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ABSTRACT
This paper presents an aircraft ice accretion simulation suite imple-
mented in the Chapel programming language for deterministic and
stochastic ice accretion in two (2D) and three (3D) dimensions. The
work is performed inside the CHApel Multi-Physics Simulation
software (CHAMPS) developed at Polytechnique Montreal since
2019. Different physical models are added to the flow solver to simu-
late the droplet trajectories, the surface thermodynamic exchanges,
and the surface deformation. The object-oriented approach used in
the development of CHAMPS, combined with the generic functions
and types from Chapel, allowed the development of a code that
is easy to maintain and that still has high growth potential. The
latest extension to CHAMPS is the capability to perform stochastic
ice accretion using an advancing front grid methodology at the
core and by randomly distributing the droplets, like in a cloud.
Although stochastic ice accretion is not new, this paper presents
an original methodology that has advantages over other methods
from the literature, such as conserving a valid surface mesh from
the beginning to the end of the stochastic accretion. Multi-layer
ice accretion results are presented in 2D and 3D for a deterministic
methodology, whereas single-layer 2D results are presented for the
stochastic method.
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1 INTRODUCTION
Aircraft icing involves complex multi-physical phenomena and is
a field of great interest in terms of in-flight safety. The modeling
of these phenomena using numerical simulations allows a better
understanding of the degradation of the aerodynamic performances
due to ice accretion on exposed surfaces. These numerical simu-
lations are even more important in the certification of an aircraft
since it is unlikely, if not impossible, to evaluate all the icing condi-
tions foreseen by the Appendix C of FAR part 25 [9] using in-flight
tests.

Ice accretion happens as an aircraft passes through a cloud of
supercooled droplets which leads to thermodynamic exchanges.
Therefore, the numerical simulations are complex since the physical
phenomenon involves the airflow, the impingement of the droplets,
the thermodynamic exchanges, and the ice growth. Traditionally,
multi-physics Computational Fluid Dynamics (CFD) software use
Fortran, C and C++ languages coupled with Single Program Mul-
tiple Data (SPMD) framework to achieve high performance [18]
such as IGLOO3D [20], LEWICE3D [29], NSCODE-ICE [7] and
FENSAPE-ICE [3]. The challenge is to balance the computational
and the implementation costs while obtaining the required fidelity,
as the concept of SPMD can represent additional difficulties in an
academic research laboratory. Parenteau et al. [18] presented a new
CFD software named Chapel Multi-Physics Simulation (CHAMPS),
which uses the Chapel programming language as an alternative to
more traditional programming languages. This paper presents an
extension of CHAMPS for ice accretion predictions over aircraft,
highlighting the modularity and the highly productive framework
provided by the Chapel programming language.

Section 2 presents an overview of a typical multi-layer icing
process to introduce the context to an unfamiliar reader. Section 3
continues with a brief overview of the implementation of CHAMPS
and is followed in Section 4 by the additional considerations for
the data structure brought by the multi-physics simulations. Then,
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Figure 1: Multi-layer Icing Process, adapted from [7, 11]

a stochastic icing approach within CHAMPS is presented along
with how Chapel’s features are used. Finally, CHAMPS is compared
to experimental data to access its capability to simulate real icing
conditions.

2 OVERVIEW OF THE MULTI-LAYER ICING
PROCESS

The multi-layer icing process is declined in five main components
which are performed sequentially and repeated until the icing sim-
ulation is completed. The complete icing process is well described
by Bourgault-Côté [7]. The flow chart of the process is presented
at Figure 1.

2.1 Continuous Phase : Air Flow Solver
The aerodynamic flow field is involved in the icing process since it
drives the droplet impingement, the convective heat transfer, and
the water runback flow on the geometry [7]. The state-of-the-art
is to use the Reynolds-averaged Navier–Stokes (RANS) equations

to solve the continuous phase, as it allows to model compressible
effects as well as viscous and turbulent flow [7, 11].

