

* memory usage increase for real-world graphs is 42%

3.) Performance Evaluation: PageRank (cont.)

* |/E memory usage:
e geomean increase in memory over the baseline of 80%
* high memory usage is due to the large Graph500 graphs

* memory usage increase for real-world graphs is 42%
* Replicate-all memory usage:
e geomean increase in memory over baseline of 606%

e cannot run g500 scale-28 on 2, 4, or 8 locales 2 out of memory
* real-world graph memory usage increase is 565%

Key Point: I/E replicates less data than replicate-all
* |/E only replicates what will be accessed remotely
 replicate-all replicates EVERYTHING

speed-up over baseline

speed-up over baseline

300

200

100

PageRank Runtime Speed-ups
B Inspector-Executor @ Replicate-All

arabic-2005 26 3 sk-2005
2.2 2.0 . @)e 24 2.3 2.2
1.8 : £ 2

1.4 : b 2
S 15

I I 0.5 0.4 0.4 g ! 0.6 0.6

- - = I []]

2 4q 8 16 -z 2 4 8
of locales §_ # of locales

g500 scale-26

255 100 86

80

96 98 75
[] mm|] o
2 4 8 16
of locales

speed-up over baseline

g500 scale-28

72
60 52
40
20
0
4 8

of locales

* |/E: geomean speed-up of 11x

* Replicate-all: geomean speed-up of 5x

2.5

1.0

16

16

PageRank Runtime Speed-ups

B Inspector-Executor @ Replicate-All

ic- sk-2005
., 3 arabic-2005 2.6 s 3 2493 25
= 2.5 2.0 = 2.5
G 2 1.8 G >
8 15 8 15 1.0
g 0 ; I 0.5 0.4 0.4 o 0 ; 0.6 .
o 0 1 - 1 o 50 []
3 4 8 16 -3 8 16
3 # of locales o # of locales
7y 7y
o 300 255 8500_scale-26 o 100 g500 scale-28
c c
C 3 %
w 200 n
60 46
A 96 o8 25 s 39
- ml &R &R 2a G I ol
= . mlll == 7
= 2 8 16 = 16
4 # of locales g # of locales
I/E exploits data reuse I/E replicates less data I/E slower on Graph500 graphs vs replicate-all
* single remote get per remote element * spends less time in the gather/update * |/E needs to replicate virtually all the
gives us “unlimited” local accesses phase than replicate-all elements

* Performance now bounded by access costs
to associative arrays vs. default arrays

3.) Performance Evaluation: PageRank (cont.)

* Noteworthy comparisons

* For two locales:
* baseline estimated to require 20 days to run all iterations on g500 scale-28
* I/E does it in 6 hours

* For 16 locales:

* baseline estimated to require 41 hours
* I/E doesitin 1 hour

3.) Performance Summary

* Note far right column
* relatively few iterations required until I/E is on par, or faster, than baseline

Application Average Memory Average Inspector Average Runtime Max # of Iterations to
Overhead Overhead Speed-up Break Even with
Baseline
NAS-CG 6% 4% 27X 2
moldyn 1% 24% 8X 1

PageRank 80% 5% 11x 4

33

Outline

e Future work

4.) Future Work

* Optimizing the optimization:
 transform forall to coforall for inspector to speed-up associative domain operation
forall loop over distributed array will spawn multiple tasks per locale

need parallel-safety for associative domain (parSafe=true)

Use a coforall instead, allowing us to set parSafe=false

Reduces parallelism but still gives us net performance gains (as much as 6x faster)
Generally, this transformation can be done, but not always true

coforall loc in Locales do on loc {

F 1

1 forall row in Rows { 2 const rowIndices = rows.localSubdomain();
2 const start = localeBuffers[here.id].start_idx; 3 const start = rowIndices.low:
3 const end = localeBuffers[here.id].end_idx; 4 const end = rowIndices.high;
4 ref spD = localeBuffers[here.id].spD; 5 ARl s e R s B
5 for k in @..#row.nnz { 2 dui) DS

. ’ 7 ref row = Rows[i];
6 const idx = row.col_idx[k]; . Forlk nol N
7 if idx < start || idx > end { 9 const idx = row.col_idx[k];
8 spD += idx; 10 if idx < start || idx > end {
9 } \ 1 spD += idx;

12 }

10 } needs thread safety 13) \
T - - does not need
12 sort_indices(localeBuffers); 15 } thread Safety

16 sort_indices(localeBuffers); 35

4.) Future Work (cont.)

* Optimizing the optimization:
 use aggregation for the update/gathers before the kernel

» use default arrays instead of associative arrays
* more efficient memory accesses
* requires building a new index mapping from indirection array to indices in the default array

* gets much uglier than the associative array approach, so there’s a tradeoff between
performance and what the compiler could automatically generate

4.) Future Work (cont.)

* Optimizing the optimization:
 use aggregation for the update/gathers before the kernel

» use default arrays instead of associative arrays
* more efficient memory accesses
* requires building a new index mapping from indirection array to indices in the default array

* gets much uglier than the associative array approach, so there’s a tradeoff between
performance and what the compiler could automatically generate

* Compiler automation:
* user driven (pragmas) or have the compiler try to find suitable kernels?

* More applications please!
* not ideal for the optimization developer to write the test cases

* if you have irregular applications that could benefit from runtime optimizations (not
just inspector-executor), contact us! tbrolin@cs.umd.edu

Conclusions

* Inspector-executor shows promise for irregular applications in Chapel
* Speed-ups as high as 224x
» Take application runtimes from days to hours

* Does not rely on low-level details to be exposed in the source code

* our goal with the baseline implementations was to write them in the most natural
way, sticking to the “on-paper” description of the algorithms

Runtime Optimizations for Irregular
Applications in Chapel

Thomas B. Rolinger (UMD/LPS), Christopher D. Krieger (LPS), Alan Sussman (UMD)

Contact: tbrolin@cs.umd.edu
CHIUW 2021

COMPUTER SCIENCE
UNIVERSITY OF MARYLAND

The Laboratory for Physical Sciences

R

