
Development of an Aircraft Aero-Icing Suite Us-
ing Chapel Programming Language

Hélène Papillon Laroche, master student
Simon Bourgault-Côté, Research associate
Matthieu Parenteau, Ph. D. candidate
Éric Laurendeau, Professor

POLYTECHNIQUE MONTRÉAL Aircraft Icing Simulations Why Use Chapel? Data Structure Challenges Results Outcomes

Table of contents

1 Aircraft Icing Simulations

2 Why Use Chapel?

3 Data Structure

4 Challenges

5 Results

6 Outcomes

Aircraft Aero-Icing Suite Using Chapel – H. Papillon Laroche et al. 2/19

POLYTECHNIQUE MONTRÉAL Aircraft Icing Simulations Why Use Chapel? Data Structure Challenges Results Outcomes

Aircraft Icing Phenomena

Impact of the ice accumulation

• Ice accretion leads to changes in the airfoil geometry;

• Performances are greatly affected by these changes → Security issues.

Aircraft Aero-Icing Suite Using Chapel – H. Papillon Laroche et al. 3/19

POLYTECHNIQUE MONTRÉAL Aircraft Icing Simulations Why Use Chapel? Data Structure Challenges Results Outcomes

Overview of Aircraft Icing Modelisation

Complex multi-physical phenomena
• Airflow field and droplets impingement → volume mesh;

• Thermodynamic exchanges and geometry evolution → surface mesh;

• Evolution in time of the computational domains (since the geometry changes).

Aircraft Aero-Icing Suite Using Chapel – H. Papillon Laroche et al. 4/19

POLYTECHNIQUE MONTRÉAL Aircraft Icing Simulations Why Use Chapel? Data Structure Challenges Results Outcomes

Why Use Chapel?

Challenges of multi-physics simulations

We have to balance :

• the fidelity of multiple solvers;

• the performances → computational costs;

• the productivity → addition of multiple physical models.

Chapel was initially used for the implementation of a flow solver : Chapel Multi-Physics Simulation
(CHAMPS) [2].

Benefits from Chapel’s features

• Productivity → fast prototyping with high level syntax;

• Natively distributed → Overcome the barrier of entry of parallel distributed programming in an
academic context (2 years) [2];

• Modularity → Generic classes and records to reuse structures;

• Memory management strategies.

Aircraft Aero-Icing Suite Using Chapel – H. Papillon Laroche et al. 5/19

POLYTECHNIQUE MONTRÉAL Aircraft Icing Simulations Why Use Chapel? Data Structure Challenges Results Outcomes

Data Structure for Multi-Physics Simulations

Overview of what was previously implemented
• Object oriented structure with generic base classes;

• Multi-zones structure suitable for distributed memory computations with
interface exchanges (communication between computational nodes) [2].

What we added to complete the multi-physic framework
• Treatment of the surface mesh;

• Extension of the multi-zones structure to the additional modeled physics.

Aircraft Aero-Icing Suite Using Chapel – H. Papillon Laroche et al. 6/19

POLYTECHNIQUE MONTRÉAL Aircraft Icing Simulations Why Use Chapel? Data Structure Challenges Results Outcomes

Challenges of Multi-Physic Simulations

Surface and Volume meshes
Distribution of the zones across the computational nodes
→ to better distribute the volume mesh.

• Adapted for the flow and droplet solvers (resolution on the volume mesh);

• Can lead to an unbalanced distribution across the computational nodes for the
thermodynamic exchanges and the geometry evolution.

Locale 0
Locale 1

No redistribution With redistribution

Locale 0
Locale 1

No redistribution With redistribution

Aircraft Aero-Icing Suite Using Chapel – H. Papillon Laroche et al. 7/19

POLYTECHNIQUE MONTRÉAL Aircraft Icing Simulations Why Use Chapel? Data Structure Challenges Results Outcomes

Challenges of Multi-Physic Simulations

How can we re-balance the distribution and reduce under-utilized resources?

Locale 0
Locale 1

No redistribution With redistribution

Locale 0
Locale 1

No redistribution With redistribution

Distribution handling
The GlobalHandle c generic class handles the distribution across the Locales of the
computation domain (mesh) [2]:
• Difference between surface and volume meshes → the number of topological dimensions;

• GlobalHandle c is generic as the mesh type is a type alias of the class → it works for any
number of topological dimensions;

• The re-distribution of the surface mesh re-uses the GlobalHandle c, as the distribution of the
volume mesh.