This aerodynamic framework requires the discretization of the
computational domain into a high-quality volume mesh, in order to
well resolve the flow field. If the aerodynamic degradation due to ice
contamination is sought, as in a multi-layer approach, re-meshing
capacities are needed.

2.2 Disperse Phase : Droplet Solver
The disperse phase consists of the liquid water droplets transported
by the airflow. Ice accretion can occur when these droplets impinge
a surface, that is any exposed surfaces of the aircraft in the present
context (wings, fuselage, nacelle). Therefore, the impingement map
is needed on the surface. The droplet trajectories can be modeled
using Lagrangian or Eulerian methods, the first being the resolution
of the equation of motion for each particle and the second being
the resolution of a partial differential equation system, as proposed
by Bourgault et al. [6].

The latter approach is now the state-of-the-art as the mesh used
by the RANS flow solver is reused for the droplet field resolution,
as well as the parallelization of the computations [7].

2.3 Thermodynamic Exchanges
The impingement of the water droplets on the surface of the airfoil
and the convective heat transfer induced by the flow result in
thermodynamic exchanges. The resolution of these exchanges on
the surface, with mass and energy balances, allows obtaining the
accumulated ice thickness. Unlike the volume resolution of the
continuous and disperse phases, the thermodynamic model uses
the surface discretization of the geometry. The mass and energy
balances are described by Messinger [15], and the resolution of the
thermodynamic exchanges can be completed using the Messinger
model, extensions of this model [16, 17, 30] or PDE systems as the
Shallow-Water Icing model [5, 11].

2.4 Geometry Evolution
The geometry is deformed by considering the ice accretion map on
the surface to obtain the final ice shape. One of the methods used
to deform the surface grid is the algebraic method, or Langrangian
method, that moves each node of the surface discretization fol-
lowing the ice accumulation map. Other methods include implicit
methods, such as the level-set equation, and grid approaches such
as the hyperbolic grid generation method or advancing front tech-
niques [7]. Note that the word geometry is employed here even
if only the surface grid is deformed, as this represents a discrete
geometry. An underlying continuous geometry can be re-generated
or deformed based on that surface grid deformation.

2.5 Mesh Regeneration
Once a new geometry definition, discrete or continuous, is obtained,
a corresponding volume mesh can be obtained by deformation of
the previous grid or by full or partial regeneration. This allows
performing a multi-layer simulation to gradually accumulate the
ice by smaller layers and to include the impact of that ice in the
next flow and droplet trajectory simulations. When regenerating
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the grids, the computational domain changes at each layer, which
increases the complexity.

3 CHAPEL MULTI-PHYSICS SIMULATION
(CHAMPS)

The development of the flow solver of CHAMPS, as well as its
performances, are well described by Parenteau et al. [18]. Since the
scope of this paper is toward the icing simulations, only a brief
overview of the implementation of CHAMPS is presented.

The flow and the droplet fields are solved with a typical cell-
centered finite volume approach over 2D and 3D unstructured
multi-zone grids. The aerodynamic field is obtained by resolving
the RANS equations, which are closed with the Spalart-Allmaras
[23, 24] or the K - 𝜔 SST-V [14] turbulence models. Roe [22] or
AUSM [4] schemes are used for the fluxes discretization and the
second-order spatial accuracy is reached with the computation
of the gradients of the flow variables, with the Green-Gauss or
Weighted Least Square formulations [4]. Gradient limiters available
to reach second-order accuracy include the formulation of Barth and
Jespersen [2], Venkatakrishnan [27], Van Leer and Van Albada [4].
Time integration is completed with a hybrid Runge-Kutta scheme
[13], a Block Symmetric Gauss-Seidel scheme, or a GMRES method.

The droplet impingement field is obtained via the Eulerian droplet
equations [6], using an upwind scheme for the convective fluxes
discretization. The spatial second-order accuracy is reached in a
similar way as for the flow equations. The gradient, limiters and
linear solvers usable for the flow solver are also available to the
droplet solver. In fact, in CHAMPS, solvers and gradients are gen-
eralized so that any method developed for a module is immediately
available for the other modules, thus highlighting the reusability
and modularity of the original structure [18].

The thermodynamic exchanges are solved with an Iterative
Messinger model [30], implemented following the new model struc-
ture presented at Section 4.3. The geometry evolution is performed
with the Lagrangian method, presented at Section 2.4, or an hyper-
bolic scheme [7].

To achieve multi-layer icing simulations, two techniques are
available for now: i) complete 2D grid regeneration through a 2D
hyperbolic mesh generation method [8], or ii) 2D/3D volume mesh
deformation through a radial basis function approach [28].

4 DATA STRUCTURE FOR MULTI-PHYSICS
SIMULATIONS

Compared with specialized software for flow simulations, the multi-
physics simulations performed with CHAMPS require a more com-
plex computational structure.

4.1 Computational domains
CHAMPS is a multi-zone software, meaning that the computational
domain, i.e. the mesh, is divided into multiple zones to reduce
the computational time on multi-core systems. As described by
Parenteau et al. [18], parallelism on distributedmemory is applied to
these zones, and exchanges are performed at the interfaces between
the zones to obtain a consistent solution. Therefore, a suitable
structure has initially been implemented for the flow solver in
CHAMPS, taking the requirements of the icing process into account.

Mesh_c

+ gridDomains : domain
+ gridArrays : [gridDomain]

MeshFlow_c

+ flowArrays : [gridDomain]
+ flowConditions_ : FlowConditions_r
+ flowSolver_ : SolverHandleFlow_c

MeshIcing_c

+ dropletArrays : [gridDomain]
+ dropletConditions_ : DropletConditions_r
+ icingConditions_ : IcingConditions_r
+ dropletSolver_ : SolverHandleDrop_c

Figure 2: Overview of theMeshIcing_c class in CHAMPS

Indeed, the generic class GlobalHandle_c handles the distribution
of any type of zone over the computational resources [18]. The type
field zoneType_t is therefore used to define the type of simulation
to perform, e.g. the resolution of the flow or an icing simulation.
Exploiting the common characteristics of the grids used, as the node
coordinates, the grid metrics, and the connectivity, inheritance of a
base class, Mesh_c, is used to ease the multi-physics developments.
There are two examples of this handling within CHAMPS that
worth mentioning: i) the MeshIcing_c class and ii) the volume and
surface meshes.

MeshIcing_c class. This class makes use of the fact that the flow
and the droplet impingement are solved on the same computational
grid. Therefore, the MeshIcing_c class inherits of the MeshFlow_c
class, and the required fields for the resolution for the droplet
impingement are added, as the associated arrays and the icing
conditions. This structure, illustrated in Figure 2, shows the re-
usability of the implemented structure in CHAMPS and allows to
access easily the flow variables while solving the droplet field.

Volume and surface meshes. The icing process involves both a
volume mesh and a surface mesh. The difference between those
two components is mainly the topological number of dimensions.
Therefore, the specialized computational grids (volume or surface)
inherit from the Mesh_c class and the specialized procedures based
on the topological number of dimensions without further addition.
In fact, once the computational grid is initialized, the different
solvers such as the flow solver or the droplet solver are developed
to compute on any grid that is loaded. This allows to solve a volume
equation, such as the RANS equations, on a planar grid, which is
topologically 2D, and on its extruded 3D equivalent with the same
code and the same functions to obtain exactly the same solution.
The possibility to develop for a 3D volume and test on a 2D plane,
or the opposite, is provided by object-oriented programming and
by the generic features of Chapel and is quite useful in a research
laboratory.