Aircraft Aero-Icing Suite Using Chapel – H. Papillon Laroche et al. 8/19

POLYTECHNIQUE MONTRÉAL Aircraft Icing Simulations Why Use Chapel? Data Structure Challenges Results Outcomes

Challenges of Multi-Physic Simulations
How can we re-balance the distribution and reduce
under-utilized resources?

Locale 0
Locale 1

No redistribution With redistribution

Locale 0
Locale 1

No redistribution With redistribution

Re-distribution handling
1 Delete the instance of GlobalHandle c(VolumeMesh) → by simply exiting the

scope since everything uses owned memory management;

2 Instantiate again a GlobalHandle c, but with the surface mesh (after reading the
latter);

3 With this instance of GlobalHandle c, the surface zones are automatically
distributed with a Block distribution across all the Locales.

Aircraft Aero-Icing Suite Using Chapel – H. Papillon Laroche et al. 9/19

POLYTECHNIQUE MONTRÉAL Aircraft Icing Simulations Why Use Chapel? Data Structure Challenges Results Outcomes

Challenges of Multi-Physic Simulations

The addition of modeled physics (turbulence, droplet impingement, thermodynamic
exchanges and geometry evolution) required a flexible structure to enable a productive
framework.

ModelHandle_c

+ modelDomains : domain
+ modelArrays : [modelDomains]

ViscousModel_c

+ viscousArrays : [modelDomain]

SpalartAllmarasModel_c

+ nut_ : [modelDomain] real

MenterKWSSTModel_c

+ K_ : [modelDomain] real
+ w_ : [modelDomain] real

ThermodynamicModel_c

+ thermoArrays : [modelDomain]

Aircraft Aero-Icing Suite Using Chapel – H. Papillon Laroche et al. 10/19

POLYTECHNIQUE MONTRÉAL Aircraft Icing Simulations Why Use Chapel? Data Structure Challenges Results Outcomes

Challenges of Multi-Physic Simulations

ModelHandle c → simple hierarchical structure but ...

Compilation difficulties encountered throughout the
implementation of the new models.

• Combination of object-oriented programming and
generic objects for the zones and the models;

• Definition of the methods of the children objects often require a tight control
with where statements to avoid compilation errors due to non-existing fields or
methods in parents or in siblings.� �

1 where globalHandle.type == GlobalHandleFlow_t || globalHandle.type ==

BorrowedGlobalHandleFlow_t || globalHandle.type == GlobalHandleIcing_t ||

globalHandle.type == BorrowedGlobalHandleIcing_t

2 where zone.type < MeshFlow_c� �
Aircraft Aero-Icing Suite Using Chapel – H. Papillon Laroche et al. 11/19

POLYTECHNIQUE MONTRÉAL Aircraft Icing Simulations Why Use Chapel? Data Structure Challenges Results Outcomes

Challenges of the Chapel Implementation

One of the main drawbacks of the growth of CHAMPS with new components or mod-
ules is the increase in compilation time and required memory, especially for the icing
executable.

 1

 2

 3

 4

 5

 6

 7

 8

09/2019 11/2019 01/2020 03/2020 05/2020 07/2020 09/2020 11/2020 01/2021 03/2021

C
om

pi
la

tio
n

tim
e

[m
in

]

Time

Compilation time over CHAMPS history

Pre-processor exec. (prep)

1.0

1.4

 1.7

1.10

1.13

1.15

1.17

1.19

Flow exec. (flow)
Icing exec. (icing)

Chapel 1.19 Chapel
1.20

Chapel 1.22

Chapel 1.23

Aircraft Aero-Icing Suite Using Chapel – H. Papillon Laroche et al. 12/19

POLYTECHNIQUE MONTRÉAL Aircraft Icing Simulations Why Use Chapel? Data Structure Challenges Results Outcomes

Challenges of the Chapel implementation

At its highest point, the compilation time could take around 15 minutes, whereas
memory usage was seen to reach up to 30GB of memory (RAM).

Why?
Simple causes (introduced by unfamiliar students with
the Chapel language):

• The overuse of generic function arguments in some modules;

• The use of too many modules everywhere even when they were not required.

Complex causes :

• The addition of new components in the code (new modules);

• The duplication of generic functions for multiple flavors of the mesh and model
objects (even outside programmed combinations).

Aircraft Aero-Icing Suite Using Chapel – H. Papillon Laroche et al. 13/19

POLYTECHNIQUE MONTRÉAL Aircraft Icing Simulations Why Use Chapel? Data Structure Challenges Results Outcomes

Challenges of the Chapel implementation

How to reduce the compilation costs?