4.2 Distributed Memory Parallelism
The use of both volume and surface meshes for the same simula-
tions brings challenges when distributing the memory to conserve
efficiency and scalability. As presented by [18], the distribution of
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Figure 3: Volume (top) and surface (bottom) zones distribu-
tion across the computational nodes

the zones across the computational nodes is handled by the Global-
Handle_c class to best distribute the volume grid. The additional
considerations brought by the use of the surface come from the
fact that the surface mesh associated with the volume mesh on a
locale does not necessarily contain the same number of zones as its
volume counter part. An example of this situation is illustrated in
Figure 3, where the computational domain is divided in six volume
zones. Three volume zones are distributed on each locale (0 and
1), however, with no redistribution, the local 0 contains only one
surface, while the locale 1 contains three surfaces.

Indeed, since the distribution of the zones across the computa-
tional nodes is based on the volume mesh, the parallelism can be
unbalanced with under-utilized resources, when the solver reaches
the thermodynamic and geometric modules.

To overcome this issue and the associated performance losses, the
zones of the surfacemesh are redistributed across the computational
nodes by first deleting the volume GlobalHandle_c object, and all
the volume computational domain, and reading again the grid file,
but for the surface that time. A new GlobalHandle_c object is then
created and the surface zones are automatically distributed with a
Block distribution across all the Locales. This allows to minimize
the under-usage of the resources by weakly ensuring that all the
Locales contain a part of the surface zones. It is considered highly
improbable that a volume grid distributed in N Locales containing
M cores would contain less than N surface zones, thus the weak
condition.

Another way to overcome this issue is to split the mesh in a way
that the volume and surface partitioning are balanced. Coinciden-
tally, this is achieved when completely regenerating a 2D planar
grid with the hyperbolic mesh generation approach due to the
numbering used that is appropriate for the grid splitting algorithm.

ModelHandle_c

+ modelDomains : domain
+ modelArrays : [modelDomains]

ViscousModel_c

+ viscousArrays : [modelDomain]

SpalartAllmarasModel_c

+ nut_ :  [modelDomain] real

MenterKWSSTModel_c

+ K_ : [modelDomain] real
+ w_ : [modelDomain] real

ThermodynamicModel_c

+ thermoArrays : [modelDomain]

Figure 4: Overview of the classes for models in CHAMPS

4.3 Addition of Models
With the multiplication of the modeled physics in CHAMPS, a new
structure was introduced: the ModelHandle_c class. First used for
the turbulence models, this structure was then used in the thermo-
dynamic module as well as in the geometry evolution module.

The rationale behind theModelHandle_c class is that some physics
can be resolved with multiple models involving different variables
and numerical schemes. Therefore, it is more convenient to wrap
those models in a class and, following the user inputs, instanti-
ate the right model as a field of the generic Mesh_c class (or its
children).

TheModelHandle_c class is the base class, as theMesh_c class for
the computational grids, and specialized models inherit from this
class. The fields in ModelHandle_c represent the simplest definition
of a model, as the number of variables, the number of elements,
and the associated domain and arrays. The fields of the derived
class depend on the model implemented. For example, a turbulence
model is needed when resolving the flow. In CHAMPS, few models
were implemented: the Spalart-Almaras (SA), K-𝜔 STT, Langtry-
Menter transitional, and variations of these models. The structure
for those classes is presented in Figure 4.

Despite the modularity brought by this structure, compilation
difficulties were encountered throughout the implementation of
the new models. One of the main concerns during the growth of
CHAMPS to multi-physic simulations was to keep the generic char-
acter of the structure. However, due to the use of object-oriented
programming with generic objects for the zones and the models,
the definition of the methods of the children objects often require a
tight control with where statements to avoid compilation errors due
to non-existing fields or methods in parents or in siblings (other
children from same parents). In Chapel, where statements allow to
define conditions tested at compilation to implement a particular
function or method. For example, a function could be defined with
a where statement on the type of a generic argument to be instan-
tiated only when the argument is an integer. Two examples from
CHAMPS of where statements can be seen below, the first being
more complex as we are forced to use the == operators.� �

1 where globalHandle.type == GlobalHandleFlow_t ||
globalHandle.type == BorrowedGlobalHandleFlow_t ||
globalHandle.type == GlobalHandleIcing_t ||
globalHandle.type == BorrowedGlobalHandleIcing_t

2 where zone.type < MeshFlow_c� �
2021-05-20 18:20. Page 4 of 1–9.
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4.4 Compilation time
One of the main drawbacks of the growth of CHAMPS with new
components or modules is the increase in compilation time and
required memory, especially for the icing executable. Due to the
hard limit in memory usage per process on the front nodes of the
Compute Canada HPCs, the compilation process was split in two
phases, namely i) the generation of the C code from the Chapel
files and ii) the compilation of the C code. During the history of
CHAMPS, work has been performed at different moments to re-
duce the resources required to compile CHAMPS in terms of time
and memory. At its highest point, compilation time for the icing
executable could take around 15 minutes, whereas memory usage
was seen to reach up to 30GB of memory (RAM). The latter was
mainly due to i) the overuse of generic function arguments in some
modules, where even integers and reals were left without types in
function declarations, and ii) the use of too many modules every-
where even when they were not required. Solving these two issues,
which were observed for all executables when new modules were
added by students unfamiliar with the Chapel language, also helped
in reducing the compilation time to acceptable levels in general.

However, for the icing executable into which almost all modules
are involved, more work was required. In particular, it was nec-
essary to properly use where statements to limit the duplication of
generic functions for multiple flavors of the mesh and model objects
that are not related, as mentioned before. It restricted the gener-
ated C code and thus reduced the compilation time and memory.
Figure 5 shows the compilation time for some executables through
the history of CHAMPS versions. The Chapel version used is also
indicated.

In Figure 5, each abrupt increase in compilation time is due to
the addition of new components in the code, but for each successive
version, the length of the code increases. The number of code lines
went from around 8k for version 1.0 to around 48k in version 1.19.
The drop in compilation time seen after version 1.17 is due to the
specific modification of the code in order to reduce compilation
time and memory consumption. It can be seen that the effect of that
optimization operation was lost for some reasons for version 1.19.

One hypothesis lies within the where statements discussed before,
but it is not yet verified.

5 STOCHASTIC ICING APPROACH
Another feature added for the multi-physics simulations is the
stochastic icing approach. Initially presented by Szilder [25] as
the Morphogenetic model, the rationale of the method has been re-
examined by Bourgault-Côté [7]. The approach aims to reproduce
the chaotic character of the icing process that is mainly due to
the cloud droplet distribution and the surface irregular roughness.
The method is Lagrangian, meaning that it models the ice accre-
tion by growing each iced element individually. Furthermore, to
reduce the computational cost, the droplets are gathered in clusters,
with the assumption that the droplets in a single cluster follow the
same evolution (trajectory and freezing location). The steps are the
following:

(1) Insert a droplet cluster upstream of the airfoil at a random
position;

(2) Resolve the cluster trajectory;
(a) If the trajectory impacts the airfoil, generate an element

of ice;
(3) Return to step (1) until reaching the stop criterion, which is

the mass of the accumulated ice.
Stochasticity is introduced through the impingement (step (1)) and
the freezing (step (2a)) via probabilities and pseudo-random num-
bers generation.

Szilder and Lozowski [25] initially proposed to generate the
element of ice (step (2a)) with a random walk model on a Cartesian
grid. Then, Bourgault-Côté proposed a Cartesian advancing front
[7].

5.1 Advancing Front Algorithm
The implementation in CHAMPS differs from Bourgault-Côté’s
[7] method as the Cartesian advancing front is replaced by an
unstructured advancing front. Therefore, an advancing front grid
generator is implemented in CHAMPS, following the algorithms
proposed by Löhner and Parikh [12], Peraire et al. [19] and Jin and
Tanner [10]. The method is based on the dynamic creation of a grid
by the generation of triangular (or tetrahedral) elements.