• Split the compilation in two phases for memory

usage:

1 the generation of the C code from the Chapel

files;

2 the compilation of the C code.

• Address the overuse of generic functions

arguments and modules;

• Properly use where statements to limit the

duplication of generic functions.
 1

 2

 3

 4

 5

 6

 7

 8

09/2019 11/2019 01/2020 03/2020 05/2020 07/2020 09/2020 11/2020 01/2021 03/2021

C
om

pi
la

tio
n

tim
e

[m
in

]

Time

Compilation time over CHAMPS history

Pre-processor exec. (prep)

1.0

1.4

 1.7

1.10

1.13

1.15

1.17

1.19

Flow exec. (flow)
Icing exec. (icing)

Chapel 1.19 Chapel
1.20

Chapel 1.22

Chapel 1.23

What remains?
• The optimization operation performed after version 1.17 was lost for some reasons in version 1.19;

• An hypothesis lies within the where statements discussed before, but it is not yet verified.

Aircraft Aero-Icing Suite Using Chapel – H. Papillon Laroche et al. 14/19

POLYTECHNIQUE MONTRÉAL Aircraft Icing Simulations Why Use Chapel? Data Structure Challenges Results Outcomes

Results
Two approaches are available in CHAMPS :
• Deterministic;
• Stochastic.

Aircraft Aero-Icing Suite Using Chapel – H. Papillon Laroche et al. 15/19

POLYTECHNIQUE MONTRÉAL Aircraft Icing Simulations Why Use Chapel? Data Structure Challenges Results Outcomes

Results

X/c [­]

Y
/c

 [
­]

­0.05 0 0.05 0.1

­0.05

0

0.05

0.1

Clean
Layer 1

Layer 2
Layer 3
Layer 4

Layer 5
Exp.

2D rime ice: Case 241 from IPW1 [1]

Y

Z

3D rime ice: Case 241 from IPW1 [1]

Aircraft Aero-Icing Suite Using Chapel – H. Papillon Laroche et al. 16/19

POLYTECHNIQUE MONTRÉAL Aircraft Icing Simulations Why Use Chapel? Data Structure Challenges Results Outcomes

Results

X [m]

Y
 [

m
]

­0.02 0 0.02 0.04 0.06
­0.04

­0.03

­0.02

­0.01

0

0.01

0.02

0.03

 Stochastic Approach

 Experimental Shape

 Clean

2D rime ice: Case 01 from [3] 2D rime ice: Case 241 from IPW1 [1]

Aircraft Aero-Icing Suite Using Chapel – H. Papillon Laroche et al. 17/19

POLYTECHNIQUE MONTRÉAL Aircraft Icing Simulations Why Use Chapel? Data Structure Challenges Results Outcomes

Outcomes

In an academic context
• Allows the graduate students to focus on the physics they model;
• Enables fast prototyping of various physic models;
• Aircraft icing is still not well understood.

Participation to the 1st Icing Prediction Workshop
• Brings together organizations to compare icing predictions;
• Code-to-code comparisons to CFD software using more traditional programming

languages (Fortran, C, C++);
• Ansys FENSAP-ICE, NASA LEWICE, ONERA IGLOO3D;

• Allows us to assess the fidelity of CHAMPS compared to more traditional CFD
software.

Aircraft Aero-Icing Suite Using Chapel – H. Papillon Laroche et al. 18/19

POLYTECHNIQUE MONTRÉAL Aircraft Icing Simulations Why Use Chapel? Data Structure Challenges Results Outcomes

Reference I

[1] AIAA.
1st AIAA Ice Prediction Workshop.
https://folk.ntnu.no/richahan/IPW/.

[2] Matthieu Parenteau, Simon Bourgault-Côté, Frédéric Plante, Engin Kayraklioglu, and Éric Laurendeau.
Development of parallel cfd applications with the chapel programming language.
January 2021.

[3] Pierre Trontin, Ghislain Blanchard, Alexandros Kontogiannis, and Philippe Villedieu.
Description and assessment of the new ONERA 2D icing suite IGLOO2D.
In 9th AIAA Atmospheric and Space Environments Conference. AIAA Paper 2017-3417, June 2017.

Aircraft Aero-Icing Suite Using Chapel – H. Papillon Laroche et al. 19/19

	Aircraft Icing Simulations
	Why Use Chapel?
	Data Structure
	Challenges
	Results
	Outcomes