The steps required to complete the process are the following:
(1) Discretize the boundaries, which form the initial front;
(2) Generate the next element, based on the predefined order of

treatment;
(a) Select an existing node or create a new node;
(b) Check intersections with existing elements, if true, return

to step (2a);
(3) Update the front;
(4) Repeat (2) and (3) until reaching the stop criterion.
For the stochastic icing, the initial front is the surface discretiza-

tion of the studied geometry. Since the process involves the gen-
eration of a mesh, a derived class of Mesh_c, MeshStochastic_c, is
created to take advantage of the connectivity and metrics computa-
tions already available. Furthermore, CHAMPS’ surface and volume
meshes compatibility (Section 4.1) is used as the front initialization
is performed in the same way as a surface mesh would be initialized

2021-05-20 18:20. Page 5 of 1–9.
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Figure 6: Unstructured advancing front process. The front is represented in red

even if the generated mesh is volumic. The front consists of the
facets which are available to form a new element. These are the
front facets from which the new elements are created.

As seen in Figure 6, the front and the mesh are structures that
change throughout the generation of the mesh. This involves that
the data structure enables the insertion and deletion of elements.
To that end, the var keyword is used to declare the associated lists,
domains, and arrays of MeshStochastic_c. The front is a field of
MeshStochastic_c and takes the form of a list of facet indexes, and
the mesh uses variable domains and arrays. As the element are
added, the mesh domains are extended by redefining the domain
assignment and, using the logical re-allocation of Chapel, the as-
sociated arrays are automatically resized. The front is managed
through the use of list.append() and list.remove() procedures. Fur-
ther developments are planned to overcome the computational cost
of these memory manipulations, as the use of tree structures like
Chapel’s heap module.

5.2 Stochastic Impingement and Freezing
Randomness is first introduced as the droplets are inserted in the
computational domain. Since the method is Lagrangian, the droplet
trajectories are extracted from the Eulerian droplet velocity field
via the computation of streamlines from random insertion points.
The resolution of the trajectories is performed using the volumic
RANS mesh, on which the droplet velocity field was obtained.

The process goes as follows, based on the method proposed by
Rendall and Allen [21] to compute the droplet ”streamline”, which is
its trajectory. A seeding plane is defined upstream of the geometry.
Then, a cluster of droplets is inserted on this plane and the initial cell
in the RANS mesh is found to extract the initial velocity vector of
the cluster. From there, the entry point to the next cell is defined as
the position of the closest downstream intersection of the velocity
vector and the cell facets. The next cell index is obtained from the
mesh cell connectivity, and the process is repeated.

The initial position of the droplet is generated with the PC-
GRandom module. A PCGRandomStream class is instantiated as
a field of the MeshStochastic_c so that the stream of pseudoran-
dom numbers stays consistent during the entire process (the seed
do not change). To obtain the next initial position, PCGRandom-
Stream.getnext( min, max) is simply called. The min, max fields are
used so the pseudorandom number represents a plausible initial

position in the computation domain. To limit unnecessary compu-
tations, the min, max fields are derived from the Eulerian droplet
velocity field using an inverse trajectory computation.

Thermodynamic exchanges have yet to be computed, thus, the
cluster of droplets freezes upon impact. This limits the framework
to rime ice cases only.

5.3 Evolution of the Stochastic Process
If the trajectory of the cluster intersects a facet of the front, the
trajectory computation stops and a new element is generated with
the advancing front algorithm. The process is presented in Figure 7.
The size of the created elements is given as an input. The process
stops when the accumulated mass of ice (the sum of the mass of
each created element) reaches the targeted mass, obtained with the
icing conditions.

6 NUMERICAL RESULTS
6.1 2D Deterministic Icing
Rime ice is characterized by lower temperatures, at which the
droplets freeze upon impact. The ice tends to grow as an exten-
sion of the geometry following the stagnation line. The test case
presented in this paper is case 241 selected for the 1𝑠𝑡 AIAA Ice
Prediction Workshop (IPW1) [1]. The conditions for this case are
presented in Table 1 and results obtained with CHAMPS are pre-
sented in Figure 8 for five ice layers performed using full mesh
re-generation using the hyperbolic mesh generation method, as
described in Section 3.

6.2 3D Deterministic Icing
Recently, the addition of the mesh deformation method using radial
basis functions (RBF) allowed to perform multi-layer ice accretion
simulations in 3D. Considering the complexity of ice shapes, such
simulations are not often seen in the literature. The current method-
ology still has some limitations and for now, only rime cases have
been tested due to their simpler shapes. Case 241 presented previ-
ously in 2D is shown in Figure 9 for five ice layers. The experimental
test was performed on an extruded airfoil, which allows us to per-
form the 3D simulation by extruding the previous 2D grid to obtain
10 cells in the third direction with a cell width of approximately
0.5% the chord length.
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Figure 9: 3D rime ice: Case 241 from IPW1 [1]

Table 1: Test Cases Input Parameters

Test Case Case 241, IPW1 Case 01, Trontin
et al.

Geometry NACA0012 NACA0012
Chord [m] 0.4572 0.5334
AoA [◦] 2.0 4.0
Mach [-] 0.325 0.325

Temperature [K] 255.20 250.7
Pressure [kPa] 92.5 101.325
LWC [g/m3] 0.42 0.55
MVD[`m] 30 20

Icing Time [min] 5.0 7.0

6.3 2D Stochastic Icing
Stochastic icing results are presented on the rime case 241 [1] and
rime case 01 of Trontin et al. [26]. Conditions are presented in
Table 1.

6.3.1 Trontin’s Rime Case 01. The results are presented in Figure 10.
The obtained ice shape is compared to the experimental results [26],
showing that the stochastic icing process leads in great agreement
with the experiment. Figure 10b is zoomed on the leading edge
of the geometry to highlight mesh generated with the advancing
front method. Features like holes in the ice and ice feathers are
captured, as observed in the experiments, which can not be model
by deterministic approaches.

6.3.2 IPW1 Case 241. Figure 11 presents the results of ten different
seeds for PRN generator. Ten different ice shapes are overlaid, with
the bluescale corresponding to the likelihood of the results : the
darker the area is, themost probable it is to obtain ice at this position.
Thus, the impact of the stochasticity is mainly downstream of the
stagnation point, especially on the intrados where ice feathers are
observed. The obtained ice shapes are similar to the experimental
envelope, which is the maximum combined cross section depicted
in pink.
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Figure 10: 2D stochastic rime ice: Case 01 from Trontin et al.
[26]

7 CONCLUSION
In this paper, a multi-physics CFD software is implemented with
the Chapel programming language. The flow solver was previously
developed using Chapel’s features to provide a flexible framework
for multi-physics simulations. Some considerations are added to
the data structures to meet the requirements of an icing simula-
tion while ensuring the proper use of the computational resources.
Additional modules are added, such as the droplet solver, the ther-
modynamic computations, the geometry deformation process, and
the mesh regeneration, using inheritance to ease the development
and to make the most of the generic functions and types from
Chapel. A stochastic icing is also presented, which uses Chapel’s
standard module to generate PRN. Furthermore, memory manipu-
lations as the ice grows are easily performed using domain resizing
and list operations, enabling fast prototyping of the unstructured
advancing front technique.

CHAMPS is validated against rime ice cases of the literature
for the deterministic and stochastic approaches, showing results

Figure 11: 2D stochastic rime ice: 10 runs of the case 241 from
IPW1 [1], the bluescale represents the likelihood of the re-
sult

in great agreement with the experimental data. Future works are
expected to assess the validity of the software on more icing condi-
tions.
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